SODIUM-INDUCED CHANGES IN THE NUCLEI OF MONOLAYER HeLa CULTURES

Size: px
Start display at page:

Download "SODIUM-INDUCED CHANGES IN THE NUCLEI OF MONOLAYER HeLa CULTURES"

Transcription

1 J. Cell Sci. II, (1972) 669 Printed in Great Britain SODIUM-INDUCED CHANGES IN THE NUCLEI OF MONOLAYER HeLa CULTURES K. JOBST AND N. KELLERMAYER Department of Clinical Chemistry, Medical University of Pics, Pics, Hungary SUMMARY In HeLa cells cultured in a medium containing 142 mequiv./l. sodium ions only the mitotic forms are birefringent (anisotropic index, 27/1000). In a culture medium containing mequiv./l. sodium ions, large numbers of nuclear forms reminiscent of the prophase were found. In such a medium the anisotropic index was 86/1000. At low sodium ion concentration ( mequiv./l.) these anomalous, prophase-like forms were not seen and the anisotropic index was 18/1000. The appearance of the birefringent, prophase-like forms is related to a structural rearrangement and condensation of DNP in a hypertonic medium. INTRODUCTION In an earlier study (Kellermayer & Jobst, 1970) we related the ion-dependent anisotropy of interphase nuclei isolated in sucrose to the dissociation of DNP structures. We also described an anisotropic nuclear effect in the condensed mitotic chromosomes of tissue culture cells, simultaneously with isotropic nuclei in the intact interphase cells (Kellermayer, Jobst & Angyal, 1970). On the basis of the 2 similar morphological and polarization optical patterns it could be assumed that perhaps even in the living state there existed a relationship between the development of birefringence in mitotic chromosomes and the actual cationic concentration of the nuclei. According to Siebert, Langendorf & Hannover (1965), a rapid equilibration of sodium and potassium ions takes place between extracellular and intranuclear media. Therefore in order to clarify the above relationship we tried to produce, in tissue cultures, the anisotropic nuclear effect characteristic of mitotic nuclei by changing the sodium ion concentration of the culture medium. A possible change in numbers of the mitotic forms, i.e. in the anisotropic index (= the ratio of anisotropic to isotropic nuclei), would support the role of sodium and potassium cations in the development of mitotic chromosomes as well as in the ultrastructural changes (condensation) of DNP (Matsuura & Iwabuchi, 1962; Whitfield, Broh^e & Youdale, 1966; Brasch, Seligy & Setterfield, 1971). MATERIAL AND METHODS The examinations were carried out on HeLa coverglass cultures. Our strain had previously been adapted to a culture medium consisting of 85 % Hanks's solution and 15 % bull serum (standard medium = SM). We tried to influence the cationic concentration of the cells and/or that of the nuclei by changing the sodium ion concentration of the medium. Therefore we either added 5 % sodium chloride to the isotonic Hanks's solution containing 142 mequiv./l. sodium ions or decreased the sodium ion concentration of the Hanks's solution (in the latter case we

2 670 K. Jobst and N. Kellermayer used sucrose to make the solution isotonic). Thus we prepared culture media of sodium ion concentrations between 40 and 160 mequiv./l. and checked their sodium content namephotometrically. Some of the coverglass cultures pre-cultured for 72 h in SM, were transferred under sterile conditions to a medium of higher ionic concentration for 2 h, and others to a solution of lower ionic concentration for 24 h. For polarization- and light-microscopical study the coverglass preparations were rinsed with Hanks's solution for 10 s, dried in air at 22 C for 30 min and, omitting the conventional fixatives, stained for 10 min with 005 % toluidine blue dissolved in ph 3-5 veronal-sodium acetate buffer. Then the preparations were quickly washed with 09 % NaCl solution. In order to stabilize the dye on the structure, it was precipitated by treatment of the slides with 2 % potassium ferricyanide for 2 min. After the potassium ferricyanide had been made to run off the slides, they were covered with gum arabic containing 2 % glycerine and 2 % potassium ferricyanide (= toluidine blue staining followed by precipitation = TBP staining) (Romhanyi, 1963). Some preparations were mounted in pure gum arabic without previous staining. The gum arabic-covered preparations were dried in air and then studied under a Zeiss-Opton polarization microscope equipped with rotating 20- and 57-/tm compensators and a continuous interference filter. TBP staining was also used for light-microscopic study of the preparations. Switching on the analyser of the microscope enabled us to examine in polarized light the forms classified by light microscopy as mitotic or mitosis-like. Thus on the basis of an analysis of the same nuclei the number of dividing forms observed under the light microscope and characterized by the mitotic index could be compared with the number of birefringent nuclei characterized by the anisotropic index. The mitotic and anisotropic indices of the preparations were determined on the basis of studying a total of 3000 nuclei per coverglass. After incubation in the media of lower or higher ionic concentration, the preparations were postcultured in SM for h and thereafter stained and studied in several experiments. It should be mentioned that in the unstained preparations mounted in gum arabic, the mitotic nuclei showed only weak intrinsic birefringence. This birefringence was, however, markedly enhanced by the above-mentioned TBP staining, which results in an oriented alignment of the dye molecules on the DNA of the chromosomes. RESULTS Light microscopy showed that the mitotic index of the HeLa cells cultured in SM averaged 27/1000 (range, 25-29/1000). In a medium of low sodium ion concentration (40-80 mequiv./l.) the cells did not divide and became detached from the coverglass. In such a medium the cells are not viable. In a medium containing mequiv./l. sodium ions the cells are attached, and the mitotic index was 18/1000. The index rose to 23/1000 after a 24-h period of postculture but failed to reach the value of 27/1000 obtained in the SM. Thus a culture medium of decreased sodium ion concentration hinders the development of mitotic, birefringent forms. At the same time the morphological appearance of the mitotic forms seen here did not differ from those observed in SM, and these mitotic forms were birefringent. In a medium of higher sodium ion concentration (over 142 mequiv./l.) we found large numbers of condensed, prophase-like nuclei, which were invariably anisotropic (see Fig. 1 c, D). Since according to our previous studies it is only the chromatin of mitotic forms that TBP staining shows to be birefringent (Kellermayer et al. 1970), we believe that the large number of condensed nuclei appearing in a medium containing between 145 and 160 mequiv./l. sodium ions can, on the basis of their anisotropy,

