Enhanced Light Extraction from Organic Light Emitting Diodes by Micrometer-Sized Buckles

Size: px
Start display at page:

Download "Enhanced Light Extraction from Organic Light Emitting Diodes by Micrometer-Sized Buckles"

Transcription

1 Copyright 2014 American Scientific Publishers All rights reserved Printed in the United States of America Article Journal of Nanoscience and Nanotechnology Vol. 14, , Enhanced Light Extraction from Organic Light Emitting Diodes by Micrometer-Sized Buckles Seungsob Kim 1 2, Chan Jae Lee 1, Min-Sun Kim 1, Byeong-Kwon Ju 2, and Youngmin Kim 1 1 Display Components and Materials Research Center, Korea Electrics Technology Institute, Seongnam, , South Korea 2 Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul, , South Korea The simple ways for creating buckled structures to enhance the light extraction from OLED devices have been investigated. The buckling instability was observed when the ITO was deposited on the polymer-coated glass by sputtering. The textured surface of the ITO layer after buckling was characterized by an atomic force microscopy. The wavelength of the resulting buckled structure was a few microns in a size. The buckling was easily modified by adjusting the pressure of the argon gas during the sputter deposition of ITO layer. The buckled ITO layer was used for fabricating OLED devices. The reduction in the operating voltage for the OLED with the buckled ITO anode was observed. The current and power efficiencies for the OLED with the buckeld structure were 5% and 44% higher than Delivered those for by the Publishing conventional Technology OLED. Theto: broader Korea light University distribution was observed in the OLED with buckling IP: when the angular On: dependence Sun, 31 Aug of the 2014 light 05:24:36 intensity was measured. Keywords: Buckled Structure, Light Extraction, OLED. 1. INTRODUCTION Due to the applications as displays and solid-state lighting, much effort has been made to improve the performance of organic light emitting diodes (OLEDs) over the last few decades. 1 4 However, the lifetime and the external quantum efficiency of OLEDs still need to be improved. 5 6 The external quantum efficiency for OLEDs comprises an internal quantum efficiency (IQE) and an extraction efficiency. Theoretically, the IQE reaches 100% by making use of phosphorescent emitters and balancing the charge carriers. 7 The extraction efficiency, however, is below 20% because the generated light is trapped at the ITO/glass interface and reflected at the glass/air interface. 8 The extraction efficiency for the OLED device has been enhanced utilizing external extraction structures such as hemispherical lens, 9 microlens array, 10 antireflective sufaces, 11 and scattering layers 12 on the outside of the substrate. This approach, however, is less efficient because only the light trapped by the substrate mode can leave the device. Another approach to enhance the efficiency of OLED is incorporating internal extraction structures Author to whom correspondence should be addressed. between the substrate and the anode, which can extract the light otherwise trapped by the waveguided mode Introducing the particles with the high refractive index into the space between the anode and the substrate not only scatter the light but also reduce the reflection at the interface of two layers. Recently, Chang group reported that the OLEDs with the scattering layer of TiO 2 nanoparticles enhanced the power efficiency by more than 400%. 16 Do group has reported that the current efficiency for the OLED with photonic crystal structures as the internal extraction structures was higher than the conventional OLED by 85%. 17 However, the angular dependence of the emitted color was observed. As the angular-dependent colors are not suitable for OLED luminaires, novel internal extraction structures have been suggested to enhance the efficiency of the OLED. 6 In 2010, Koo et al. reported that the OLEDs incorporating random scattering structures between the glass substrate and the indium tin oxide (ITO) electrode enhanced the efficiency by 90% with no change in the emission spectrum compared to the control device. 18 The random scattering structures were formed through the spontaneous buckling of the aluminum layer on the PDMS layer utilizing the different thermal J. Nanosci. Nanotechnol. 2014, Vol. 14, No /2014/14/8231/006 doi: /jnn

2 (a) (b) (c) (d) (e) (f) Delivered by Publishing Technology to: Korea University IP: On: Sun, 31 Aug :24:36 Figure 1. The AFM images of the buckled structures of ITO layers. The ITO was deposited using RF-sputtering at the argon pressure of (a) 2 mtorr, (b) 3 mtorr, (c) 4 mtorr, (d) 5 mtorr, (e) 6 mtorr and (f) 7 mtorr. expansion coefficient between two layers.19 Inspired by this report, Ju and coworkers have fabricated the OLEDs with textured surfaces which enhanced the power efficiency by 102%.20 The textured structures were formed by etching the quartz substrate with CHF3 employing a poly(methyl methacrylate) as a mask. The patterns formed were duplicated on the polymer-coated substrate supporting the OLED stack through nanoimprint lithography later. However, the nanoimprint lithography was not applicable for a large area because of the pattern collapse.21 Here, we reported that the spontaneous buckling of a polymer on a glass substrate during Figure 2. The AFM images of the buckled structures of the ITO layers. The ITO film was deposited on the polymer layer with thickness of (a) 8 m, and (b) 7 m. The buckled anode with wavenlethg of ca. 5 um and amplitude of ca. 1 um shown (b) was used for fabricating device A J. Nanosci. Nanotechnol. 14, , 2014

