Update from Karolinska

Size: px
Start display at page:

Download "Update from Karolinska"

Transcription

1 Scanditronix meeting Uppsala May 23-25, 2018 Update from Karolinska Jonathan Siikanen Department of Medical Radiation Physics and Nuclear Medicine Stockholm, Sweden

2 Stockholm 2 Jonathan Siikanen: Cyclotron Produced Gallium

3 3

4 Scanditronix (SCX) MC 17 in Lund Radionuclide Production with PET Cyclotrons Supervisors: Anders Sandell Sven-Erik Strand Tomas Ohlsson 4 Jonathan Siikanen: Cyclotron Produced Gallium

5 Cyclotron Building at old Karolinska

6 PETtrace Self Shielded

7 Dual Beam 6 Targets: The GEMS PETtrace at Karolinska 2 x 11 C (20.4 min) 2 x 18 F - (109.8 min) 1 x 15 O 2 (2.04 min) 1 x 18 F 2 11 CO 2 (gas) Nuclear reactions 15 O 2 (gas) 1.2 Ci / 50 µa/ 6 min 3 Ci / 55 µa/ 30 min >20 Ci/mmol 14 N(p, ) 11 C 14 N(d,n) 15 O 18 O(p,n) 18 F 20 Ne(d, ) 18 F 18 F - (ion in water) 3 Ci / 40 µa/ 60 min >20 Ci/mmol 18 F 2 (gas) 0.4 Ci / 40 µa/ 60 min

8 8 Jonathan Siikanen: Cyclotron Produced Gallium

9 9 New Karolinska Hospital in Solna (NKS)

10 Radiopharmacy operations are located on floors 1, 2 and 3 in Bioclinicum Floor 1: Cyclotrons Floor 2: PET isotopes Floor 2: Mixed isotopes Floor 3: Goods reception Floor 3: Gas storage

11 New Karolinska Hospital in Solna, NKS 11

12 Comecer installs hot cells in the western wall of the radiochemistry lab and in the Radiopharmacy lab 12

13

14 2xPETtrace 800 series

15 C70 C C70 Position C71 Solid [ 11 C]CH 4 6 [ 11 C]CH 4 [ 11 C]CO 2 5 [ 11 C]CO F 4 18 F 2 15 O 3 Solid 89 Zr [ 11 C]CH F 1 18 F

16

17 Different molecules requires different radionuclides 89 Zr 135 La 64 Cu 89 Zr 58 Co 68 Ga 64 Cu 45 Ti 68 Ga 64 Cu 45 Ti 135 La

18 Position 3: GE/Comecer Solid Target System View from side View from below

19 19 Jonathan Siikanen: Cyclotron Produced Gallium

20 cross section (mbarn) Zn(p,n) 68 Ga 68 Zn(p,2n) 67 Ga proton energy (MeV) Cross section for the 68 Zn(p,n) 68 Ga and 68 Zn(p,2n) 67 Ga reactions. Data from TENDL Jonathan Siikanen: Cyclotron Produced Gallium

21 21 Jonathan Siikanen: Cyclotron Produced Gallium

22

23

24 Cyclotron Production of Gallium Jonathan Siikanen Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital Stockholm, Sweden

25 Publications (PubMed) Ga-68 Number of PubMed publications per year utilizing 68 Ga and other emerging PET isotopes. Source: PubMed (Feb 2018) search terms: 68(-)Ga; Ga(-)68; 68(-)Gallium; Gallium(-)68 25 Jonathan Siikanen: Cyclotron Produced Gallium

26 68 Ge/ 68 Ga generator Approx 2 GBq when its new 26 Jonathan Siikanen: Cyclotron Produced Gallium

27 Los Alamos National Lab-IPF facility (USA), Brookhaven National Lab BLIP facility (USA) ithemba-faure (South Africa) liquid Ga in a Nb container is irradiated in degraded high energy beams with currents between 65 and 85 μa Cyclotron Co. Lt. (Russia-Obninsk) Ga-Ni alloy pressed on a Cu block serves as target and is irradiated with a 23 MeV incident proton beam and a current up to 600 μa (0.601)Ga-69 + p --> 2n + Ge-68 (0.399)Ga-71 + p --> 4n + Ge-68 Comparison of various excitation functions for the (a) Ga(p,xn)68Ge, (b) Ge(p,pxn)68Ge (c) Zn(a,xn)68Ge reactions IAEA RADIOISOTOPES AND RADIOPHARMACEUTICALS SERIES No. 2

28 Direct production An alternative route to generator produced Ga-68 (T 1/2 =68 min, β + =87.7 %, E mean =836 KeV) is charged particle activation of zinc Why? Production capacity Beam on whenever necessary Availability of generators is limited (and they are relatively expensive) Also for Ga-66, (T 1/2 =9.49 h, β + =51 %, E mean =1904 kev), no generator is available