3 Sodium-induced changes in nuclei 671 Table 1. Effect of sodium ion concentration of medium on anisotropic index and mitotic index Sodium ion concentration of medium, mequiv./l I5O-I Anisotropic index, / 00 (polarization microscopy) 27 ±3 34 ±3 54 ±3 86 ±5 Mitotic index, / m (light microscopy) 28 ±2 33 ±3 50 ±5 80 ±7 be regarded as mitotic. This observation seems to indicate a relation (see Table 1) between the existing sodium ion concentration of the medium and the number of anisotropic nuclei (anisotropic index), and a similar relation between the said ion concentration and the number of nuclei classified as mitotic by light microscopy (mitotic index). That is, with increasing sodium ion concentration of the medium both the anisotropic and the mitotic indices increased. When preparations cultured at a sodium ion concentration of mequiv./l. were post-cultured in an isotonic medium for 48 h, then their mitotic index decreased to 33-35/1000. At this index almost all mitotic forms are typical. DISCUSSION The investigations presented here indicate that in a medium of high sodium ion concentration a morphological transformation of HeLa cell nuclei takes place (Robbins, Pederson & Klein, 1970; Schachtschabel & Foley, 1972). This manifests itself mostly in nuclear forms reminiscent of the late prophase of untreated cells, which are birefringent just like the mitotic forms in SM (Fig. 1 A, B) and the isolated nuclei incubated in vitro with 142 mequiv./l. sodium chloride (Jobst & Kellermayer, 1967). This observation indicates that the sodium ion plays an important role in mitosis: it may control and/or block the mitotic activity of the cell (Cone & Tongier, 1971). As an explanation it may be assumed that the local increase in sodium ion concentration (Siebert & Langendorf, 1970) results in DNP dissociation, chromatin aggregation and condensation of the nucleus, which is reflected in optical polarization in the birefringence of such nuclei (Jobst & Kellermayer, 1967). Thus the appearance of nuclear anisotropy is indicative of a structural rearrangement of DNP. The anomalous mitotic cell forms produced in vivo under the effect of hypertonic salt confirm, on the one hand, the role played by inorganic salts in the intracellular metabolic processes of the nucleus, and on the other hand, they show that optical anisotropy is a sensitive indicator of the intranuclear changes of chromatin structure.

4 672 K. Jobst and N. Kellermayer REFERENCES BRASCH, K., SELIGY, V. L. & SETTERFIELD, G. (1971). Effects of low salt concentration on structural organization and template activity of chromatin in chicken erythrocyte nuclei. Expl Cell Res. 65, CONE, C. D. & TONGIER, M. (1971). Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology zs, JOBST, K. & KELLERMAYER, M. (1967). Submicroscopic structure and dry weight of isolated thymus nuclei following trypsin and salt treatment. Polarization optical, interference microscopic and cytophotometric studies. Acta morph. Acad. Sci. hung. 15, KELLERMAYER, N. & JOBST, K. (1970). Ion-dependent anisotropy of deoxyribonucleoprotein structures in tissue cultures. Expl Cell Res. 63, KELLERMAYER, M., JOBST, K. & ANGYAL, T. (1970). Polarization-optical study of the ultrastructure of cell nuclei in tissue cultures. Acta morph. Acad. Sci. hung. 18, MATSUURA, H. & IWABUCHI, M. (1962). Effect of inorganic salts on cell division II. J. Fac. Sci. Hokk. Univ. 8, ROBBINS, E., PEDERSON, T. & KLEIN, P. (1970). Comparison of mitotic phenomena and effects induced by hypertonic solutions in HeLa cells. J. Cell Biol. 44, ROMHANYI, GY. (1963). t)ber die submikroskopische strukturelle Grundlage der metachromatischen Reaction. Acta histochem. (jfena) 15, SCHACHTSCHABEL, D. O. & FOLEY, G. E. (1972). Serial cultivation of Ehrlich ascites tumor cells in hypertonic media. Expl Cell Res. 70, SIEBERT, G., LANGENDORF, H. & HANNOVER, R. (1965). Untersuchungen zur Rolle des Natrium- Stoffwechsels im Zellkern der Rattenleber. Hoppe-Seyler's Z. physiol. Client. 343, SIEBERT, G. & LANGENDORF, H. (1970). Ionenhaushalt im Zellkern. Natnnvissenscliaften 57, WHITFIELD, J. F., BROHEE, H. & YOUDALE, T. (1966). Mitotic stimulation in normal and irradiated suspension cultures of rat bone marrow by an elevated salt concentration. Expl Cell Res. 41, (Received 27 March 1972)