3 sputtering deposition of ITO. In this process, the nanoimprint lithograpy was not required. The luminous efficacy for the OLED device with the buckled structure was improved by 44% compared to that for the OLED without buckling. attaching an OLED on a stage which rotates from 0 to + 85 in a step of 5 degree. A power efficiency of a device was measured using an integrating sphere equipped with a source measurement unit (Model 2425, Keithley Instruments, Inc.) as a power source. 2. EXPERIMENTAL DETAILS 3. RESULTS AND DISCUSSION 2.1. Materials The photoresist (THB-151n) was purchased from JSR Micro. Methyl alcohol, isopropyl alcohol and ethyl acetate were purchased from Aldrich. The buckled pattern was formed during the ITO deposition on the polymer-coated glass substrate using RF sputtering 2.2. Preparation of the Buckled ITO Layer The bare glass was cleaned with water, methyl alcohol and isopropyl alcohol. The concentrated photoresist was diluted with ethyl acetate to afford the diluted photoresist with solid content of 70%. The concentrated and diluted photoresists were spin-coated on the bare glass, pre-baked at 90 C for 1 min and irradiated with UV radiation for 10 seconds to afford the polymer-coated glass substrates. The thickness of the polymer film was measured on an Alpha-Step P-10 Profilometer (KLA-Tencor corporation). The indium tin oxide (ITO) layer with the thickness of 150 nm was deposited on the as-prepared polymercoated glass using the RF sputtering system equipped with the ITO target at power of 100 W in argon atmosphere. Delivered Publishing by Technology to: Korea University The morphology of the ITO surface wasby characterized IP:thickness an atomic force microscopy. The of the On: ITOSun, 31 Aug :24:36 film was measured on an Alpha-Step P-10 Profilometer (KLA-Tencor corporation). The sheet resistance of the ITO layer was measured by a four point probe (LorestraGP (MCP-T610, Mitsubishi chemical analytech co., LTD.) Fabrication of OLED Devices In this study, we have fabricated two types OLED devices which consisted of a N,N -Di-[(1-naphthyl)N,N -diphenyl]-1,1 -biphenyl)-4,4 -diamine (NPB, 600 Å) film as a hole transport layer, an Ir(ppy)3 doped 4,4 Bis(N-carbazolyl)-1,1 -biphenyl (CBP, 320 Å) film as an emitting layer, a 1,3,5-Tris(1-phenyl-1H-benzimidazol-2yl)benzene (TPBi, 200 Å) film as an electron transport layer, a LiF (5 Å) film as an electron injection layer, and an Al (1200 Å) film as a cathode. In a vacuum chamber ( 10 6 Torr), the organic materials and aluminum were thermally deposited at a rate of 2 and 4 Å/s, respectively. The active area of the device was 4 6 mm Characterization of the Device Performance The current voltage luminance characteristics of the OLEDs were measured on a source measurement unit (Model 2400, Keithley Instruments, Inc.) and a spectroradiometer (CS-1000, Konica Minolta, Inc.). An angular-dependent emission of a device was measured by J. Nanosci. Nanotechnol. 14, , 2014 Figure 3. (a) The corrugated structure. The AFM images of the buckled structures of (b) the polymer layer and (c) the Al layer. 8233