29 Charged particle activation of zinc: 68 Zn(p,n) 68 Ga Electroplated Target Foil Target Solution Target Low to moderate use Solid Target High use or distribution

30 Production route foil: 68 Zn(p,n) 68 Ga Beam Power (watt) = µa x MeV Zinc M.P=693 K (420 C) B.P=1180 K (910 C) 116 W m 1 K 1 (Cu=401 & Ag=429) Gallium M.P=303 K (30 C) B.P=2670 K (2400 C) 64 Zn (0.49), 66 Zn (0.28), 67 Zn (0.04), 68 Zn (0.19) Lawrence s 60-inch cyclotron, circa 1939, showing beam of accelerated ions escaping the accelerator and ionizing the surrounding air causing a blue glow. 30 Jonathan Siikanen: Cyclotron Produced Gallium

31 How Much Can We Produce? As the charged particles continuosly lose kinetic energy when passing through a thick layer of target atoms, the thick target yield is described by Z =charge of the incoming particles M =mass number of the target atoms E threshold to E max =the energy window σ(e)=cross section at a certain energy (de/dx)=mass stopping power in the target λ=decay constant t=irradiation time. The production yield is here given as MBq/µA from the factor of 3.76x

32 Production Capacity GBq (Ci) Particle MeV protons I (µa) Irradiation Time (h) Ga-68 (EOB) Zn-68 Ga-66 (EOB) Zn-natural Generator (0.05) --- Solution Target? (0.1) 0.1 mm (70 mg/cm 2 ) (0.4) 0.8 (0.02) 0.25 mm (180 mg/cm 2 ) (1.4) 1.9 (0.05) 0.5 mm (70 mg/cm 2 ) (2.1) 2.5 (0.07) 13 MeV Protons Range 0.5 mm in Zn

33 Proton Activation of Zinc p,n-reactions Zn-64 Zn-66 Zn-68 Zn-67 4% 19% P 49% 28% Ga-64 T 1/2 =0.04 h Ga-68 T 1/2 =1.1 h Ga-66 T 1/2 =10.4 h Ga-67 T 1/2 =2.7 d 64 Zn (49%), 66 Zn (28%), 67 Zn (4%), 68 Zn (19%) 33 Jonathan Siikanen: Cyclotron Produced Gallium

34 Bombardment Irradiation on nat Zn foils for production of 66 Ga GE PETtrace, 13 MeV, 10 µa Production 1 d before diffusion separation 68 Ga decays away J.W Engle et al. Applied Radiation and Isotopes 70 (2012)

35

36 Schematic of Thermal Diffusion Produced Radionuclides Heating Rinsed with weak acid Bombarded foil a) b) c)

37 Diffusion Step Heat Zn-foils 400 C Shake 1 min Remove foil Ar Ar 0.1 mm= min 0.25 mm =2 h 5 ml 0.1 N HCl

38 Elution Good to go? 0.5 % of 100 mg Zn = 5x10 18 atoms 1 GBq of 68 Ga = 6x10 12 atoms Unfortunately not We need further purification Cation exchange AG50W-X8 Flow through 0.05 N HCl Flow through 0.05 N HCl UTEVA (EXC) 15 mg

39 Some Madison/Lund Results > 60 % of foil activity (< 2 % without heating) is extracted < 0.5 % of foil mass lost Ga-trapping in AG50 is ~100 % and 90 % is re-trapped in UTEVA. > 90 % of loaded Ga (on the UTEVA) is eluted in first 200 µl 0.1 N HCl Ga-66-reactivity is GBq/µmol NOTA (at EOB). J. Engle et al Ga-66-reactivity for natzn foil (dissolved) <0.4 GBq/ µmol Electroplated: Ga-66-reactivity of GBq/µmol

40 Discussion Easy to produce ten fold more 68 Ga than from, nowadays available, generators Diffusion step decreases bulk Zn Easier to purify: Lower volumes Diffusion step decreases metal contaminants Reactivities are increased compared to when entire foil is dissolved <0.5 % target loss possibility to reuse of foils (enriched)

41 41 Jonathan Siikanen: Cyclotron Produced Gallium

International Workshop PSD-11 Delft. Clive Naidoo (PhD Chemistry) Dept Head: Radionuclide Production ithemba LABS South Africa

International Workshop PSD-11 Delft. Clive Naidoo (PhD Chemistry) Dept Head: Radionuclide Production ithemba LABS South Africa International Workshop PSD-11 Delft Clive Naidoo (PhD Chemistry) Dept Head: Radionuclide Production ithemba LABS South Africa ithemba LABS Structure Directorate HR, Finance & General Admin Electronic and

More information

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY THOMAS J. RUTH TRIUMF Vancouver, BC, Canada truth@triumf.ca 1 Introduction The production of radioisotopes for use in biomedical procedures

