Intermolecular and Intramolecular Forces. Introduction

Size: px
Start display at page:

Download "Intermolecular and Intramolecular Forces. Introduction"

Transcription

1 Intermolecular and Intramolecular Forces Introduction Atoms can form stable units called molecules by sharing electrons. The formation of molecules is the result of intramolecular bonding (within the molecule) e.g. ionic, covalent. Forces that cause the aggregation of the components of a substance to form a liquid or a solid are called intermolecular forces (between molecules) e.g. van der Waalsl forces as dipoledipole forces (responsible for the physical properties of the material). 1

2 Introduction These forces can be divided into attraction and repulsion forces. The force is repulsive when the molecules are brought close enough together that the outer charge clouds of the molecules touch, and this causes the molecules to repel each other. The repulsive forces are necessary so that the molecules do not destroy each other. Introduction The attractive forces can be divided into two types: Cohesive forces: this term is used when like molecules attract each other Adhesive forces: this term is used when different molecules attract each other Attractive forces are divided into two groups: The weak forces of attraction are: Van der Waals forces, Iondipole forces, and Hydrogen bonds. The strong forces include the Ionic and Covalent (coordinate type) bonds. 2

3 Introduction Knowledge of these forces is important for: 1- Understanding of the properties of gases, liquid, and solids. 2- Understanding of interfacial phenomena. 3- Understanding the hydrophobic effect. 4- Flocculation of suspensions 5- Stabilization of emulsion 6- Compaction of powders in capsules, and the compression of granules to form tablet Intramolecular interactions Ionic bond (could also be available as intermolecular forces). Covalent bond. Metallic bond. 3

4 Ionic Bond An ionic bond is a chemical bond formed by the electrostatic attraction between positive and negative ions. Ionic compounds result when a metal reacts with a nonmetal Ions form due to valency changes in an atom. The atom that loses electrons become a cation (+ve ion), and the atom that gains electrons becomes an anion (-ve ion). Ionic Bond Any given ion tends to attract as many neighboring ions of opposite charge as possible. When large numbers of ions gather together, they form an ionic solid. The solid normally has a regular, crystalline structure. 4

5 Ionic Bond Example 1: NaCl, a crystalline solid material Example 2: Magnesium Fluoride Covalent Bond A covalent bond is a chemical bond formed by sharing of a pair of electrons between atoms. A molecule is a group of atoms, frequently nonmetal atoms, strongly linked by a covalent bond. Example: Hydrogen (H 2 ) The electrons are attracted simultaneously by the positive charges of the two hydrogen nuclei. This attraction that bonds the electrons to both nuclei is the force holding the atoms together. 5

6 Covalent Bond Examples Single, double and triple bonds acetylene ethylene Coordinate Covalent Bond A coordinate covalent bond is a bond formed when both electrons of the bond are donated by one atom: A coordinate covalent bond is not essentially different form other covalent bonds; it involves the sharing of a pair of electrons between two atoms. Ex: formation of ammonium ion: 6

7 Intermolecular interaction Polarity of molecules: In some molecules, one of the atoms in a covalent bond has the ability to attract shared electrons to itself resulting in a polar molecule (dipole). A dipole is a separation of two opposing charges over a distance r. and is generally described by a vector known as the dipole moment (µ). The dipole moment is a vector property where the symmetry of the molecules affects generally its dipole moment. For example, carbon dioxide has no net dipole. Intermolecular interaction Polarity of molecules: Another example on the effect of symmetry on the net dipole moment: Benzene and p-dichlorobenzene are symmetric planar molecules and have a dipole moment of zero. Meta (m-) and ortho (o-) dichlorobenzene are not symmetrical and have significant dipole moment. Benzene p-dichlorobenzene o-dichlorobenzene m-dichlorobenzene 7