4 Figure 4. The current density voltage luminance characteristics of the device A with buckling ( ) and device B without buckling ( ). (a) Current density versus voltage of the devices. (b) Luminance versus voltage of the devices. (c) Current efficiency as a function of voltage of the devices. (d) Normalized electroluminescence spectra of the devices. Delivered Technology to: pressure Korea University (Fig. 1). The argon plasma produced in by the Publishing sputter cham7 mtorr of argon, however, was almost transip: On: Sun, 31 Aug :24:36 parent in appearance. ber affected buckling of the polymers. To elucidate the The AFM image revealed that the amplitude of the buckled structure was smaller than 20 nm. plasma effect on the buckling, the argon gas pressure It should be noted that the pressure also affect the univaried from 2 mtorr to 7 mtorr during the ITO sputformity of the deposited ITO film on the polymer-coated ter deposition (Fig. 1). The resulting morphology of the glass. In our experiment, the increased pressure of argon ITO-coated glass was characterized by an atomic force resulted in the different thickness of the deposited ITO microscopy (AFM). At 2 mtorr, the wavelength and the film over the entire glass substrate due to the high depositamplitude of the buckled structure were ca. 5 m and ca. ing speed. The thickness of the deposited ITO film on 1 m, respectively. As increasing the pressure of argon the glass with 5 5 cm2 in area was uniform when the from 2 mtorr to 5 mtorr, the wavelength and the ampliargon pressure was 3 mtorr. The pressure of 2 mtorr tude was little changed in the pattern. In the range between required the extended time to deposit the ITO film. The 2 mtorr and 5 mtorr, the ITO-coated glass was translusheet resistance of the ITO film obtained at 3 m Torr was cent owing to the buckled structure with greater than 50 /. 700 nm in amplitude. The ITO-coated glass obtained at Figure 5. (a) The photographe of the anode surface of the OLED device with buckling. A few micron-sized buckled strcutures were observed using a microscope. The buckling was induced when the ITO layer was deposited on the polymer (7 um) at the Ar pressure of 3 mtorr. (b) Angular dependence of normalized light intensity of the device A with buckling (dashed line) and the device B without buckling (solid line). The light distribution was broader in device A due to the buckled structures. (c) The angular dependence of CIE color coordinate emission in device A with buckling. The color change ratios were x = 4 2% and y = 3 7% as increasing the viewing angle from 0 to J. Nanosci. Nanotechnol. 14, , 2014

5 The concentrated photoresist which was spin-coated on emission distribution between the device A and the device a glass at a speed of 5000 rpm afforded the thickness of B, the extracted light was carefully measured as a function 11 m after the UV curing process due to its high viscosity. of an electric current using an integrating sphere. The In order to reduce the thickness of the polymer layer, power efficiency at 5 ma was 7.5 lm/w for the device A the solution with a solid content of 70 90% by weight and 5.2 lm/w for the device B suggesting that the enhancement was prepared by diluting the concentrated photoresist with factor was The higher enhancement in power ethyl acetate. When the solid content was less than 70%, efficiency than in current efficiency was attributed to the the solution was not suitable for a spin-coating process decreased operating voltage as well as the broader light due to its low viscosity. The thickness of the polymer distribution in the corrugated structure. 18 Last but not least, layer was reduced from 8 m to7 m as the solid content there was little color change when the angular-dependent reduced from 90% to 70%. The AFM image reveled color of device A was measured utilizing Commission that the buckled patterns of the ITO layers were similar Internationale de Eclairage (CIE) color coordinates due regardless of the concentration of the photoresist solution to the directional randomness of the buckled structures (Fig. 2). For the buckled anode, the ITO film was deposited (Fig. 5(c)). on the 7 m polymer layer at 3 mtorr argon using RF-sputtering. Encouraged by this, OLED devices with and without the buckled structure have been fabricated. The ITO- In sum, the spontaneous buckling was investigated by 4. CONCLUSION coated glass without the buckled structure was produced depositing ITO film on the polymer-coated glass. The by depositing ITO film on a bare glass. To minimize buckling was affected by the pressure of argon during the variations, the ITO-coated glasses with and without buckling were prepared at the same batch and used buckled ITO layer enhanced the power efficiency by 44% sputtering deposition of ITO layer. The OLED with the for OLED fabrication. The device A and B consist of compared to the conventional OLED. ITO(with buckling)/npb/cbp:ir(ppy) 3 /TPBi/LiF/Al and ITO (without buckling)/npb/cbp:ir(ppy) 3 /TPBi/LiF/Al, Acknowledgments: This research was supported by respectively. Interestingly, the uneven aluminum layer in the Industrial Strategic Technology Development Program device A was observed by naked eye after fabricating the ( , Technology development of OLED surface Delivered by Publishing Technology to: Korea University OLED through thermal evaporation IP: in the vacuum chamber. The AFM image of the aluminumcopyright: layer displayed American the Scientific Korean Ministry Publishers of Knowledge lighting for general lighting), which is being funded by the On: Sun, 31 Aug :24:36 Economy. buckled structure existed and it was dissimilar with the buckled patterns of the ITO layer and the polymer layer (Figs. 2 and 3). The buckled cathode indicated that the corrugated structure was formed after the organic layer and Al was sequentially deposited on the buckled anode (Fig. 3). The I V L characteristics of the devices were measured until a voltage reached 8 V (Fig. 4(a)). The currentvoltage curves showed that the current density was higher in device A than B due to the buckling. 18 The higher luminance value was observed in device A than device B (Fig. 4(b)). The increased luminance was attributed to the increase in emitting area by the buckling in device A. At a brightness of 1000 cd/m 2, the current efficiency of device A and B was 13.0 cd/a and 12.4 cd/a, respectively. The current efficiency of device A was 5% higher than that of device B. Both emission spectra of device A and B featured the maximum intensity at 515 nm indicating that the randomness of the buckled structure in device A led no change in color (Fig. 4(d)). The buckling patterns with a few micrometers in size were observed by an optical microscope while the device A was turned on (Fig. 5). In order to investigate the effect of the buckling on the light distribution, the angular dependence of the scattering intensity was measured. As a result, the broader distribution of the emission was observed in the device A (Fig. 5). Due to the different References and Notes 1. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004). 2. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007). 3. Y. Tao, C. Yang, and J. Qin, Chem. Soc. Rev. 40, 2943 (2011). 4. M. C. Gather, A. Köhnen, and K. Meerholz, Adv. Mater. 23, 233 (2011). 5. K. Saxena, V. K. Jain, and D. S. Mehta, Opt. Mater. 32, 221 (2009). 6. Y.-S. Tyan, J. Photon. Energy 1, (2011). 7. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001). 8. A. Kumar, R. Srivastava, P. Tyagi, M. N. Kamalasanan, and D. S. Mehta, Org. Electron. 13, 2879 (2012). 9. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, Nature. 459, 234 (2009). 10. H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, Opt. Express 16, (2008). 11. Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, Appl. Phys. Lett. 96, (2010). 12. S. Chen and H. S. Kwok, Opt. Express 18, 37 (2010). 13. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, Appl. Phys. Lett. 82, 3779 (2003). 14. Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, Appl. Phys. Lett. 89, (2006). 15. T. Bocksrocker, J. Hoffmann, C. Eschenbaum, A. Pargner, J. Preinfalk, F. Maier-Flaig, and U. Lemmer, Org. Electron. 14, 396 (2013). J. Nanosci. Nanotechnol. 14, ,