More information

Isotope Production at High Energy Leonard Mausner

Isotope Production at High Energy Leonard Mausner Isotope Production at High Energy Leonard Mausner Brookhaven National Laboratory Upton, New York, USA Facility Description The Brookhaven Linac Isotope Producer (BLIP) was the world s first facility to

More information

Isotope Production at Brookhaven National Laboratory. Leonard F. Mausner, Brookhaven National Laboratory, Upton, NY. Introduction

Isotope Production at Brookhaven National Laboratory. Leonard F. Mausner, Brookhaven National Laboratory, Upton, NY. Introduction Isotope Production at Brookhaven National Laboratory Leonard F. Mausner, Brookhaven National Laboratory, Upton, NY Introduction The Brookhaven Linac Isotope Producer (BLIP) was the world s first facility

More information

Adriano Duatti Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari, 46, Ferrara, Italy

Adriano Duatti Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari, 46, Ferrara, Italy Adriano Duatti Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari, 46, 44121 Ferrara, Italy dta@unife.it adriano.duatti@unife.it Strontium-82 Strontium 82 (Sr 82) decays

More information

Isotope Production for Nuclear Medicine

Isotope Production for Nuclear Medicine Isotope Production for Nuclear Medicine Eva Birnbaum Isotope Program Manager February 26 th, 2016 LA-UR-16-21119 Isotopes for Nuclear Medicine More than 20 million nuclear medicine procedures are performed

More information

Hospital Cyclotrons: Radiation Safety Aspects. Matthew Griffiths

Hospital Cyclotrons: Radiation Safety Aspects. Matthew Griffiths Hospital Cyclotrons: Radiation Safety Aspects Matthew Griffiths Isotope Production. Positron decay is a way for an atom with too many protons to get to a more relaxed state. ν Fluorine 18 excess Proton

More information

Simulation of Cross Section for the Production of Copper-67

Simulation of Cross Section for the Production of Copper-67 e-issn:3-459 p-issn:347-36 Simulation of Cross Section for the Production of Copper-67 dusei G *, Andam AB, Banini GK, Fletcher JJ and Tandoh J Graduate School of Nuclear and Allied Sciences, University

More information

Role of Radiochemistry in Nuclear Data Research and the Cyclotron Production of Medical Radionuclides

Role of Radiochemistry in Nuclear Data Research and the Cyclotron Production of Medical Radionuclides Role of Radiochemistry in Nuclear Data Research and the Cyclotron Production of Medical Radionuclides Syed M. Qaim Research Centre Jülich and University of Cologne, Germany Becquerel Medal Lecture given

More information

arxiv: v1 [physics.ins-det] 9 Apr 2018

arxiv: v1 [physics.ins-det] 9 Apr 2018 arxiv:1804.02889v1 [physics.ins-det] 9 Apr 2018 Study of neutron shielding collimators for curved beamlines at the European Spallation Source 1. Introduction V. Santoro 1,2, D. D. DiJulio 1,2, S. Ansell

More information

On the separation of Sc, Zr and Ga

On the separation of Sc, Zr and Ga On the separation of Sc, Zr and Ga Carina Dirks 1, Thomas Dirks 1, Steffen Happel 2 1 Radiochemistry, Department of Chemistry, Philipps University Marburg,35043 Marburg, Germany 2 Triskem International,

More information

Recovery. of Actinium-225 and Radium-223 from Natural Thorium Irradiated with Protons

Recovery. of Actinium-225 and Radium-223 from Natural Thorium Irradiated with Protons 4 th International Nuclear Chemistry Congress, Maresias, San ulo-brazil, September 14-19, 2014 Recovery of tinium- and dium-223 from Natural orium Irradiated with Protons Elena.V. LAPSHINA, Stanislav V.

More information

The isotope revolution that can change imaging and therapy

The isotope revolution that can change imaging and therapy The isotope revolution that can change imaging and therapy Mikael Jensen Professor of Applied Nuclear Physics The Hevesy Laboratory DTU Nutech, Technical University of Denmark George Hevesy 5.5 MeV protons

More information

Travels with a Cyclotron. David Parker University of Birmingham

Travels with a Cyclotron. David Parker University of Birmingham Travels with a Cyclotron David Parker University of Birmingham Quick history Current uses of the cyclotron Transfer from Minneapolis 2 History of accelerators at Birmingham 60 Nuffield cyclotron (1948-1999)

More information

TRIUMF TR13. Date form last updated: 2016 May 29. Completed by: David Prevost. 1. Cyclotron Facility Contact info. Institute (name/address):

TRIUMF TR13. Date form last updated: 2016 May 29. Completed by: David Prevost. 1. Cyclotron Facility Contact info. Institute (name/address): TRIUMF TR13 Date form last updated: 2016 May 29 Completed by: David Prevost 1. Cyclotron Facility Contact info Institute (name/address): Institution URL: Person in charge (name/ph#/email): Position/title:

More information

Krotov S.A., postgraduate student, Institute of chemistry SPbSU, Radiochemical Department

Krotov S.A., postgraduate student, Institute of chemistry SPbSU, Radiochemical Department Krotov S.A., postgraduate student, Institute of chemistry SPbSU, Radiochemical Department NRC KI Petersburg Nuclear Physics Institute 2016 Krotov S.A., postgraduate student, Institute of chemistry SPbSU,

More information

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method Nuclear Physics Institute, Academy of Sciences of the Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Cross-section

More information

Measurements of cross-sections of the proton-induced activation reactions

Measurements of cross-sections of the proton-induced activation reactions Measurements of cross-sections of the proton-induced activation reactions M. S. Uddin a, M.Baba a, M. Hagiwara a, F. Tarkanyi b, and F. Ditroi b a Cyclotron and Radioisotope Center, Tohoku University,

More information

Chapter 4: Radionuclide Production

Chapter 4: Radionuclide Production Chapter 4: Radionuclide Production Slide set of 101 slides based on the chapter authored by H. O. Lundqvist of the publication (ISBN 978 92 0 143810 2): Nuclear Medicine Physics: A Handbook for Teachers

More information

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013 2484-11 ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September - 4 October, 2013 Experimental techniques (Nuclear reaction data, estimation of uncertainties)

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

EXPERIMENTAL STUDIES OF PROTON INDUCED REACTION CROSS-SECTIONS ON

EXPERIMENTAL STUDIES OF PROTON INDUCED REACTION CROSS-SECTIONS ON EXPERIMENTAL STUDIES OF PROTON INDUCED REACTION CROSS-SECTIONS ON NAT MO Mayeen Uddin KHANDAKER, G.uinyun KIM 1, Kwangsoo KIM, and Dongchul SON Department of Physics, Kyungpook National University, Daegu

More information

Activation Products in Proton Therapy

Activation Products in Proton Therapy Activation Products in Proton Therapy Syed M. Qaim Institut für Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany Lecture delivered during the Workshop on Nuclear Data for Medical Applications,

More information

Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA

Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA e + Overview of Lecture A historical perspective A conceptual understanding of P.E.T.

More information

XA IAEA-TECDOC-1051

XA IAEA-TECDOC-1051 XA9848832 IAEA-TECDOC-1051 Management The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies The originating Section of this publication in the IAEA was: Waste

More information

[ 11 C]NNC 112 FOR INJECTION: CHEMISTRY, MANUFACTURING AND CONTROLS

[ 11 C]NNC 112 FOR INJECTION: CHEMISTRY, MANUFACTURING AND CONTROLS 5. MANUFACTURE OF DRUG SUBSTANCE A. Batch Formula The following components and their quantities are used in the production of each batch of [ 11 C]NNC 112 for Injection: Name of component Component s function

More information

New Delopments TrisKem - Part 2

New Delopments TrisKem - Part 2 New Delopments TrisKem - Part 2 UGM - 21/09/2018 Jesus College - Cambridge (UK) S. Happel New Resins - domains and applications Analytical Radiochemistry Environmental monitoring, bioassay, waste monitoring,

More information

I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in 70 Ga- 70 Zn by the 35-MeV (p,n) Reaction on 70 Zn

I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in 70 Ga- 70 Zn by the 35-MeV (p,n) Reaction on 70 Zn CYRIC Annual Report 2003 I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in Ga- Zn by the 35-MeV (p,n) Reaction on Zn Orihara H., Terakawa A. *, Suzuki H. *, Kikuchi Y. *, Kumagai K.

More information

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator LSC2017 Conference 1-5th May, 2017, Copenhagen LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator Xiaolin Hou Technical University of Denmark, Center for Nuclear Technologies Roskilde,

More information

Project of RIC-80 facility at PNPI for medical isotope production

Project of RIC-80 facility at PNPI for medical isotope production Project of RIC-80 facility at PNPI for medical isotope production V.N. Panteleev, A.E. Barzakh, L.Kh. Batist, D.V. Fedorov, A.M. Filatova, V.S. Ivanov, K.A. Mezilev, F.V. Moroz, P.L. Molkanov, S.Yu. Orlov,

More information

arxiv: v1 [nucl-ex] 25 Oct 2016

arxiv: v1 [nucl-ex] 25 Oct 2016 Activation cross sections of proton and deuteron induced nuclear reactions on holmium and erbium, related to the production of 161 Er and 16 Er medical isotopes F. Tárkányi a, F. Ditrói a,, S. Takács a,

More information

Current issues of radiation safety regulation for accelerator facilities in Japan

Current issues of radiation safety regulation for accelerator facilities in Japan Current issues of radiation safety regulation for accelerator facilities in Japan K. MASUMOTO Radiation Science Center, High Energy Accelerator Research Organization, Japan Introduction In Japan, the clearance