5 Sodium-induced changes in nuclei 673 Fig. 1. A, B, a HeLa culture grown for 72 h in so-called standard medium containing 142 mequiv./l- sodium ions, and stained with the TBP method. A, light microscope; B, polarization optical picture, x 550. As well as several isotropic interphase nuclei there is a birefringent nucleus in prophase, with loosened chromatin structure. C, D, HeLa culture grown in standard medium for 72 h, then incubated at 37 C for 2 h in a medium containing 155 mequiv./l. sodium ions and stained by the TBP method, c, light microscope; D, polarization optical picture, x 550. The light microscopy image shows 2 condensed, basophilic nuclei, which, unlike the interphase forms, are reminiscent of the late prophase and are birefringent.

6

Chromosome Chr Duplica Duplic t a ion Pixley

Chromosome Chr Duplica Duplic t a ion Pixley Chromosome Duplication Pixley Figure 4-6 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-72 Molecular Biology of the Cell ( Garland Science 2008) Interphase During mitosis (cell division),

More information

Practical course 1. Microscopy

Practical course 1. Microscopy Cellular and Molecular Biology Practicum 1 Practical course 1. Microscopy Name and surname Exercise 1. Prepare a part of plant tissue, for example a part of the leaf of Elodea canadensis by putting it

More information

cycle & cell the division

cycle & cell the division the cycle & celldivision the cell cycle Most cells in an organism go through a cycle of growth, development, and division called the cell cycle. The cell cycle makes it possible for organisms to grow and

More information

2. is the period of growth and development for a cell. 3. During interphase, most cells go through three stages rapid growth and

2. is the period of growth and development for a cell. 3. During interphase, most cells go through three stages rapid growth and Chapter 5 Lesson 1- General Lesson Outline Directions: Use the words below to fill in the outline of the text from lesson one. If the word is used more than once, it is followed by the number of times

More information

Fertilization of sperm and egg produces offspring

Fertilization of sperm and egg produces offspring In sexual reproduction Fertilization of sperm and egg produces offspring In asexual reproduction Offspring are produced by a single parent, without the participation of sperm and egg CONNECTIONS BETWEEN

More information

Acta Medica Okayama. Selective staining of cytoplasmic membrane and nuclear apparatus of bacteria. Yasuhiro Kanemasa FEBRUARY 1962

Acta Medica Okayama. Selective staining of cytoplasmic membrane and nuclear apparatus of bacteria. Yasuhiro Kanemasa FEBRUARY 1962 Acta Medica Okayama Volume 16, Issue 1 1962 Article 5 FEBRUARY 1962 Selective staining of cytoplasmic membrane and nuclear apparatus of bacteria Yasuhiro Kanemasa Okayama University, Copyright c 1999 OKAYAMA

More information

Chapter 9 Active Reading Guide The Cell Cycle

Chapter 9 Active Reading Guide The Cell Cycle Name: AP Biology Mr. Croft Chapter 9 Active Reading Guide The Cell Cycle 1. Give an example of the three key roles of cell division. Key Role Reproduction Example Growth and Development Tissue Renewal

More information

E. Incorrect! At telophase II, cells are nearly completed with meiosis, with no cross-over.

E. Incorrect! At telophase II, cells are nearly completed with meiosis, with no cross-over. OAT Biology - Problem Drill 06: Mitosis and Meiosis Question No. 1 of 10 1. During meiosis, cross-over between homologous chromosomes occurs at the end of. Question #01 (A) Anaphase II (B) Metaphase I

More information

THE RESPONSE OF HUMAN CULTURED LYMPHOCYTES TO CYTOCHALASIN B

THE RESPONSE OF HUMAN CULTURED LYMPHOCYTES TO CYTOCHALASIN B J. Cell Sci., 595-6 (968) 595 Printed in Great Britain THE RESPONSE OF HUMAN CULTURED LYMPHOCYTES TO CYTOCHALASIN B M. A. C. RIDLER AND G. F. SMITH Kemtedy-Galton Centre, Harperbury Hospital, Near St Albans,

More information

10.1 Growth and Cell Reproduction

10.1 Growth and Cell Reproduction 10.1 Growth and Cell Reproduction Growth is a characteristic of all living things. You started out as a single cell. That cell quickly divided into two cells. Two cells became four and four became eight.

More information

Biology Unit 3 Exam DO NOT WRITE ON THIS EXAM. Multiple Choice Identify the choice that best completes the statement or answers the question.

Biology Unit 3 Exam DO NOT WRITE ON THIS EXAM. Multiple Choice Identify the choice that best completes the statement or answers the question. Biology Unit 3 Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Water moves into a cell placed in a(n) solution. a. osmotic c. hypotonic b. hypertonic

More information

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis No matter the type of cell, all cells come from preexisting cells through the process of cell division. The cell may be the

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

Chapter 10. Mitosis and Cytokinesis

Chapter 10. Mitosis and Cytokinesis Chapter 10. Mitosis and Cytokinesis Mitosis is nuclear division. In the process daughter molecules of DNA are precisely segregated into two new daughter nuclei. Mitosis is usually associated with cell

More information

Biology Homework Chapter 5: The Cell Pages Answer the questions with complete thoughts!