6 16. C.-H. Chang, K.-Y. Chang, Y.-J. Lo, S.-J. Chang, and H.-H. Chang, Org. Electron. 13, 1073 (2012). 17. Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, J. Appl. Phys. 96, 7629 (2004). 18. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, Nat. Photonics 4, 222 (2010). 19. W. H. Koo, S. Boo, S. M. Jeong, S. Nishimura, F. Araoka, K. Ishikawa, T. Toyooka, and H. Takezoe, Org. Electron. 12, 1177 (2011). 20. S. J. Shin, T. H. Park, J. H. Choi, E. H. Song, H. Kim, H. J. Lee, J.-I. Lee, H. Y. Chu, K. B. Lee, Y. W. Park, and B.-K. Ju, Org. Electron. 14, 187 (2013). 21. L. J. Guo, Adv. Mater. 19, 495 (2007). Received: 10 April Accepted: 9 January Delivered by Publishing Technology to: Korea University IP: On: Sun, 31 Aug :24: J. Nanosci. Nanotechnol. 14, , 2014

Inverted top-emitting organic light-emitting diodes using transparent conductive NiO electrode

Inverted top-emitting organic light-emitting diodes using transparent conductive NiO electrode Applied Surface Science 244 (2005) 439 443 www.elsevier.com/locate/apsusc Inverted top-emitting organic light-emitting diodes using transparent conductive NiO electrode Se-W. Park a, Jeong-M. Choi a, Eugene

More information

Light Extraction in OLED with Corrugated Substrates Franky So

Light Extraction in OLED with Corrugated Substrates Franky So Light Extraction in OLED with Corrugated Substrates Franky So Department of Materials Science and Engineering North Carolina State University Raleigh, NC 27695-7907 1 Where Did the Light Go? Modes Distribution

More information

Color-Stable and Low-Roll-Off Fluorescent White Organic Light Emitting Diodes Based on Nondoped Ultrathin Emitters

Color-Stable and Low-Roll-Off Fluorescent White Organic Light Emitting Diodes Based on Nondoped Ultrathin Emitters Copyright 5 by American Scientific Publishers All rights reserved. Printed in the United States of America Science of Advanced Materials Vol. 7, pp., 5 www.aspbs.com/sam Color-Stable and Low-Roll-Off Fluorescent

More information

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K.