More information

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK Low Energy Medical Isotope Production Naomi Ratcliffe naomi.ratcliffe@hud.ac.uk IIAA, University of Huddersfield UK Overview: Nuclear Medicine Cover the use of radioactive isotopes for diagnostic and therapy

More information

THE PURIFICATION AND THE QUALITY CONTROL OF 68 Ga ELUATES FROM 68 Ge/ 68 Ga GENERATOR *

THE PURIFICATION AND THE QUALITY CONTROL OF 68 Ga ELUATES FROM 68 Ge/ 68 Ga GENERATOR * Romanian Reports in Physics, Vol. 63, No. 4, P. 988 996, 2011 THE PURIFICATION AND THE QUALITY CONTROL OF 68 Ga ELUATES FROM 68 Ge/ 68 Ga GENERATOR * IOANA PATRASCU, DANA NICULAE, VALERIA LUNGU, IOAN URSU,

More information

The Groningen Cyclotron at Demokritos Athens

The Groningen Cyclotron at Demokritos Athens The Groningen Cyclotron at Demokritos Athens Anastasios Lagoyannis Tandem Accelerator Laboratory N.C.S.R. Demokritos Outline N.C.S.R. Demokritos The Tandem @ I.N.P. P. Basic Infrastructure - Research Interests

More information

Best MeV. Best , 25 MeV

Best MeV. Best , 25 MeV Best 15 15 MeV 400 µa Best 25 20, 25 MeV 400 µa Best 28u/35 20, 28 35 15 MeV 400 1000 µa Best 70 70 35 MeV 700 µa 2014 Best Cyclotron Systems Best Cyclotron Systems 8765 Ash St., Unit 7, Vancouver, BC

More information

Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions

Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions Track Structure Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions with electrons of the medium. These primary

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Isotope Production from Compact Neutron Sources. ~ 10 6 n/sec. Danish CANS workshop Mikael Jensen

Isotope Production from Compact Neutron Sources. ~ 10 6 n/sec. Danish CANS workshop Mikael Jensen 125 mg Ra-226 Danish CANS workshop 2016 Isotope Production from Compact Neutron Sources Mikael Jensen Professor of Applied Nuclear Physics The Hevesy Laboratory DTU Nutech, Technical University of Denmark

More information

[ 11 C]MePPEP FOR INJECTION: CHEMISTRY, MANUFACTURING AND CONTROLS

[ 11 C]MePPEP FOR INJECTION: CHEMISTRY, MANUFACTURING AND CONTROLS 5. MANUFACTURE OF DRUG SUBSTANCE A. Batch Formula The following components and their quantities are used in the production of each batch of [ 11 C]MePPEP for Injection: Name of component Component s function

More information

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV NUCLEAR THEORY, Vol. 33 (2014) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV R. Avetisyan, R. Avagyan, G. Bazoyan,

More information

Experimental data analysis at the MASHA setup. Prepared by: Abeer M. Attia Supervisor: Lubos Krupa LOGO. Aleksey Novoselov

Experimental data analysis at the MASHA setup. Prepared by: Abeer M. Attia Supervisor: Lubos Krupa LOGO. Aleksey Novoselov Experimental data analysis at the MASHA setup Flerov Laboratory of Nuclear Reactions JINR, Dubna, Russia Prepared by: Abeer M. Attia Supervisor: Lubos Krupa LOGO Aleksey Novoselov Flerov Laboratory of

More information

III. Proton-therapytherapy. Rome SB - 2/5 1

III. Proton-therapytherapy. Rome SB - 2/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013 2484-4 ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September - 4 October, 2013 Formation of Activation Products in Radiation Therapy Syed M. Qaim Forschungszentrum

More information

Title. Author(s)Takacs, S.; Hermanne, A.; Ditroi, F.; Tarkanyi, F.; Issue Date Doc URL. Rights

Title. Author(s)Takacs, S.; Hermanne, A.; Ditroi, F.; Tarkanyi, F.; Issue Date Doc URL. Rights Title Reexamination of cross sections of the Mo-100(p,2n)T Author(s)Takacs, S.; Hermanne, A.; Ditroi, F.; Tarkanyi, F.; Nuclear Instruments and Methods in Physics Research Citation26-38 Issue Date 2015-03-15

More information

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Rationale of proton therapy Dose deposition versus depth in

More information

Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG)

Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG) Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG) Shigeki Watanabe 1 [ watanabe.shigeki@jaea.go.jp ] Noriko S. Ishioka 1, Ji Xin Liang 1, Hirofumi Hanaoka 2, Yasuhiko iida 2,3, Keigo

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 Armenian Journal of Physics, 2016, vol. 9, issue 4, pp. 315-323 Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 R. Avagyan, R. Avetisyan, V. Ivanyan*, I. Kerobyan A.I. Alikhanyan National