Biology Homework Chapter 5: The Cell Pages Answer the questions with complete thoughts! Name Biology Homework Chapter 5: The Cell Pages 115-133 Answer the questions with complete thoughts! Per. * Sections 5.1 through 5.3: Cells Are the Units of Life: Read pages 115 to 122 PART A: Define the

More information

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis. Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,

More information

Name: Date: Period: Cell Cycles and DNA Study Guide

Name: Date: Period: Cell Cycles and DNA Study Guide Name: Date: Period: DNA (Deoxyribonucleic Acid) is the chemical inside the nucleus of cells that contains hereditary information. DNA is shaped like a double helix/twisted ladder. The sides of the ladder

More information

AP Biology Fall Semester Set 1

AP Biology Fall Semester Set 1 1. During which stage does DNA replication occur? A. Prophase B. Metaphase C. Anaphase D. none of these 2. At what phase in the cell cycle does DNA replication occur? A. G1 B. S C. G2 D. M 3. Which of

More information

Reproduction. Part 1

Reproduction. Part 1 Reproduction Part 1 Reproduction Reproduction and development are necessary for the continuation of any species. Every organism requires a set of coded instructions (their chromosomes) for specifying it

More information

CELL REPRODUCTION NOTES

CELL REPRODUCTION NOTES CELL REPRODUCTION NOTES CELL GROWTH AND DIVISION The adult human body produces roughly cells every day. WHY DO CELLS REPRODUCE? So that the organism can and As multicellular organisms grow larger, its

More information

The Microscopic Observation of Mitosis in Plant and Animal Cells

The Microscopic Observation of Mitosis in Plant and Animal Cells The Microscopic Observation of Mitosis in Plant and Animal Cells Prelab Assignment Before coming to lab, read carefully the introduction and the procedures for each part of the experiment, and then answer

More information

Sheet 24/2/2013. Embryology. Dr. Maher Hadidi. Mai Bsool

Sheet 24/2/2013. Embryology. Dr. Maher Hadidi. Mai Bsool Sheet Embryology Dr. Maher Hadidi Mai Bsool 9 1 24/2/2013 Embryology Lecture # 2 The Cell Cycle Before moving on to what occurs in the male and female genital systems we ll talk briefly about the cell

More information

THE REACTIVATION OF THE RED CELL NUCLEUS

THE REACTIVATION OF THE RED CELL NUCLEUS J. Cell Sci. 2, 23-32 (1967) 23 Printed in Great Britain THE REACTIVATION OF THE RED CELL NUCLEUS H.HARRIS The Sir William Dunn School of Pathology, University of Oxford SUMMARY When the nucleus of a mature

More information

AP Biology - Cell cycle / division

AP Biology - Cell cycle / division AP Biology - Cell cycle / division Quiz Directions 1. During which stage does DNA replication occur? A. Prophase B. Metaphase C. Anaphase D. none of these 2. At what phase in the cell cycle does DNA replication

More information

Cell Size. Cell Growth and Reproduction 12/3/14

Cell Size. Cell Growth and Reproduction 12/3/14 Cell Growth and Reproduction Cell Size Why are cells so small? Cells do not contain a circulatory system Cells receive nutrients and remove waste through diffusion Diffusion- movement of molecules from

More information

2 The Cell Cycle. TAKE A LOOK 2. Complete Prokaryotic cells divide by.

2 The Cell Cycle. TAKE A LOOK 2. Complete Prokaryotic cells divide by. CHAPTER 5 2 The Cell Cycle SECTION The Cell in Action BEFORE YOU READ After you read this section, you should be able to answer these questions: How are new cells made? What is mitosis? What happens when

More information

Cell Division Practice Test

Cell Division Practice Test Cell Division Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How does a sex cell differ from a body cell? A. A sex cell does not contain

More information

Morphology and Ultrastructure of Staphylococcal L Colonies: Light, Scanning,

Morphology and Ultrastructure of Staphylococcal L Colonies: Light, Scanning, JOURNAL OF BACTERIOLOGY, Feb. 1973, p. 1049-1053 Copyright ( 1973 American Society for Microbiology Vol. 113, No. 2 Printed in U.S.A. Morphology and Ultrastructure of Staphylococcal L Colonies: Light,

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Cell Cycle and Mitosis THE CELL CYCLE The cell cycle, or cell-division cycle, is the series of events that take place in a eukaryotic cell between its formation and the moment it replicates itself. These

More information

5.1 Cell Division and the Cell Cycle

5.1 Cell Division and the Cell Cycle 5.1 Cell Division and the Cell Cycle Lesson Objectives Contrast cell division in prokaryotes and eukaryotes. Identify the phases of the eukaryotic cell cycle. Explain how the cell cycle is controlled.