More information

Light outcoupling enhancement from topemitting organic light-emitting diodes made on a nano-sized stochastic texture surface

Light outcoupling enhancement from topemitting organic light-emitting diodes made on a nano-sized stochastic texture surface Light outcoupling enhancement from topemitting organic light-emitting diodes made on a nano-sized stochastic texture surface Woo-Young Park, 1,2 Yongwon Kwon, 1,2 Changhee Lee, 1,3 and Ki-Woong Whang 1,*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information Bicolour electroluminescence of 2 (carbazol 9 yl)anthraquinone

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTIG IFORMATIO [1,2,4]Triazolo[1,5-a]pyridine-based Host Materials for Green Phosphorescent and Delayed-Fluorescence OLEDs with Low Efficiency Roll-off Wenxuan Song, a Yi Chen, a Qihao Xu, a Haichuan

More information

Exceptionally efficient organic light emitting devices using high refractive index substrates

Exceptionally efficient organic light emitting devices using high refractive index substrates Exceptionally efficient organic light emitting devices using high refractive index s Saso Mladenovski, 1,* Kristiaan Neyts, 1 Domagoj Pavicic, 2 Ansgar Werner 2 and Carsten Rothe 2 1 Electronics and Information

More information

Biologically Inspired Organic Light-Emitting Diodes

Biologically Inspired Organic Light-Emitting Diodes Supporting Information Biologically Inspired Organic Light-Emitting Diodes Jae-Jun Kim,, Jaeho Lee, Sung-Pyo Yang, Ha Gon Kim, Hee-Seok Kweon ǁ, Seunghyup Yoo, and Ki-Hun Jeong*, Department of Bio and

More information

Efficient Hybrid White Organic Light-Emitting Diodes for. Application of Triplet Harvesting with Simple Structure

Efficient Hybrid White Organic Light-Emitting Diodes for. Application of Triplet Harvesting with Simple Structure Efficient Hybrid White Organic Light-Emitting Diodes for Application of Triplet Harvesting with Simple Structure Kyo Min Hwang, Song Eun Lee, Sungkyu Lee, Han Kyu Yoo, Hyun Jung Baek and Young Kwan Kim*

More information

Broadband Light Extraction from White Organic Light- Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity

Broadband Light Extraction from White Organic Light- Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity www.materialsviews.com Broadband Light Extraction from White Organic Light- Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity www.advmat.de Yan-Gang Bi, Jing Feng,* Yun-Fei

More information

Affect of the electrical characteristics depending on the hole and electron injection materials of red organic light-emitting diodes

Affect of the electrical characteristics depending on the hole and electron injection materials of red organic light-emitting diodes PRAMANA c Indian Academy of Sciences Vol. 77, No. 4 journal of October 2011 physics pp. 727 734 Affect of the electrical characteristics depending on the hole and electron injection materials of red organic

More information

Low-Driving-Voltage, Long-Lifetime Organic Light-Emitting Diodes with Molybdenum-Oxide (MoO 3 )-Doped Hole Transport Layers

Low-Driving-Voltage, Long-Lifetime Organic Light-Emitting Diodes with Molybdenum-Oxide (MoO 3 )-Doped Hole Transport Layers Journal of the Korean Physical Society, Vol. 53, No. 3, September 2008, pp. 16601664 Low-Driving-Voltage, Long-Lifetime Organic Light-Emitting Diodes with Molybdenum-Oxide (MoO 3 )-Doped Hole Transport

More information

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures Supplementary Information Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures Lei Zhou, Qing-Dong Ou, Jing-De Chen, Su Shen, Jian-Xin Tang,* Yan-Qing Li,* and Shuit-Tong

More information

Electroluminescence and negative differential resistance studies of TPD:PBD:Alq 3 blend organic-light-emitting diodes

Electroluminescence and negative differential resistance studies of TPD:PBD:Alq 3 blend organic-light-emitting diodes Bull. Mater. Sci., Vol. 38, No. 1, February 2015, pp. 235 239. c Indian Academy of Sciences. Electroluminescence and negative differential resistance studies of TPD:PBD:Alq 3 blend organic-light-emitting

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

Light extraction and optical loss mechanisms in organic light-emitting diodes

Light extraction and optical loss mechanisms in organic light-emitting diodes Light extraction and optical loss mechanisms in organic light-emitting diodes Stefan Nowy, Nils A. Reinke +,Jörg Frischeisen, and Wolfgang Brütting * Experimental Physics IV, University of Augsburg, 86135

More information

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence Ken-Tsung Wong,* a Yuan-Li Liao, a Yu-Ting Lin, b Hai-Ching