More information

Model Calculations for Proton Induced Nuclear Reaction on Zinc at Low Energy

Model Calculations for Proton Induced Nuclear Reaction on Zinc at Low Energy Model Calculations for Proton Induced Nuclear Reaction on Zinc at Low Energy M. Al-Abyad, M. N. H. Comsan, M. Fayez-Hassan* Experimental Nuclear Physics Department (Cyclotron Facility), Nuclear Research

More information

Radiopharmaceuticals for Nuclear Medicine and Oncology The Central Role of Chemistry

Radiopharmaceuticals for Nuclear Medicine and Oncology The Central Role of Chemistry 1 Summary of Invited Lecture, For, Proceedings, 50 th Anniversary Meeting, Mexican Chemical Congress, Mexico City, Mexico, September 24-28, 2006. Radiopharmaceuticals for Nuclear Medicine and Oncology

More information

Megan E. Bennett, Dmitriy A. Mayorov, Kyle D. Chapkin, Marisa C. Alfonso, Tyler A. Werke, and Charles M. Folden III

Megan E. Bennett, Dmitriy A. Mayorov, Kyle D. Chapkin, Marisa C. Alfonso, Tyler A. Werke, and Charles M. Folden III Measurement of the nat Lu(p,x) 175 Hf excitation function Megan E. Bennett, Dmitriy A. Mayorov, Kyle D. Chapkin, Marisa C. Alfonso, Tyler A. Werke, and Charles M. Folden III 1. Introduction It is of great

More information

Harvesting Isotopes For Neutron Cross-section Measurements at RIA

Harvesting Isotopes For Neutron Cross-section Measurements at RIA Harvesting Isotopes For Neutron Cross-section Measurements at RIA Larry Ahle and Lee Bernstein Lawrence Livermore National Laboratory ACS Symposium on Radiochemistry at RIA New Orleans, CA March 27, 2003

More information

Chapter 11 Nuclear Chemistry

Chapter 11 Nuclear Chemistry Chapter 11 Nuclear Chemistry 11.1 Nuclear Reactions Nuclear reactions involve the particles located in the nucleus of the atom: The nucleus contains: An atom is characterized by: X A Z - Z the gives the

More information

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity #89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity Common Strong Acids Common Strong Bases HCl hydrochloric acid Group #1 + OH HNO 3 nitric acid NaOH, KOH etc. H 2

More information

Chapter 3 The Structure of Matter and the Chemical Elements. An Introduction to Chemistry By Mark Bishop

Chapter 3 The Structure of Matter and the Chemical Elements. An Introduction to Chemistry By Mark Bishop Chapter 3 The Structure of Matter and the Chemical Elements An Introduction to Chemistry By Mark Bishop Chapter Map Chemistry The science that deals with the structure and behavior of matter Scientific

More information

Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities

Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities CRPA 2016, Toronto Adam Dodd Senior Project Officer Accelerators and Class II Prescribed Equipment Division (613) 993-7930

More information

Design specifications for compact cyclotrons

Design specifications for compact cyclotrons Design specifications for compact cyclotrons M. Anwar Chaudhri M.R.C. Cyclotron Unit, Hammersmith Hospital, London and 0. Bottger, A.E.G. Research Institute, Frankfurt (Main) Presented by M. A. Chaudhri

More information

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

Summary of NSAC-Isotope Subcommittee Report, 2015

Summary of NSAC-Isotope Subcommittee Report, 2015 Summary of NSAC-Isotope Subcommittee Report, 2015 Meeting Isotope Needs and Capturing Opportunities for the Future: The 2015 Long Range Plan for the DOE-NP Isotope Program Saed Mirzadeh Low Energy Community

More information

Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency

Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency Facility of Radiation Standards It is important that radiation measuring instruments are calibrated by

More information

Chapter III: III: Sputtering and secondary electron emission

Chapter III: III: Sputtering and secondary electron emission References [1] Handbook of putter deposition technology, Kiyotaka Wasa, Noyes publications, NJ 1992. IN: 0-8155-1280-5 [2] old Plasma in Materials Fabrications,. Grill, IEEE Press, NY(1993). IN: 0-7803-1055-1.