More information

The Cell Cycle & Cell Division

The Cell Cycle & Cell Division The Cell Cycle & Cell Division http://www.nobel.se/medicine/laureates/2001/press.html The Cell Cycle Animated Cycle http://www.cellsalive.com/cell_cycle.htm MITOSIS Mitosis The process of cell division

More information

Cell cycle, mitosis & meiosis. Chapter 6

Cell cycle, mitosis & meiosis. Chapter 6 Cell cycle, mitosis & meiosis Chapter 6 Why do cells divide? Asexual reproduction Growth Replacement / repair Cell division: The big picture Two steps Before cells can divide, DNA needs to replicate DNA

More information

MODULE 2 : FOUNDATIONS IN BIOLOGY

MODULE 2 : FOUNDATIONS IN BIOLOGY OCR A LEVEL BIOLOGY MODULE 2 : FOUNDATIONS IN BIOLOGY REVISION NOTES For 2015 onwards specification Miss T Banda All living things are primarily made from 4 key elements: Carbon (C) Hydrogen (H) Oxygen

More information

Mitosis, development, regeneration and cell differentiation

Mitosis, development, regeneration and cell differentiation Mitosis, development, regeneration and cell differentiation Mitosis is a type of cell division by binary fission (splitting in two) which occurs in certain eukaryotic cells. Mitosis generates new body

More information

BIOLOGY. Chapter 10 CELL REPRODUCTION PowerPoint Image Slideshow

BIOLOGY. Chapter 10 CELL REPRODUCTION PowerPoint Image Slideshow BIOLOGY Chapter 10 CELL REPRODUCTION PowerPoint Image Slideshow FIGURE 10.1 A sea urchin begins life as a single cell that (a) divides to form two cells, visible by scanning electron microscopy. After

More information

AUTORADIOGRAPHIC EVIDENCE FOR THE RAPID DISINTEGRATION OF ONE CHLOROPLAST IN THE ZYGOTE OF THE GREEN ALGA ULVA MUTABILIS

AUTORADIOGRAPHIC EVIDENCE FOR THE RAPID DISINTEGRATION OF ONE CHLOROPLAST IN THE ZYGOTE OF THE GREEN ALGA ULVA MUTABILIS J. Cell Sci. ia, 385-389 (i973) 385 Printed in Great Britain AUTORADIOGRAPHIC EVIDENCE FOR THE RAPID DISINTEGRATION OF ONE CHLOROPLAST IN THE ZYGOTE OF THE GREEN ALGA ULVA MUTABILIS T. BRATEN Electron

More information

Cells and Tissues PART B

Cells and Tissues PART B 3 Cells and Tissues PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Cellular Physiology: Membrane

More information

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle!

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle! Chapter 3 Part 1! 10 th ed.: pp. 87 105! 11 th ed.: pp. 90 107!! Cellular Transport Mechanisms! The Cell Cycle! Transport Processes: Passive and Active (1 of 2)! 1. Passive transport! Does not use ATP!

More information

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle!

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle! Chapter 3 Part 1! 10 th ed.: pp. 87 105! 11 th ed.: pp. 90 107!! Cellular Transport Mechanisms! The Cell Cycle! Transport Processes: Passive and Active (1 of 2)! 1. Passive transport! Does not use ATP!

More information

Cell Growth, Division, and Reproduction

Cell Growth, Division, and Reproduction Cell Growth, Division, and Reproduction Human Development: Mitosis and Meiosis Division of the Cell Before a cell grows too large, it divides into two new daughter cells in a process called cell division.

More information

Chapter 7: Membrane Structure and Function

Chapter 7: Membrane Structure and Function Chapter 7: Membrane Structure and Function 7.1 Cellular membranes are fluid mosaics of lipids and proteins 1. The large molecules of all living things fall into just four main classes. Name them. 2. Explain

More information

NucView TM 488 Caspase-3 Assay Kit for Live Cells

NucView TM 488 Caspase-3 Assay Kit for Live Cells NucView TM 488 Caspase-3 Assay Kit for Live Cells Catalog Number: 30029 (100-500 assays) Contact Information Address: Biotium, Inc. 3423 Investment Blvd. Suite 8 Hayward, CA 94545 USA Telephone: (510)

More information

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA)

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) Cell Division Produces CLONES with the same # of chromosomes

More information

Topic 6 Cell Cycle and Mitosis. Day 1

Topic 6 Cell Cycle and Mitosis. Day 1 Topic 6 Cell Cycle and Mitosis Day 1 Bell Ringer (5 minutes) *pick up worksheet by the door* Get out your homework and answer these questions on the back page: What do I need to do to pass my real EOC?

More information

Bio 105: Cell Division

Bio 105: Cell Division Cell Division Bio 105: Cell Division Starts with DNA Replication Laboratory 8 DNA Replication When does DNA replicate? Just prior to cell division Multicellular Organisms Grow Replace old cells Unicellular

More information

CELL CYCLE, MITOSIS AND MEIOSIS NOTES

CELL CYCLE, MITOSIS AND MEIOSIS NOTES CELL CYCLE, MITOSIS AND MEIOSIS NOTES DNA - Genetic information is stored in the DNA strand in the form of genes. DNA stands for deoxyribose nucleic acid Genes located on the DNA strand 2 Types of DNA

More information

Buffer Preparation. Learning Objectives:

Buffer Preparation. Learning Objectives: Proteomics Buffer Preparation Buffer Preparation Maintaining the optimum ph during the biological sample processing is to maintain the proper functional and structural aspects of the sample. It is important

More information

2. Which of the following are NOT prokaryotes? A) eubacteria B) archaea C) viruses D) ancient bacteria

2. Which of the following are NOT prokaryotes? A) eubacteria B) archaea C) viruses D) ancient bacteria 1. Which of the following statements is FALSE? A) Errors in chromosome separation are rarely a problem for an organism. B) Errors in chromosome separation can result in a miscarriage. C) Errors in chromosome

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase.

