Question 1.1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1

Size: px
Start display at page:

Download "Question 1.1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1"

Transcription

1 ~ 0.1 nm Chapter 1 Structure and Bonding Anders Jöns Ångström ( ) 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Acids and Bases Nucleus = 1/10,000 of the atom 1 nm = 10 Å An atom vs. a nucleus ~10,000 x larger Question 1.1 What is the electronic configuration of carbon and how many valence electrons does carbon have? A) 1s2 2s2 2px2 (6 valence e-) B) 1s2 2s2 2px1 2py12pz0 (4 valence e-) C) 1s2 2s2 2px12py12pz1 (3 valence e-) D) 1s2 1px1 1py12s2 (4 valence e-) E) 1s2 2s2 2px2 (4 valence e-) Electron Configurations Noble Gases and The Rule of Eight When two nonmetals react to form a covalent bond: They share electrons to achieve a Noble gas electron configuration. When a nonmetal and a metal react to form an ionic compound: Valence electrons of the metal are lost and the nonmetal gains these electrons. G.N. Lewis Photo Bancroft Library, University of California/LBNL Image Library Footnote: G.N. Lewis, despite his insight and contributions to chemistry, was never awarded the Nobel prize. Notes from Lewis Lewis s notebook and his Lewis Lewis structure.

2 Ionic Compounds Ionic compounds are formed when electron(s) are transferred. Electrons go from less electronegative element to the more electronegative forming ionic bonds. Covalent Compounds Share electrons. 1 pair = 1 bond. Octet rule ( duet for hydrogen) Lewis structures: Notice the charges: In one case they balance, can you name the compound? In the other they do not, can you name the polyatomic ion? More about formal charge to come. Question 1.2 Important Bond Numbers (Neutral Atoms!) Select the correct Lewis structure for methyl fluoride (C 3 F). A) B) one bond two bonds F Cl Br I O C) D) three bonds N four bonds C Question 1.3 Question 1.4 What is the correct Lewis structure of formaldehyde ( 2 CO)? A) B) C) D) Which of the following contains a triple bond? A) SO 2 B) CN C) C 2 4 D) N 3

3 Formal Charge Equals the number of valence electrons of the free atom minus [the number of unshared valence electrons in the molecule + 1/2 the number of shared valence electrons in the molecule]. Moving/Adding/Subtracting atoms and electrons. See examples on the board. Formal charge = number of valence electrons (number of lone pair electrons +1/2 number of bonding electrons) NO 3 Nitric Acid Question 1.5 What is the formal charge of the sulfur atom in the Lewis structure? A) -1 B) 0 C) +1 D) +2 Resonance Theory Whenever a molecule or ion can be represented by more than 1 valid Lewis structure where the difference is only in the positions of the electrons not atoms, then: 1. No single resonance structure is a correct one for it. 2. Instead, the actual molecule or ion will be a hybrid or weighted average of these structures which are not all equal. There contribution varies. 3. See Table 1.6 pp Therefore, Resonance Structures exist only in theory and are mental constructs, which are very important and useful for predicting chemical behavior and chemical reactivity nevertheless. Resonance( ) Equilibrium ( ) Resonance Question 1.6 ow many resonance structures can be written for the NO 3 - ion in which the nitrogen atom bears a formal charge of +1? A) 1 B) 2 C) 3 D) 4 E) 5

4 Question 1.7 Which resonance structure contributes more to the hybrid? A) B) VSEPR Model Valence Shell Electron Pair Repulsion VSEPR VSEPR Model The molecular structure of a given atom is determined principally by minimizing electron pair (bonded &free) repulsions through maximizing separations. Some examples of minimizing interactions. Predicting a VSEPR Structure 1. Draw Lewis structure. 2. Put pairs as far apart as possible. 3. Determine positions of atoms from the way electron pairs are shared. 4. Determine the name of molecular structure from positions of the atoms. Orbital Geometry Linear Trigonal Planar Molecular Geometry Linear Trigonal Planar Bond Angle # of lone pairs 0 0 Lewis Structures / VSEPR / Molecular Models Chem 226 Trigonal Planar Tetrahedral Bent Tetrahedral 1 0 Computer Generated Models Tetrahedral Trigonal Pyramidal 1 Tetrahedral Bent 2 Trigonal Bipyramidal Trigonal Bipyramidal Trigonal Bipyramidal Trigonal Bipyramidal Octahedral Octahedral Trigonal Bipyramidal Seesaw T-shape Linear Octahedral Square Pyramidal Ball and stick models of ammonia, water and methane. For many others see: Octahedral Square Planar 2