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) The smallest particle of an element that can be identified as that element is: A) a proton

More information

REPORT DOCUMENTATION PAGE Form Approved OMB No

REPORT DOCUMENTATION PAGE Form Approved OMB No REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Deuteron activation cross section measurements at the NPI cyclotron

Deuteron activation cross section measurements at the NPI cyclotron Nuclear Physics Institute Řež EAF 2011 Deuteron activation cross section measurements at the NPI cyclotron E. Šimečková, P. Bém, M. Honusek, J. Mrázek, M. Štefánik, L. Závorka Nuclear Physics Institute

More information

CLINICALLY USEFUL RADIONUCLIDES:

CLINICALLY USEFUL RADIONUCLIDES: INTRODUCTION It is important that Nuclear Medicine Technologists be familiar with the imaging properties of all commonly used radionuclides to insure correct choice of isotope for a particular study as

More information

REPORT. on the. 2 nd Research Coordination Meeting. Accelerator-based Alternatives to Non-HEU Production of 99 Mo/ 99m Tc

REPORT. on the. 2 nd Research Coordination Meeting. Accelerator-based Alternatives to Non-HEU Production of 99 Mo/ 99m Tc REPORT on the 2 nd Research Coordination Meeting on Accelerator-based Alternatives to Non-HEU Production of 99 Mo/ 99m Tc 7-11 October 2013 Legnaro, Italy 2 1. INTRODUCTION Due to the widespread availability

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? What did you learn in the last lecture? Beta stability, the LD Mass Formula, and Accelerators Simplest form of LD Mass Formula TBE = C 1 A C A /3 C 3 Z /A 1/3 C

More information

SCX Users Meeting, Copenhagen, 19-20/06/2016

SCX Users Meeting, Copenhagen, 19-20/06/2016 SCX Users Meeting, Copenhagen, 19-20/06/2016 Welcome Holger Jensen PET and Cyclotron unit Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, University of Copenhagen Denmark. E-mail:

More information

Nuclear medicine and Radiation technologies

Nuclear medicine and Radiation technologies ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «РУСАТОМ ОВЕРСИЗ» Nuclear medicine and Radiation technologies Istanbul 14.11.2013 1 2 3 4 5 6 7 8 State Corporation «ROSATOM» world leader in nuclear energy State Corporation

More information

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS Hernán G. Meier, Martín Brizuela, Alexis R. A. Maître and Felipe Albornoz INVAP S.E. Comandante Luis Piedra Buena 4950, 8400 San Carlos

More information

Measurement of 40 MeV Deuteron Induced Reaction on Fe and Ta for Neutron Emission Spectrum and Activation Cross Section

Measurement of 40 MeV Deuteron Induced Reaction on Fe and Ta for Neutron Emission Spectrum and Activation Cross Section Measurement of 40 MeV Deuteron Induced Reaction on Fe and Ta for Neutron Emission Spectrum and Activation Cross Section Toshiro Itoga, Masayuki Hagiwara, Takuji Oishi, So Kamada, Mamoru Baba Cyclotron

More information

LINEAR ACCELERATOR BEAM

LINEAR ACCELERATOR BEAM Armenian Journal of Physics, 2013, vol. 6, issue 1, pp. 35-44 99m Tc PHOTO-PRODUCTION UNDER ELECTRON LINEAR ACCELERATOR BEAM R. AVAKIAN, A. AVETISYAN, R. DALLAKYAN, I. KEROBYAN A.I. Alikhanian National

More information

Radiochemistry and Radiopharmacy III

Radiochemistry and Radiopharmacy III Radiochemistry and Radiopharmacy III Compact course held at UFSCAR, September 20123 Ulrich Abram Freie Universität Berlin Institute of Chemistry and Biochemistry Radiochemistry and Radiopharmacy 1. Fundamentals

More information

arxiv: v1 [nucl-ex] 27 Nov 2014

arxiv: v1 [nucl-ex] 27 Nov 2014 Journal of Radioanalytical Nuclear Chemistry manuscript No. (will be inserted by the editor) Excitation functions of nat Pb(d,x) 206,205,204,203,202 Bi, 203cum,202m,201cum Pb and 202cum,201cum Tl reactions

More information

The LARAMED Project: Status and perspectives

The LARAMED Project: Status and perspectives The LARAMED Project: Status and perspectives J. Esposito, on behalf of LARAMED collaboration III International SPES workshop LNL, October 11th, 2016 juan.esposito@lnl.infn.it 1 Contents Why LARAMED project:

More information

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation.

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation. Chapter 11 Nuclear Chemistry Background Radiation Three-fourths of all exposure to radiation comes from background radiation. Most of the remaining one-fourth comes from medical irradiation such as X-rays.

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

IAEA-TECDOC-1863 IAEA-TECDOC-1863 IAEA TECDOC SERIES. Gallium-68 Cyclotron Production

IAEA-TECDOC-1863 IAEA-TECDOC-1863 IAEA TECDOC SERIES. Gallium-68 Cyclotron Production IAEA TECDOC SERIES IAEA-TECDOC-1863 IAEA-TECDOC-1863 Gallium-68 Cyclotron Production @ GALLIUM-68 CYCLOTRON PRODUCTION The following States are Members of the International Atomic Energy Agency: AFGHANISTAN

More information

AEPHY: Nuclear Physics Practise Test

AEPHY: Nuclear Physics Practise Test AEPHY: Nuclear Physics Practise Test Name: OVERALL: Additional 1 mark for units and significant figures. 1. Complete the table below: (2 marks) (63 marks + overall = 64 marks) Element Nuclide Atomic Number