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase. Molecular Cell Biology - Problem Drill 21: Cell Cycle and Cell Death Question No. 1 of 10 1. Which of the following statements about the cell cycle is correct? Question #1 (A) The Cell Cycle contains 3

More information

ACCELERATE ITS BIOCHEMICAL PROCESSES WHICH WERE SLOWED DOWN BY MITOSIS. THE LENGTH OF THE G1 PHASE CREATES THE DIFFERENCE BETWEEN FAST DIVIDING

ACCELERATE ITS BIOCHEMICAL PROCESSES WHICH WERE SLOWED DOWN BY MITOSIS. THE LENGTH OF THE G1 PHASE CREATES THE DIFFERENCE BETWEEN FAST DIVIDING CHAPTER 1: OVERVIEW OF THE CELL CYCLE THE THREE STAGES OF INTERPHASE: INTERPHASE BEFORE A CELL CAN ENTER CELL DIVISION, IT NEEDS TO PREPARE ITSELF BY REPLICATING ITS GENETIC INFORMATION AND ALL OF THE

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09414 Supplementary Figure 1 FACS-isolated 8c hepatocytes are highly pure. a, Gating strategy for identifying hepatocyte populations based on DNA content. b, Detection of mchry and mchr9

More information

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance BIOLOGY 111 CHAPTER 5: Chromosomes and Inheritance Chromosomes and Inheritance Learning Outcomes 5.1 Differentiate between sexual and asexual reproduction in terms of the genetic variation of the offspring.

More information

Unit 2: Characteristics of Living Things Lesson 25: Mitosis

Unit 2: Characteristics of Living Things Lesson 25: Mitosis Name Unit 2: Characteristics of Living Things Lesson 25: Mitosis Objective: Students will be able to explain the phases of Mitosis. Date Essential Questions: 1. What are the phases of the eukaryotic cell

More information

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Describe the process of cell division in prokaryotic cells. The Cell Cycle

Describe the process of cell division in prokaryotic cells. The Cell Cycle The Cell Cycle Objective # 1 In this topic we will examine the cell cycle, the series of changes that a cell goes through from one division to the next. We will pay particular attention to how the genetic

More information

Department of Cell Biology, Institute of Biology, UNICAMP, Campinas (SP), Brazil

Department of Cell Biology, Institute of Biology, UNICAMP, Campinas (SP), Brazil ACTA HISTOCHEM. CYTOCHEM. Vol. 22, No. 4, 1989 CRITICAL ELECTROLYTE CONCENTRATION OF DNA AND NUCLEOPROTEIN COMPLEXES IN VITRO BENEDICTO DE CAMPOS VIDAL AND MARIA LUIZA S. MELLO Department of Cell Biology,

More information

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands Human Heredity Chapter 2 Chromosomes, Mitosis, and Meiosis 2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

More information

TrioMol Isolation Reagent

TrioMol Isolation Reagent TrioMol Isolation Reagent Technical Manual No. 0242 Version 06142007 I Description... 1 II Key Features... 1 III Storage..... 1 IV General Protocol Using Triomol Isolation Reagent 1 V Troubleshooting.

More information

AP Biology. Biology is the only subject in which multiplication is the same thing as division. The Cell Cycle: Cell Growth, Cell Division

AP Biology. Biology is the only subject in which multiplication is the same thing as division. The Cell Cycle: Cell Growth, Cell Division QuickTime and and a TIFF TIFF (Uncompressed) decompressor are are needed needed to to see see this this picture. picture. Biology is the only subject in which multiplication is the same thing as division

More information

TrioMol Isolation Reagent

TrioMol Isolation Reagent TrioMol Isolation Reagent Technical Manual No. 0242 Version 06142007 I Description... 1 II Key Features... 1 III Storage..... 1 IV General Protocol Using Triomol Isolation Reagent 1 V Troubleshooting.

More information

Cell Division. Genetic info must be copied. Each cell gets a complete copy of that info. It occurs in two main stages:

Cell Division. Genetic info must be copied. Each cell gets a complete copy of that info. It occurs in two main stages: 10-2 Cell Division Key Questions: 1)What is the role of chromosomes in cell division? 2) What are the main events of the cell cycle? 3) What events occur during each of the four phases of mitosis? 4) How

More information

Sexual Cell Reproduction Chapter 17

Sexual Cell Reproduction Chapter 17 Sexual Cell Reproduction Chapter 17 1 The Importance of Meiosis Meiosis is a two stage cell division in which the chromosome number of the parental cell is reduced by half. Meiosis is the process by which

More information

Efllux and Influx of Erythrocyte Water

Efllux and Influx of Erythrocyte Water Efllux and Influx of Erythrocyte Water EDWIN G. OLMSTEAD From the School of Medicine, University of North Dakota, Grand Forks ABSTRACT Rabbit erythrocytes were washed in buffered NaC1 solutions isotonic

More information

Lab 6, Part 1: Mitosis & Cytokinesis

Lab 6, Part 1: Mitosis & Cytokinesis Biology 211, NSCC Lab 6, Part 1: Mitosis & Cytokinesis OBJECTIVES To observe the stages of mitosis in prepared slides of whitefish blastula and onion root tips. To gain a better understanding of the process