5 Covalent Compounds Equal sharing of electrons: nonpolar covalent bond, same electronegativity (e.g., 2 ) Unequal sharing of electrons between atoms of different electronegativities: polar covalent bond (e.g., F) Question 1.8 Which of the following bonds is the most polar? A) B) C) D) Bond Dipole & Dipole Moment Question 1.9 Dipole moments are experimentally measured. Polar bonds have dipole moments. dipole moment (D) = µ = e x d (e) : magnitude of the charge on the atom (d) : distance between the two charges Which of the following bonds have the greatest dipole moment? A) B) C) D)

6 Bond Polarity A molecule, such as F, that has a center of positive charge and a center of negative charge is polar, and has a dipole moment. The partial charge is represented by δ and the polarity with a vector arrow. F δ+ Question 1.10 In which of the compounds below is the δ+ for the greatest? A) C4 B) N3 C) Si4 D) 2O δ Question 1.11 Electrostatic Potential Maps Models that visually portray polarity and dipoles In which of the following is oxygen the positive end of the bond dipole? A) O-F B) O-N C) O-S D) O- ydrogen alides Molecular Polarity & Dipole Moment When identical polar bonds point in opposite directions, the effects of their polarities cancel, giving no net dipole moment. When they do not point in opposite directions, there is a net effect and a net molecular dipole moment, designated δ.

7 Molecular Dipole Moment The vector sum of the magnitude and the direction of the individual bond dipole determines the overall dipole moment of a molecule An electrically charged rod attracts a stream of chloroform but has no effect on a stream of carbon tetrachloride. Ammonia and in the Ammonium Ion Water The Lotus Effect Polarity & Physical Properties Biomimicry Ozone and Water nm Resultant Molecular Dipoles > 0 Solubility: Polar molecules that dissolve or are dissolved in like molecules The Lotus flower Water & dirt repellancy Wax Lotus petals have micrometer-scale roughness, resulting in water contact angles up to 170 See the Left image in the illustration on the right.

8 The Lotus Effect Biomimicry Isotactic polypropylene (i-pp) melted between two glass slides and subsequent crystallization provided a smooth surface. Atomic force microscopy tests indicated that the surface had root mean square (rms) roughness of 10 nm. A) The water drop on the resulting surface had a contact angle of 104 ± 2 B) the water drop on a superhydrophobic i-pp coating surface has a contact angle of 160. Science, 299, (2003), pp ,. Yldrm Erbil, A. Levent Demirel, Yonca Avc, Olcay Mert Question 1.12 Which molecule would have a dipole moment equal to zero? A) CCl 4 B) C 3 O C) C 3 OC 3 D) C 3 Cl Molecular Representations VIDEO Empirical Formula, Molecular Formula, Structure: (Lewis, Kekule, Condensed, Line), Visual Model: wireframe, stick, ball & stick, space filling, electrostatic, energy surface Bond Line Question 1.13 O The bond-line representation for (C 3 ) 2 CC 2 C 2 CBrC 3 is A) B) Molecular Formula C 7 16 O C) D)

9 Question 1.14 The total number of bonded pairs of electrons and of unshared pairs of electrons in morpholine is: A) 7, 0 B) 7, 1 C) 15, 0 D) 15, 1 E) 15, 3 Question 1.15 The molecular formula of morpholine is: A) C 2 NO B) C 4 NO C) C 4 4 NO D) C 4 5 NO E) C 4 9 NO C 2 6 O: C C O Ethanol (b.p C) Dimethyl ether (b.p. 23 C) Constitutional or Structural Isomers: These isomers have the same molecular formula, but different arrangement of atoms in space (Bonding differences) C O C Question 1.16 ow many constitutional isomers can have the formula C 3 7 Cl? A) one B) two C) three D) four Question 1.17 O O O O O CO ow many constitutional aldehyde isomers can have the molecular formula C 4 8 O? A) one B) two C) three D) four O C 3

10 Line Drawing and Ball & Stick More Molecular Representations Empirical Formula, Molecular Formula, Structure: (Lewis, Kekule, Condensed, Line), Visual Model: wireframe, stick, ball & stick, space filling, electrostatic, energy surface 8.16 Å (0.816 nm) Worksheet: Organic Molecules I Very Large Molecules Very Large Molecules:DNA Views & Algorithms B-DNA: Size, Shape & Self Assembly 46 Å Å Å Rosalind Franklin s Photo 12 base sequence Several formats are commonly used but all rely on plotting atoms in 3 dimensional space;.pdb is one of the most popular. ( ) Atomic Orbitals Atomic Orbitals s orbitals p orbitals