More information

Siemens Cyclotron Users Workshop A laboratory report - Copenhagen, DV97. Holger Jensen PET and Cyclotron unit

Siemens Cyclotron Users Workshop A laboratory report - Copenhagen, DV97. Holger Jensen PET and Cyclotron unit Siemens Cyclotron Users Workshop 2012 A laboratory report - Copenhagen, DV97. Holger Jensen PET and Cyclotron unit Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, University of

More information

Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron

Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron Elio Tomarchio * Palermo University, Energy Department, Nuclear Engineering Section, Viale delle Scienze, Building

More information

3 rd FLUKA Advanced Course and Workshop INFN Frascati (Italy), 1 5 December Angelo Infantino

3 rd FLUKA Advanced Course and Workshop INFN Frascati (Italy), 1 5 December Angelo Infantino Accurate Monte Carlo modeling of biomedical cyclotrons: optimization of FLUKA physics and transport parameters for dosimetry, shielding and activation calculations 3 rd FLUKA Advanced Course and Workshop

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

KIVI 9 Oct 2015 Fysische Beeldtechnieken 18 feb

KIVI 9 Oct 2015 Fysische Beeldtechnieken 18 feb 1 2 3 Dutch Isotopes Valley Stable Isotopes 4 Patient-hospital: how to recognize the disorder? How to find a targeting molecule? How to make new radionuclides? How to combine? How to test stability? How

More information

Dirks, C. 1, Happel, S. 2, Jungclas, H. 1

Dirks, C. 1, Happel, S. 2, Jungclas, H. 1 Dirks, C. 1, Happel, S. 2, Jungclas, H. 1 [1] Radiochemie, Fachbereich Chemie, Philipps Universität Marburg, Marburg, Deutschland [2] TrisKem International, Bruz, France Why Scandium? Batch experiments

More information

Available online at ScienceDirect. Physics Procedia 90 (2017 )

Available online at  ScienceDirect. Physics Procedia 90 (2017 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 90 (2017 ) 369 373 Conference on the Application of Accelerators in Research and Industry, CAARI 2016, 30 October 4 November 2016,

More information

Development of holmium-163 electron-capture spectroscopy with transition-edge sensors

Development of holmium-163 electron-capture spectroscopy with transition-edge sensors Development of holmium-163 electron-capture spectroscopy with transition-edge sensors M. P. Croce M. W. Rabin V. Mocko G. J. Kunde E. R. Birnbaum E. M. Bond J. W. Engle A. S. Hoover F. M. Nortier A. D.

More information

Seaborg s Plutonium?

Seaborg s Plutonium? Seaborg s Plutonium? Eric B. Norman, Keenan J. Thomas, Kristina E. Telhami* Department of Nuclear Engineering University of California Berkeley, CA 94720 Abstract Passive x-ray and gamma ray analysis was

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 28th July 2014 Pedro Castro / MPY Accelerator Physics 28 th July 2014

More information

Planning and preparation approaches for non-nuclear waste disposal

Planning and preparation approaches for non-nuclear waste disposal Planning and preparation approaches for non-nuclear waste disposal Lucia Sarchiapone Laboratori Nazionali di Legnaro (Pd) Istituto Nazionale di Fisica Nucleare INFN Lucia.Sarchiapone@lnl.infn.it +39 049

More information

Neutron Generation from 10MeV Electron Beam to Produce Mo99

Neutron Generation from 10MeV Electron Beam to Produce Mo99 From the SelectedWorks of Innovative Research Publications IRP India Winter January 1, 2015 Neutron Generation from 10MeV Electron Beam to Produce Mo99 Innovative Research Publications, IRP India, Innovative

More information

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Zsolt Révay Institute of Isotopes, Budapest, Hungary Dept. of Nuclear

More information

REPORT. of the. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes

REPORT. of the. Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes REPORT of the 3 rd Research Coordination Meeting on Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes 5 to 9 October 2009 IAEA Headquarters Vienna, Austria 2 Participants

More information

Erice, September, 2017,

Erice, September, 2017, Erice, September, 2017, Double beta (bb) decay neutrinoless double beta (0nbb) decay NME the specialties of 96 Zr/ 96 Nb for b and bb decay Mass measurements using the JYFLTRAP ion trap Results and the

More information

Radiotracers for Early Diagnosis - ReSearching for a Better Life!

Radiotracers for Early Diagnosis - ReSearching for a Better Life! Radiotracers for Early Diagnosis - ReSearching for a Better Life! CONTACT INFORMATION: Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN- HH 30 Reactorului Street 077125 Bucharest-Magurele,

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm 1 Lightning

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lightning Review Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success

State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success M.Batkov, Director Radiation Technologies Program 15.04.2013 Rosatom is the largest hi-tech manufacturer

More information