8 Intermolecular interaction Polarity of molecules: A molecule can maintain a separation of electric charge (i.e. get polarized) either: By having a permanent charge separation within a polar molecule (permanent dipole moment). Through induction by an external electric field or surrounding ions. Induced polarization can occur for both polar and nonpolar molecules (induced dipole moment). Intermolecular interaction Intermolecular interactions include: van der Waals forces. Dipole-dipole forces. Dipole-induced dipole forces. Induced dipole-induced dipole forces. Hydrogen bonds. Ion-diople interactions. Ion-induced dipole interactions. 8

9 van der Waals forces van der Waals forces are non-ionic chargecharge interactions between molecules. They include: i) Dipole-dipole interaction ( keesom). ii) Dipole induced dipole interaction (Debye). iii) Induced dipole Induced dipole interaction (london). van der Waals forces Permanent polar molecules (dipoles) can line up themselves so that partial +ve and ve ends are close to each other dipole dipole attraction. Dipole-dipole forces are typically almost 1% as strong as covalent or ionic bonds, and they rapidly become weaker as the distance between the dipole increases. 9

10 van der waals forces Permanent dipoles are capable of inducing an electric dipole in nonpolar molecules which are easily polarizable in order to produce dipoleinduced dipole (Debye) interactions van der Waals forces London or dispersion forces (induced dipole induced dipole or instantaneous dipole) occurs in noble gas atoms and nonpolar molecules. It is sufficient to bring about condensation of nonpolar gas molecules to form liquids and solids when molecules are brought close enough together induced dipole induced dipole forces instantaneous dipole examples: H 2 (hydrogen) gas, CCl 4 (Carbon tetrachloride), benzene 10

11 Ion dipole forces Ion dipole forces are attractions between ions and permanent dipoles. The attraction occurs because ions have a stronger charge than dipoles, so a partially charged end of a dipole will attract to an ion. This helps in part for the solubility of ionic crystalline materials in water. i.e. the cation attracting the relatively negative oxygen atom and vice versa. This is also important in the use of diuretics. Diuretics increase the volume of urine and remove excess electrolytes and fluid. Ion- Induced dipole forces As in the formation of iodide complex: a potassium ion can induce a dipole in a diatomic iodine molecule. This is important in the solubility of iodine in solution of potassium iodide. I 2 + K + I - K + I 3-11

12 Hydrogen bonds A strong dipole-dipole force are seen in molecules in which hydrogen is bound to a highly electronegative atom such as nitrogen, oxygen, or fluorine. Two factors account for the strength of this interaction: 1- the great polarity of the bond 2- close approach of the dipoles, allowed by the very small size of the hydrogen. Effects on physical properties (especially with water): 1- high boiling point 2- low vapor pressure 3- high dielectric constant Hydrogen bonds Intermolecular in water, intra molecular and intermolecular in Salicylic acid solution. Hydrogen bonds are relatively weak, with a value of about 2 to 8 Kcal/mole as compared with a value of about 50 to 100 kcal for the covalent bond and well over 100kcal for the ionic bond. The formation of dimer ( formic acid, acetic acid) For e.g. Ether {CH 3 OCH 3 (dimethylether)} and Ethanol {CH 3 CH 2 OH}. 12

13 13 Hydrogen bonds

Atoms can form stable units called molecules by sharing electrons.

Atoms can form stable units called molecules by sharing electrons. Atoms can form stable units called molecules by sharing electrons. The formation of molecules is the result of intramolecular bonding (within the molecule) e.g. ionic, covalent. Forces that cause the aggregation

More information

Solutions and Intermolecular Forces

Solutions and Intermolecular Forces Solutions and Intermolecular Forces REVIEW Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other

More information

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces Intermolecular Forces Have studied INTRAmolecular forces the forces holding atoms together to form compounds. Now turn to forces between molecules INTERmolecular forces. Forces between molecules, between

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

States of matter Part 1

States of matter Part 1 Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

For the following intermolecular forces:

For the following intermolecular forces: Lecturenotes 1 unit6_review_exercise_2017.odt Lecturenotes 2 unit6_review_exercise_2017.odt Lecturenotes 3 unit6_review_exercise_2017.odt Lecturenotes 4 unit6_review_exercise_2017.odt Answers: 1. Ionic