11 Molecular Orbitals Atomic orbitals mix to form molecular orbitals σ bond: formed by overlapping of two s orbitals Molecular Orbitals (MO) MO: a linear combinaiton of AOs 2: Chemical bonds formation---ao s overlapping Ψ2,1 = Ψ1sA(1)Ψ1sB (2 ) + Ψ1sB (1)Ψ1sA(2 ) Bond formation: Ψ1, 2 = Ψ1sA(1)Ψ1sB (2 ) Ψ1sB (1)Ψ1sA(2 ) 1.Closed energy level 2.Similar size and shape of AOs 3.Significant overlapping In-phase overlap of s atomic orbitals form a bonding MO; out-of-phase overlap forms an antibonding MO A single bond is a sigma (σ) bond. A sigma bond (σ) is formed by end-on overlap of two p orbitals Double bonds have 1 π and 1 σ bond. A π bond is weaker than a σ bond. A double bond is shorter and stronger than a single bond.

12 A pi bond (π) is formed by sideways overlap of two parallel p orbitals. A π bond is weaker than a σ bond. A double bond is shorter and stronger than a single bond. Bonding in Methane and Ethane: Single Bonds ybridization of orbitals: The orbitals used in bond formation determine the bond angles Tetrahedral bond angle: ybrid Orbitals of Ethane The sigma bond (σ) between the carbon atoms is part of the overall hybridization. The molecular orbital allows rotation about the C-C single bond. Electron pairs spread themselves into space as far from each other as possible Bonding in Ethene Carbon Double Bonds Double bonds have 1 π and 1 σ bond. A π bond is weaker than a σ bond. A double bond is shorter and stronger than a single bond. The pi bond (π) of the sp2 hybrid does not allow rotation about the double bond. This produces a fixed geometry about the double bond and results in cis-trans, (Z-E), isomerism The bond angles of the sp2 carbon are about 120 The sp2 carbon is trigonal planar The atoms bonded to the sp2 carbon are all in the same plane

13 Bonding in Ethyne: A Triple Bond Question 1.18 In which of the following compounds could be found the shortest carbon- carbon bond(s)? A triple bond consists of one σ bond and two π bonds Triple bonds are shorter and stronger than double bonds There is a bond angle of the sp carbon: 180 A) C38 B) C410 C) C34 D) C36 Question 1.19 What is the molecular shape about the carbon atoms of acetylene (C C)? A) B) C) D) tetrahedral bent trigonal planar linear Reactive Intermediates Carbocation Reactive Intermediates Radical

14 Reactive Intermediates Carbanion

Electronic Structure and Anders Jöns Ångström ( ) Bonding 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Molecular

Electronic Structure and Anders Jöns Ångström ( ) Bonding 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Molecular Chapters 1 & 2 ~ 0.1 nm General Chemistry Review Electronic Structure and Bonding Anders Jöns Ångström (1814-1874) 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Molecular Representations

More information

Hydrogen Halides. Electrostatic Potential Maps Models that visually portray polarity and dipoles. Molecular Dipole Moment

Hydrogen Halides. Electrostatic Potential Maps Models that visually portray polarity and dipoles. Molecular Dipole Moment Electrostatic Potential Maps Models that visually portray polarity and dipoles Hydrogen Halides Molecular Polarity & Dipole Moment Molecular Dipole Moment The vector sum of the magnitude and the direction

More information

Question 1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1. What is the electronic configuration of carbon?

Question 1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1. What is the electronic configuration of carbon? hapter ~. nm Electronic Structure and Bonding Anders Jöns Ångström (84-874) Å = picometers =. nanometers = -4 microns = -8 centimeters Acids and Bases nm = Å An atom vs. a nucleus ~, x larger ucleus =

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chapter 1. The Basics Bonding and Molecular Structure. Ch. 1-1

Chapter 1. The Basics Bonding and Molecular Structure. Ch. 1-1 Chapter 1 The Basics Bonding and Molecular Structure Ch. 1-1 1. Introduction The name Organic Chemistry came from the word organism Organic Chemistry is the study of carbon compounds. Carbon, atomic number

More information

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Atomic Orbitals 1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Valence Bond Theory and ybridized Atomic Orbitals Bonding in 2 1s 1s Atomic Orbital

More information

Carbon-based molecules are held together by covalent bonds between atoms

Carbon-based molecules are held together by covalent bonds between atoms hapter 1: hemical bonding and structure in organic compounds arbon-based molecules are held together by covalent bonds between atoms omposition: Mainly nonmetals; especially,, O, N, S, P and the halogens

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

: Bond Order = 1.5 CHAPTER 5. Practice Questions

: Bond Order = 1.5 CHAPTER 5. Practice Questions CAPTER 5 Practice Questions 5.1 5.3 S 5.5 Ethane is symmetrical, so does not have a dipole moment. owever, ethanol has a polar group at one end and so has a dipole moment. 5.7 xygen has the valence electron

More information

Chapter 12 Structures and Characteristics of Bonds Objectives

Chapter 12 Structures and Characteristics of Bonds Objectives Objectives 1. To learn about ionic and covalent bonds and explain how they are formed - what holds compounds together? 2. To learn about the polar covalent bond are all covalent bonds equal? 3. To understand

More information

Molecular Geometries. Molecular Geometries. Remember that covalent bonds are formed when electrons in atomic orbitals are shared between two nuclei.