More information

AN ANALYSIS OF TRANSPORT, EXCHANGE, AND BINDING OF SODIUM AND POTASSIUM IN ISOLATED AMPHIBIAN FOLLICLES AND DENUDED OOCYTES

AN ANALYSIS OF TRANSPORT, EXCHANGE, AND BINDING OF SODIUM AND POTASSIUM IN ISOLATED AMPHIBIAN FOLLICLES AND DENUDED OOCYTES J. Cell Sci. 26, 311-322 (1977) 311 Printed in Great Britain AN ANALYSIS OF TRANSPORT, EXCHANGE, AND BINDING OF SODIUM AND POTASSIUM IN ISOLATED AMPHIBIAN FOLLICLES AND DENUDED OOCYTES GENE A. MORRILL,

More information

CELL REPLICATION. Fluorescent light microscopy showing mitosis, especially immunolabelled cytoskeleton and tubulin

CELL REPLICATION. Fluorescent light microscopy showing mitosis, especially immunolabelled cytoskeleton and tubulin CELL REPLICATION Fluorescent light microscopy showing mitosis, especially immunolabelled cytoskeleton and tubulin Cell REPLICATION PROLIFERATION MUTIPLICATION DIVISION CELL REPLICATION Fluorescent light

More information

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced. MEIOSIS Meiosis The form of cell division by which gametes, with half the regular number of chromosomes, are produced. diploid (2n) haploid (n) (complete set of chromosomes) (half the regular number of

More information

Cellular Division. copyright cmassengale

Cellular Division. copyright cmassengale Cellular Division 1 Cell Division All cells are derived from pre- existing cells New cells are produced for growth and to replace damaged or old cells Differs in prokaryotes (bacteria) and eukaryotes (protists,

More information

SBI4U: Microscopic Titration and Extraction of Chromatin from Liver

SBI4U: Microscopic Titration and Extraction of Chromatin from Liver SBI4U: Microscopic Titration and Extraction of Chromatin from Liver Assigned: Due: Received: SBI4U Microscopic Titration & Extraction of Chromatin from Liver Background We have 46 chromosomes in the nucleus

More information

Continuin: the Cycle PART. Simulating Interphase, Mitosis, and Cytokinesis 97 Creating a Model of Interphase and the Stages of Mitosis 98

Continuin: the Cycle PART. Simulating Interphase, Mitosis, and Cytokinesis 97 Creating a Model of Interphase and the Stages of Mitosis 98 PART Continuin: the Cycle LESSON 8 Cell Division: Multiplying by Dividing 96 Inquiry 8.1 Inquiry 8.2 Simulating Interphase, Mitosis, and Cytokinesis 97 Creating a Model of Interphase and the Stages of

More information

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher Human biology Laboratory Cell division Lecturer Maysam A Mezher CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact

More information

Chapter 03. Lecture and Animation Outline

Chapter 03. Lecture and Animation Outline Chapter 03 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please Note: Once you have

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Division Read Chapter 19 pages 651-663 663 only (Benefits of Sex & Meiosis sections these are in Chapter

More information

Chapter 2 Cells and Cell Division

Chapter 2 Cells and Cell Division Chapter 2 Cells and Cell Division MULTIPLE CHOICE 1. The process of meiosis results in: A. the production of four identical cells B. no change in chromosome number from parental cells C. a doubling of

More information

Bio 10: 10.1 Cell Growth, Division, and Reproduction

Bio 10: 10.1 Cell Growth, Division, and Reproduction Bio 10: 10.1 Cell Growth, Division, and Reproduction Lesson Objectives Explain the problems that growth causes for cells. Compare asexual and sexual reproduction. Lesson Summary Limits to Cell Size There

More information

Cell Structure and Cell Cycle

Cell Structure and Cell Cycle E X E R C I S E 4 Cell Structure and Cell Cycle Materials model or diagram of a cell compound microscopes and lens paper prepared slides of human skeletal muscle cells, pseudostratified ciliated columnar

More information

Answer Key. Cell Growth and Division

Answer Key. Cell Growth and Division Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE Cell Cycle: (1) Gap1 (G 1): cells grow, carry out normal functions, and copy their organelles. (2) Synthesis (S): cells replicate DNA. (3)

More information

STUDY UNIT 1 MITOSIS AND MEIOSIS. Klug, Cummings & Spencer Chapter 2. Morphology of eukaryotic metaphase chromosomes. Chromatids

STUDY UNIT 1 MITOSIS AND MEIOSIS. Klug, Cummings & Spencer Chapter 2. Morphology of eukaryotic metaphase chromosomes. Chromatids STUDY UNIT 1 MITOSIS AND MEIOSIS Klug, Cummings & Spencer Chapter 2 Life depends on cell division and reproduction of organisms. Process involves transfer of genetic material. New somatic (body) cells

More information

Meiosis produces haploid gametes.