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: forces of attraction within the same molecule. Examples:

More information

Intermolecular forces

Intermolecular forces Intermolecular forces World of Chemistry, 2000 Updated: August 29, 2013 The attractions of molecules to each other are known as intermolecular forces to distinguish them from intramolecular forces, such

More information

Unit 4:Chemical Bonding Practice Packet

Unit 4:Chemical Bonding Practice Packet Name: KEY Unit 4:Chemical Bonding Practice Packet 1. I can state the three types of chemical bonds. 2. I can state the number of valence electrons that an atom attains to be most stable. 3. I can state

More information

Intermolecular Forces I

Intermolecular Forces I I How does the arrangement of atoms differ in the 3 phases of matter (solid, liquid, gas)? Why doesn t ice just evaporate into a gas? Why does liquid water exist at all? There must be some force between

More information

There are two types of bonding that exist between particles interparticle and intraparticle bonding.

There are two types of bonding that exist between particles interparticle and intraparticle bonding. There are two types of bonding that exist between particles interparticle and intraparticle bonding. Intraparticle bonding describes the forces that exist within a particle such as a molecule or ionic

More information

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES BONDING & INTERMOLECULAR FORCES Page 1 INTERMOLECULAR FORCES Intermolecular forces (van der Waals forces) relative weak interactions that occur between molecules. Most of the physical properties of gases,

More information

RW Session ID = MSTCHEM1 Intermolecular Forces

RW Session ID = MSTCHEM1 Intermolecular Forces RW Session ID = MSTCHEM1 Intermolecular Forces Sections 9.4, 11.3-11.4 Intermolecular Forces Attractive forces between molecules due to charges, partial charges, and temporary charges Higher charge, stronger

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Ch 9 Liquids & Solids (IMF) Masterson & Hurley Ch 9 Liquids & Solids (IMF) Masterson & Hurley Intra- and Intermolecular AP Questions: 2005 Q. 7, 2005 (Form B) Q. 8, 2006 Q. 6, 2007 Q. 2 (d) and (c), Periodic Trends AP Questions: 2001 Q. 8, 2002 Q.

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES DIFFERENT TYPES OF INTEMOLECULAR FORCES Do all the exercises in your studyguide COMPARISON OF THE THREE PHASES OF MATTER. Matter is anything that occupy space and has mass. There are three states of matter:

More information

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules? Polar Bonds and Polar Molecules Chapter 10 Liquids, Solids, and Phase Changes Draw Lewis Structures for CCl 4 and CH 3 Cl. What s the same? What s different? 1 Polar Covalent Bonds and Dipole Moments Bonds

More information

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions Structure of rganic Molecules Ref. books: 1. A text book of rganic Chemistry - B.S. Bahl and Arun Bahl 2. rganic Chemistry - R.T. Morrison and R. N. Boyd Atom: The smallest part of an element that can

More information

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12 liquids_solids_15dec2017_1st.notebook December 15, 2017 Liquids and solids Chapters 11 and 12 Intermolecular forces Intermolecular: forces between molecules Intramolecular: within molecules (i.e. covalent)

More information

NOTES: 8.4 Polar Bonds and Molecules

NOTES: 8.4 Polar Bonds and Molecules NOTES: 8.4 Polar Bonds and Molecules ELECTRONEGATIVITY: We ve learned how valence electrons are shared to form covalent bonds between elements. So far, we have considered the electrons to be shared equally.