More information

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Supplementary Information Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Tapan Barman, Amreen A. Hussain, Bikash Sharma, Arup R. Pal* Plasma Nanotech Lab, Physical Sciences Division,

More information

High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer

High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer Title High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer Author(s) Zhang, H; Dai, Y; Ma, D; Choy, WCH Citation Applied Physics Letters, 2007, v. 91 n. 12, p. 123504-1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INORMATION Supplementary Information Extremely Efficient lexible Organic Light-emitting Diodes with Modified Graphene Anode Tae-Hee Han 1, Youngbin Lee 2, Mi-Ri Choi 1, Seong-Hoon Woo 1,

More information

High contrast tandem organic light emitting devices

High contrast tandem organic light emitting devices Edith Cowan University Research Online ECU Publications 2012 2012 High contrast tandem organic light emitting devices Baofu Ding Edith Cowan University Xiao-Yuan Hou Kamal Alameh Edith Cowan University

More information

The charge generation layer incorporating two p-doped hole transport layers for improving the performance of tandem organic light emitting diodes

The charge generation layer incorporating two p-doped hole transport layers for improving the performance of tandem organic light emitting diodes Eur. Phys. J. Appl. Phys. (2014) 67: 30201 DOI: 10.1051/epjap/2014130545 The charge generation layer incorporating two p-doped hole transport layers for improving the performance of tandem organic light

More information

Solid State Science and Technology, Vol. 16, No 1 (2008) ISSN

Solid State Science and Technology, Vol. 16, No 1 (2008) ISSN INFLUENCE OF TETRABUTYLAMMONIUM HEXAFLUOROPHOSPHATE (TBAPF 6 ) DOPING ON THE PERFORMANCE OF POLYMER LIGHT EMITTING DIODES (PLEDs) BASED ON PVK:PBD BLEND FILMS C.C. Yap 1, M. Yahaya 1, M.M. Salleh 2 1 School

More information

PERFORMANCE ENHANCEMENT OF ORGANIC LIGHT EMITTING DIODES USING ELECTRON INJECTION MATERIALS OF METAL CARBONATES

PERFORMANCE ENHANCEMENT OF ORGANIC LIGHT EMITTING DIODES USING ELECTRON INJECTION MATERIALS OF METAL CARBONATES Journal of ELECTRICAL ENGINEERING, VOL 67 (216), NO3, 222 226 PERFORMANCE ENHANCEMENT OF ORGANIC LIGHT EMITTING DIODES USING ELECTRON INJECTION MATERIALS OF METAL CARBONATES Jong-Yeol Shin TaeWanKim Gwi-Yeol

More information

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Seoung-Ki Lee, Beom Joon Kim, Houk Jang, Sung Cheol Yoon, Changjin Lee, Byung Hee Hong, John A. Rogers, Jeong Ho Cho, Jong-Hyun

More information

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Supporting information for High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Zhi-Xiang Zhang, Ji-Song Yao, Lin Liang, Xiao-Wei Tong, Yi Lin, Feng-Xia Liang, *, Hong-Bin

More information

Supporting Information

Supporting Information Supporting Information Modulation of PEDOT:PSS ph for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability Qin Wang 1,2, Chu-Chen Chueh 1, Morteza Eslamian 2 * and

More information

Department of Chemistry, NanoCarbon Center, Houston, Texas 77005, United States, University of Central Florida, Research Parkway,

Department of Chemistry, NanoCarbon Center, Houston, Texas 77005, United States, University of Central Florida, Research Parkway, Flexible Nanoporous WO3-x Nonvolatile Memory Device Supporting Information Yongsung Ji,, Yang Yang,,&, Seoung-Ki Lee, Gedeng Ruan, Tae-Wook Kim, # Huilong Fei, Seung-Hoon Lee, Dong-Yu Kim, Jongwon Yoon

More information

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures Supplementary Information High-Performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures Mi-Sun Lee, Kyongsoo Lee, So-Yun Kim, Heejoo Lee, Jihun Park, Kwang-Hyuk

More information

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking, Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a Low-Surface-Energy, Diffusion-Blocking, Covalently Bonded Perfluoropolyether Layer and Its Application to the Fabrication of Organic Electronic

More information

Fabrication and Characterization of Solution Processed Top-Gate-Type Organic Light-Emitting Transistor

Fabrication and Characterization of Solution Processed Top-Gate-Type Organic Light-Emitting Transistor Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Nanoscience and Nanotechnology Letters Vol. 7, 1 5, 2015 Fabrication and Characterization of Solution