Meiosis produces haploid gametes. Section 1: produces haploid gametes. K What I Know W What I Want to Find Out L What I Learned Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of

More information

Cell Division THE MAJOR STEPS OF CELL DIVISION: 10/28/2013. When does DNA replicate? The first step of cell division is DNA replication:

Cell Division THE MAJOR STEPS OF CELL DIVISION: 10/28/2013. When does DNA replicate? The first step of cell division is DNA replication: Cell Division Biology 105 Laboratory 8 THE MAJOR STEPS OF CELL DIVISION: When does DNA replicate? The first step of cell division is DNA replication: This occurs just prior to cell division. Cells need

More information

Nucleus and Mitosis. VIBS 443 and VIBS 602. Undergraduate Graduate Histology Lecture Series

Nucleus and Mitosis. VIBS 443 and VIBS 602. Undergraduate Graduate Histology Lecture Series Nucleus and Mitosis VIBS 443 and VIBS 602 Undergraduate Graduate Histology Lecture Series Larry Johnson, Professor Veterinary Integrative Biosciences Texas A&M University College Station, TX 77843 Objectives

More information

10.2 The Process of Cell Division

10.2 The Process of Cell Division 10.2 The Process of Cell Division Lesson Objectives Describe the role of chromosomes in cell division. Name the main events of the cell cycle. Describe what happens during the four phases of mitosis. Describe

More information

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes?

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes? Warm up 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes? 1. Describe what major processes occur during a sexual life cycle. Warm up 1. Describe what occurs during crossing

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Name Date Class CHAPTER 5 TEST PREP PRETEST Photosynthesis and Cellular Respiration In the space provided, write the letter of the term or phrase that best completes each statement or best answers each

More information

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L.

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. New Phytol (1974) 73, 139-142. THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. BY JEAN M. WHATLEY Botany School, University of Oxford (Received 2 July 1973) SUMMARY Cells in

More information

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome Topic 8 Mitosis & Meiosis Ch.12 & 13 The Eukaryotic Genome pp. 244-245,268-269 Genome All of the genes in a cell. Eukaryotic cells contain their DNA in long linear pieces. In prokaryotic cells, there is

More information

Cellular Reproduction. MXMS 7th Grade Science

Cellular Reproduction. MXMS 7th Grade Science Cellular Reproduction MXMS 7th Grade Science What is cell division? 2 primary methods allow for cells to divide and reproduce themselves: A. Mitosis: produces identical offspring B. Meiosis: produces genetically

More information

CELL REPRODUCTION. Unit 20 LEARNING OBJECTIVES:

CELL REPRODUCTION. Unit 20 LEARNING OBJECTIVES: Unit 20 CELL REPRODUCTION LEARNING OBJECTIVES: 1. Be able to distinguish the differences between mitotic and meiotic cell division. 2. Learn the role that both mitotic and meiotic types of cell division

More information

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision. Name: Bio AP Lab: Cell Division B: Mitosis & Meiosis (Modified from AP Biology Investigative Labs) BACKGROUND: One of the characteristics of living things is the ability to replicate and pass on genetic

More information

10.1 Cell Growth, Division, and Reproduction

10.1 Cell Growth, Division, and Reproduction 10.1 Cell Growth, Division, and Reproduction Lesson Objectives Explain the problems that growth causes for cells. Compare asexual and sexual reproduction. Lesson Summary Limits to Cell Size There are two

More information

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis The Cell Cycle B-2.6: Summarize the characteristics of the cell cycle: interphase (G 1, S, G 2 ); the phases of mitosis (prophase, metaphase, anaphase, telophase); and plant and animal cytokinesis. Key

More information

The Process of Cell Division. Lesson Overview. Lesson Overview The Process of Cell Division

The Process of Cell Division. Lesson Overview. Lesson Overview The Process of Cell Division Lesson Overview 10.2 The Process of Cell Division Chromosomes genetic information passed from parent to offspring is carried by chromosomes. Chromosomes enable precise DNA separation during cell division.

More information

The Cell Cycle. Chapter 12

The Cell Cycle. Chapter 12 The Cell Cycle Chapter 12 Why are cells small? As cells get bigger they don t work as well WHY? Difficulties Larger Cells Have: More demands on its DNA Less efficient in moving nutrients/waste across its

More information

STUDIES ON THE EXCHANGE OF POTASSIUM BETWEEN TUMOUR CELL AND MEDIUM

STUDIES ON THE EXCHANGE OF POTASSIUM BETWEEN TUMOUR CELL AND MEDIUM STUDIES ON THE EXCHANGE OF POTASSIUM BETWEEN TUMOUR CELL AND MEDIUM. ARTHUR LASNITZKI (From the Biochemical Laboratory of the Cancer Research Institute, University of Berlin, Germany, and the Cancer Research

More information

The Cellular Basis of Inheritance

The Cellular Basis of Inheritance CHAPTER 9 The Cellular Basis of Inheritance Summary of Key Concepts Concept 9.1 All cells come from cells. (pp. 180 181) Cell reproduction is an important process. Three functions of cell reproduction

More information

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9.

More information

Cell Division. Binary Fission, Mitosis & Meiosis 2/9/2016. Dr. Saud Alamri

Cell Division. Binary Fission, Mitosis & Meiosis 2/9/2016. Dr. Saud Alamri Cell Division Binary Fission, Mitosis & Meiosis 1 Prokaryotic cells reproduce asexually by a type of cell division called binary fission 2 Prokaryotic chromosome Division into two daughter cells Plasma

More information

Warm-Up. Explain the importance of DNA replication.

Warm-Up. Explain the importance of DNA replication. Warm-Up Explain the importance of DNA replication. Yesterday s Picture 3B original plus a daughter cell original cell Hair follicle cells, for example. Interphase is the longest stage, consisting of:

More information