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of matter is the distance between particles. States of Matter Because in the solid and liquid states particles

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.4 Intermolecular

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Kinetic Molecular Theory of Gases used to account for Ideal Gas Behavior when gases approach high temperatures and low pressures

Kinetic Molecular Theory of Gases used to account for Ideal Gas Behavior when gases approach high temperatures and low pressures LIQUIDS AND SOLIDS Kinetic Molecular Theory of Gases used to account for Ideal Gas Behavior when gases approach high temperatures and low pressures GASES are very different from solids and liquids. We

More information

1. What is the formula for the compound formed by calcium and nitrogen?

1. What is the formula for the compound formed by calcium and nitrogen? IB Chem 1 Name Topic 4 Bonding - Sample Test Problems 1. What is the formula for the compound formed by calcium and nitrogen? A. CaN B. Ca 2 N C. Ca 2 N 3 D. Ca 3 N 2 2. Element X is in group 2, and element

More information

Chap 10 Part 4Ta.notebook December 08, 2017

Chap 10 Part 4Ta.notebook December 08, 2017 Chapter 10 Section 1 Intermolecular Forces the forces between molecules or between ions and molecules in the liquid or solid state Stronger Intermolecular forces cause higher melting points and boiling

More information

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch?

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch? CATALYST Lesson Plan GLE Physical Science 22. Predict the kind of bond that will form between two elements based on electronic structure and electronegativity of the elements (e.g., ionic, polar, nonpolar)

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

c. Ionic bonding d. Covalent bonding i. nonpolar covalent bonding

c. Ionic bonding d. Covalent bonding i. nonpolar covalent bonding Chapter 11: Chemical Bonding I. Introduction to Chemical Bonding a. Types of chemical bonding i. A chemical bond is a mutual attraction between nuclei and the valence electrons of different atoms that

More information

Lecture Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten

Lecture Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Lecture 1101 John D. Bookstaver St. Charles Community College Cottleville, MO Molecular Comparison

More information

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases.

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases. digitalteachers.co.ug Chemical bonding This chapter teaches the different types and names of bonds that exist in substances that keep their constituent particles together. We will understand how these

More information

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs. PHASE CHANGES endothermic * melting * boiling * sublimation vs. vs. exothermic * freezing * condensation * deposition H enthalpy: heat content of a system under constant pressure HEATING CURVE: Where is

More information

Unit 6: Molecular Geometry

Unit 6: Molecular Geometry Unit 6: Molecular Geometry Molecular Geometry [6-5] the polarity of each bond, along with the geometry of the molecule determines Molecular Polarity. To predict the geometries of more complicated molecules,

More information

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM)

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) Associate Degree in Engineering Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Shapes of Molecules VSEPR

Shapes of Molecules VSEPR Shapes of Molecules In this section we will use Lewis structures as an introduction to the shapes of molecules. The key concepts are: Electron pairs repel each other. Electron pairs assume orientations

More information

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 3: Atomic Structure, Explaining the Properties of Elements Trends to know (and be

More information

Intermolecular Forces OR WHY IS WATER SPECIAL?

Intermolecular Forces OR WHY IS WATER SPECIAL? Intermolecular Forces OR WHY IS WATER SPECIAL? Define the prefixes Inter Between, as internet, interstate Intra Inside, as intramural Intermolecular Forces (2) Forces between covalent molecules These are

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc.

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc. Lecture Presentation Chapter 11 Liquids and States of Matter The fundamental difference between states of matter is the strength of the intermolecular forces of attraction. Stronger forces bring molecules

More information

Honors Chemistry. Chapter 10: Forces of Attraction, Phase Change, Date / / Period and Solids Answer Key. Intermolecular and Intramolecular Forces

Honors Chemistry. Chapter 10: Forces of Attraction, Phase Change, Date / / Period and Solids Answer Key. Intermolecular and Intramolecular Forces Honors Chemistry Name Chapter 10: Forces of Attraction, Phase Change, Date / / Period and Solids Answer Key Complete each of the following questions directly on this worksheet. Intermolecular and Intramolecular

More information

Intermolecular Forces, Liquids, & Solids

Intermolecular Forces, Liquids, & Solids , Liquids, & Solids Mr. Matthew Totaro Legacy High School AP Chemistry States of Matter The fundamental difference between states of matter is the distance between particles. States of Matter Because in