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the 1 2 3 4 5 6 7 8 Supplementary Figure 1. Potential energy, volume, and molecular distribution of the organic substrates prepared by MD simulation. (a) Change of the density and total potential energy of

More information

Effect of Ultrathin Magnesium Layer on the Performance of Organic Light-Emitting Diodes

Effect of Ultrathin Magnesium Layer on the Performance of Organic Light-Emitting Diodes Available online at www.sciencedirect.com Energy Procedia 12 (2011) 525 530 ICSGCE 2011: 27 30 September 2011, Chengdu, China Effect of Ultrathin Magnesium Layer on the Performance of Organic Light-Emitting

More information

Calculation of the emission power distribution of microstructured OLEDs using the

Calculation of the emission power distribution of microstructured OLEDs using the Calculation of the emission power distribution of microstructured OLEDs using the reciprocity theorem Shuyu Zhang 1), Emiliano R. Martins 1), Adel G. Diyaf 2,3), John I.B. Wilson 3), Graham A. Turnbull

More information

Research Article The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED) by Hole-Blocking Layer

Research Article The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED) by Hole-Blocking Layer Photoenergy Volume 2013, Article ID 878537, 6 pages http://dx.doi.org/10.1155/2013/878537 Research Article The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED) by Hole-Blocking

More information

Supplementary information

Supplementary information Supplementary information Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and its Application in Self- Powered Active Acetylene Gas

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

λ = 550 nm n org = 1.8 High-index layer (n H d H = λ/4) Glass for n H =λ/4 (nm) d H Calculated EQE (%) (%) d org : 150 nm

λ = 550 nm n org = 1.8 High-index layer (n H d H = λ/4) Glass for n H =λ/4 (nm) d H Calculated EQE (%) (%) d org : 150 nm a Al d dipole : 70 nm from Al Emitter : Ir(ppy) 2 acac n org = 1.8 R bot d org : 150 nm 4-layer graphene High-index layer (n H d H = λ/4) Glass R bot (%) b 40 35 30 25 20 15 10 5 0 d H for n H d H =λ/4

More information

Making OLEDs efficient

Making OLEDs efficient Making OLEDs efficient cathode anode light-emitting layer η = γ EL r ηpl k st External Efficiency Outcoupling Internal efficiency of LEDs η = γ EL r ηpl k st γ = excitons formed per charge flowing in the

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

Flexible nonvolatile polymer memory array on

Flexible nonvolatile polymer memory array on Supporting Information for Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition Byung Chul Jang, #a Hyejeong Seong, #b Sung Kyu Kim, c Jong Yun Kim, a

More information

Xinwen Zhang, 1 Zhaoxin Wu, 1 Dongdong Wang, 2 Dawei Wang, 1 Xun Hou 1

Xinwen Zhang, 1 Zhaoxin Wu, 1 Dongdong Wang, 2 Dawei Wang, 1 Xun Hou 1 Effects of Dilution and Charge Trapping on the Performance of a Light-Emitting Diode of Poly(9-vinylcarbazole) Doped with Poly[2-methoxy-5-(2 0 -ethyl hexyloxy) 1,4-phenylene vinylene] Xinwen Zhang, 1

More information

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Hysteresis-free low-temperature-processed planar

More information

Improved performance of organic light-emitting diodes with MoO 3 interlayer by oblique angle deposition

Improved performance of organic light-emitting diodes with MoO 3 interlayer by oblique angle deposition Improved performance of organic light-emitting diodes with MoO 3 interlayer by oblique angle deposition S.W. Liu, 1 Y. Divayana, 1 X.W. Sun, 1,2,* Y. Wang, 1 K.S. Leck, 1 and H.V. Demir 1,3,4,5,6 1 School

More information

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 1 Low-temperature-processed inorganic perovskite solar cells via solvent engineering

More information

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells Electron. Mater. Lett., Vol. 11, No. 2 (2015), pp. 236-240 DOI: 10.1007/s13391-014-4326-9 Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Solution Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells Weijun Ke, Guojia Fang,* Qin Liu, Liangbin Xiong,

More information

Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts

Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts Xingtian Yin 1 *, Peng Chen 1, Meidan Que 1, Yonglei Xing 1, Wenxiu Que 1 *, Chunming Niu 2, Jinyou Shao 3 1

More information

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Supporting information Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Li Song,, Xiaoyang Guo, *, Yongsheng Hu, Ying Lv, Jie Lin, Zheqin

More information

Dynamic doping and degradation in sandwich-type. light-emitting electrochemical cells