Molecular Geometries. Molecular Geometries. Remember that covalent bonds are formed when electrons in atomic orbitals are shared between two nuclei. Molecular Geometries Lewis dot structures are very useful in determining the types of bonds in a molecule, but they may not provide the best insight into the spatial geometry of a molecule, i.e., how the

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

CHAPTER 8. Molecular Structure & Covalent Bonding Theories

CHAPTER 8. Molecular Structure & Covalent Bonding Theories CAPTER 8 Molecular Structure & Covalent Bonding Theories 1 Chapter Goals 1. A Preview of the Chapter 2. Valence Shell Electron Pair Repulsion (VSEPR) Theory 3. Polar Molecules:The Influence of Molecular

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

CHM 151LL: Geometry of Covalent Compounds

CHM 151LL: Geometry of Covalent Compounds CM 151LL: Geometry of Covalent Compounds Introduction Octet Rule A Lewis structure (or electrondot formula) is a twodimensional structural formula showing the arrangement of electrons around atoms in covalently

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

CHEM 109A Organic Chemistry. CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry. CHEM 109A Organic Chemistry CEM 109A Organic Chemistry Wait Lists and Add code requests: Got you emails, working on it! Questions? (non chemistry) Chika Anyiwo, undergraduate advisor anyiwo@chem.ucsb.edu CEM 109A Organic Chemistry

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Chapter 8: Covalent Bonding. Chapter 8

Chapter 8: Covalent Bonding. Chapter 8 : Covalent Bonding Bonding Ionic Bonding - attracted to each other, but not fully committed Covalent Bonding - fully committed, and shares everything Two methods to gain or lose valence electrons: Transfer

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Chapter 1. The Basics Bonding and Molecular Structure. Table of Contents. 1. Life & the Chemistry of Carbon Compounds

Chapter 1. The Basics Bonding and Molecular Structure. Table of Contents. 1. Life & the Chemistry of Carbon Compounds hapter 1 The Basics Bonding and Molecular Structure reated by Professor William Tam & Dr. Phillis hang Table of ontents 1. Life & the hemistry of arbon ompounds 2. Atomic Structure 3. hemical Bonds: The

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

Molecular Structures. Using Molecular Models. Using Molecular Models. Predicting Molecular Shapes: VSEPR. Predicting Molecular Shapes: VSEPR

Molecular Structures. Using Molecular Models. Using Molecular Models. Predicting Molecular Shapes: VSEPR. Predicting Molecular Shapes: VSEPR Molecular Structures Two 2 6 structural isomers: hapter 9: Molecular Structures ethanol dimethyl ether m.p./ -114.1-141.5 b.p./ 78.3-24.8 Molecular shape is important! Small structural changes cause large

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, rlando, Florida

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CEMICAL BNDING Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to the

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Name Date Class. covalent bond molecule sigma bond exothermic pi bond

Name Date Class. covalent bond molecule sigma bond exothermic pi bond Date Class 8 Covalent Bonding Section 8.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 1 8.1 Types of Bonds 8-3 8.1 Types of

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Sample Introductory Chemistry, 5e (Tro) Chapter 10 Chemical Bonding 10.1 True/False Questions 1) Bonding theories are used to predict

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

Chapter 1 Carbon Compounds and Chemical Bonds

Chapter 1 Carbon Compounds and Chemical Bonds Chapter 1 Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Carbon Compounds and Chemical Bonds

Carbon Compounds and Chemical Bonds Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central role

More information

Ch. 9- Molecular Geometry and Bonding Theories

Ch. 9- Molecular Geometry and Bonding Theories Ch. 9- Molecular Geometry and Bonding Theories 9.0 Introduction A. Lewis structures do not show one of the most important aspects of molecules- their overall shapes B. The shape and size of molecules-

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 12 Chemical Bonding Structure

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Problems and questions How is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat?

Problems and questions How is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? 1 Cocaine 2 Problems and questions ow is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? Can we predict the structure? ow is structure

More information