More information

Chemistry II Unit 5b Practice Test

Chemistry II Unit 5b Practice Test Practice for Unit 5b Exam 2013 1 Unit5Practicetest2013.odt Chemistry II Unit 5b Practice Test Reading: This material is covered in chapter 5 and chapter 12 in your book. Your notes and your molecular drawings

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces H covalent bond (stronger) Cl H Cl intermolecular attraction (weaker) The attractions between molecules are not nearly as strong as the covalent bonds that hold atoms together. They

More information

Ionic Compounds and Ionic Bonding

Ionic Compounds and Ionic Bonding Ionic Compounds and Ionic Bonding Definitions Review: Crystal Lattice - 3D continuous repeating pattern of positive and negative ions in an ionic solid Formula Unit- smallest possible neutral unit of an

More information

INTERMOLECULAR FORCES: Polarity of Molecules. Seventh Course (General Chemistry) by Dr. Istadi

INTERMOLECULAR FORCES: Polarity of Molecules. Seventh Course (General Chemistry) by Dr. Istadi INTERMOLECULAR FORCES: Polarity of Molecules Seventh Course (General Chemistry) by Dr. Istadi 1 Types of Intermolecular Forces The nature of the phases and their changes are due primarily to forces among

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: 1. I can define intramolecular forces and intermolecular

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

IB Chemistry. Chapter 4.1

IB Chemistry. Chapter 4.1 IB Chemistry Chapter 4.1 Chemical Bonds Atoms or ions that are strongly attached to one another Chemical bonds will form if potential energy decreases (becomes more stable) 2 Valence Electrons Valence

More information

Calderglen High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding. Page 1 of 21

Calderglen High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding. Page 1 of 21 Calderglen High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 21 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

NOTES: Unit 4: Bonding

NOTES: Unit 4: Bonding Name: Regents Chemistry: Mr. Palermo Student Version NOTES: Unit 4: Bonding Name: 1. Ion 2. Positive/Negative ion 3. Stable Octet 4. Diatomic Molecules 5. Electronegativity 6. Ionic Bond 7. Covalent Bond

More information

Chapter 11. Intermolecular forces. Chapter 11 1

Chapter 11. Intermolecular forces. Chapter 11 1 Chapter 11 Intermolecular Attractions and the Properties of Liquids and Solids 1 2 Intermolecular forces Forces of attraction between molecules Directly dependent on the distance between the molecules

More information

Chapter Intermolecular attractions

Chapter Intermolecular attractions Chapter 11 11.2 Intermolecular attractions Intermolecular Attractions and the Properties of Liquids and Solids Intermolecular forces control the physical properties of the substance. Intramolecular forces

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Chemical Bonding Bonding Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Type of bond depends on electron configuration and electronegativity Why do

More information

Liquids and Solids The Condensed States of Matter

Liquids and Solids The Condensed States of Matter Liquids and Solids The Condensed States of Matter AP Chemistry Ms. Grobsky Where We Have Been And Where We Are Going In the last few chapters, we saw that atoms can form stable units called molecules by

More information

Chemical bonding is the combining of elements to form new substances.

Chemical bonding is the combining of elements to form new substances. Name Covalent Bonding and Nomenclature: Unit Objective Study Guide Class Period Date Due 1. Define chemical bonding. What is chemical bonding? Chemical bonding is the combining of elements to form new

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 11, Liquids, and Solids John D. Bookstaver St. Charles Community College Cottleville,

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chemistry Review Unit 4 Chemical Bonding

Chemistry Review Unit 4 Chemical Bonding Chemistry Review The Nature of Chemical Bonding, Directional Nature of Covalent Bonds, Intermolecular Forces Bonding 1. Chemical compounds are formed when atoms are bonded together. Breaking a chemical

More information

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid? CHAPTER 2 INTERATOMIC FORCES What kind of force holds the atoms together in a solid? Interatomic Binding All of the mechanisms which cause bonding between the atoms derive from electrostatic interaction

More information

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2 Chemistry Notes v Polarity Experiment Ø Things involved Polarity Solubility Dispersion Ø Polarity Shaving cream has soap steric acid Water is polar Food coloring is polar/ionic because dissolved Like dissolves

More information

Physical Chemistry - Problem Drill 01: Chemistry and Physics Review

Physical Chemistry - Problem Drill 01: Chemistry and Physics Review Physical Chemistry - Problem Drill 01: Chemistry and Physics Review No. 1 of 10 1. Chemical bonds are considered to be the interaction of their electronic structures of bonding atoms involved, with the

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

Solutions are HOMOGENEOUS mixtures and can be gases, liquids, or solids.

Solutions are HOMOGENEOUS mixtures and can be gases, liquids, or solids. UNIT 4 Solutions and Solubility Chapter 8 Solutions and Concentration Types of Solutions The simplest solutions contain 2 substances: 1. SOLVENT o any substance that has another substance o dissolved in

More information

Lesson 1: Stability and Energy in Bonding Introduction

Lesson 1: Stability and Energy in Bonding Introduction Lesson 1: Stability and Energy in Bonding Introduction Chemical bonding is the simultaneous attraction of two positive nuclei to negative electrons. Chemical bonding is said to be the glue that holds particles

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CEMICAL BNDING Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to the

More information

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Unit 3: Chemical Bonding and Molecular Structure Bonds Forces that hold groups of atoms together and make them function as a unit. Ionic bonds transfer of electrons

More information

Structure and IM Forces Practice Problems

Structure and IM Forces Practice Problems Structure and IM Forces Practice Problems 1) An ionic compound 1) A) hasa net positive charge. B) hasa net negative charge. C) contains only cations. D) contains covalent bonds between anions and cations.

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Intermolecular forces are classified into four major types.

Intermolecular forces are classified into four major types. Intermolecular forces are classified into four major types. 1. Ion-dipole: IMF s that occur between neighboring an ion solution and a polar molecule (dipole) also in solution. Na+ 2. Dipole-dipole: IMF

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Surveying the Chapter: Page 442 Chapter 11 Intermolecular Forces, Liquids, and Solids We begin with a brief comparison of solids, liquids, and gases from a molecular perspective, which reveals the important

More information

Comparing Ionic and Covalent Compounds

Comparing Ionic and Covalent Compounds Comparing Ionic and Covalent Compounds It takes energy to overcome the forces holding particles together. Thus, it takes energy to cause a substance to go from the liquid to the gaseous state. The boiling

More information

Directions: Please choose the best answer choice for each of the following questions.

Directions: Please choose the best answer choice for each of the following questions. Directions: Please choose the best answer choice for each of the following questions. 1. Kevin is listing the similarities between metallic and ionic bonds for a laboratory project. Which similarity regarding

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces 5/14/12 Do now: find a piece of metal at your table and describe three properties about it Work on bonding types Homework: work on pg 209 1-7 Due Wednesday Blazertime: finish organic

More information

What does the word BOND mean to you?

What does the word BOND mean to you? Chemical Bonds What does the word BOND mean to you? Chemical Bond attractive force between atoms or ions in a molecule or compound. Formed by: transferring e - (losing or gaining) sharing e - What do you

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

Kirkcaldy High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Kirkcaldy High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding Kirkcaldy High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? The bonding types of the first twenty elements; metallic (Li,

More information

Chapter #3 Chemical Bonding

Chapter #3 Chemical Bonding Chapter #3 Chemical Bonding Valence Electrons electrons in the last energy level of an atom. Lewis dot symbols Consists of the symbol of an element and one dot for each valence electron in the atom of

More information

Chapter 11. Kinetic Molecular Theory. Attractive Forces

Chapter 11. Kinetic Molecular Theory. Attractive Forces Chapter 11 KMT for Solids and Liquids Intermolecular Forces Viscosity & Surface Tension Phase Changes Vapor Pressure Phase Diagrams Solid Structure Kinetic Molecular Theory Liquids and solids will experience

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 11 Intermolecular Forces, Liquids, and Solids John D. Bookstaver St. Charles Community

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information