Dynamic doping and degradation in sandwich-type. light-emitting electrochemical cells Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics Dynamic doping and degradation in sandwich-type light-emitting electrochemical cells Sebastian B. Meier, a,b David Hartmann,

More information

Emission pattern control and polarized light emission through patterned graded-refractiveindex coatings on GaInN light-emitting diodes

Emission pattern control and polarized light emission through patterned graded-refractiveindex coatings on GaInN light-emitting diodes Emission pattern control and polarized light emission through patterned graded-refractiveindex coatings on GaInN light-emitting diodes Ming Ma, 1 Ahmed N. Noemaun, 2 Jaehee Cho, 2,* E. Fred Schubert, 2

More information

Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes

Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes Yu Jian-Ning( 于建宁 ) a), Zhang Min-Yan( 张民艳 ) a), Li Chong( 李崇 ) b), Shang Yu-Zhu(

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Sifting α,ω-di(thiophen-2-yl)alkanes

More information

Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes*

Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes* ISSN 0974-9373 Vol. 15(2011) Special Issue 2 Journal of International Academy of Physical Sciences pp. 231-238 Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes* Manju Shukla

More information

OLED LIGHTING panel has the advantages of high efficiency

OLED LIGHTING panel has the advantages of high efficiency JOURNAL OF DISPLAY TECHNOLOGY, VOL. 12, NO. 6, JUNE 2016 605 Grid Optimization of Large-Area OLED Lighting Panel Electrodes Haoning Tang, Yibin Jiang, Ching Wan Tang, and Hoi-Sing Kwok, Fellow, IEEE Abstract

More information

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes rganic light-emitting diodes Introduction Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University rganic light-emitting diodes --The emerging technology LED Displays

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Enhancement of Light Outcoupling Efficiency in OLEDs

Enhancement of Light Outcoupling Efficiency in OLEDs Enhancement of Light Outcoupling Efficiency in OLEDs Stéphane Altazin*, Lidia Stepanova*, Lieven Penninck*, Christoph Kirsch**, Beat Ruhstaller** *Fluxim AG, Winterthur, Switzerland **Zurich University

More information

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Structure Property Relationships of Organic Light-Emitting Diodes Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Introduction Many of today s solid-state inorganic microelectronic devices

More information

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Electronic Supplementary Information. inverted organic solar cells, towards mass production Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Polyelectrolyte interlayers with a

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14% Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14% Kunpeng Li, Junyan Xiao, Xinxin Yu, Tongle Bu, Tianhui Li, Xi Deng, Sanwan Liu,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) 3,4-Donor- and 2,5-acceptor-functionalized

More information

Supporting Information

Supporting Information Supporting Information Band Gap Tuning of CH 3 NH 3 Pb(Br 1-x Cl x ) 3 Hybrid Perovskite for Blue Electroluminescence Naresh K. Kumawat 1, Amrita Dey 1, Aravindh Kumar 2, Sreelekha P. Gopinathan 3, K.

More information

Practical Optical Measurements of OLED Panels for Lighting Applications

Practical Optical Measurements of OLED Panels for Lighting Applications Practical Optical Measurements of OLED Panels for Lighting Applications TOKI KAWABATA KONICA MINOLTA, INC. JAPAN YOSHI OHNO National Institute of Standards and Technology U.S.A. * This work was conducted

More information

Research Article Improved Efficiency of Flexible Organic Light-Emitting Diodes by Insertion of Ultrathin SiO 2 Buffer Layers

Research Article Improved Efficiency of Flexible Organic Light-Emitting Diodes by Insertion of Ultrathin SiO 2 Buffer Layers Photoenergy Volume 213, Article ID 43734, 5 pages http://dx.doi.org/1.1155/213/43734 Research Article Improved Efficiency of Flexible Organic Light-Emitting Diodes by Insertion of Ultrathin SiO 2 Buffer

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/9/e1701222/dc1 Supplementary Materials for Moisture-triggered physically transient electronics Yang Gao, Ying Zhang, Xu Wang, Kyoseung Sim, Jingshen Liu, Ji Chen,

More information

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Process Hyun-Jin Song, Won-Ki Lee, Chel-Jong Choi* School of Semiconductor

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

Efficient and saturated blue organic polymer light emitting devices with an oxadiazole containing poly(fluorene) polymer emissive layer

Efficient and saturated blue organic polymer light emitting devices with an oxadiazole containing poly(fluorene) polymer emissive layer Efficient and saturated blue organic polymer light emitting devices with an oxadiazole containing poly(fluorene) polymer emissive layer Shu-jen Lee, a,b Joseph R. Gallegos, c Julien Klein, a M. David Curtis,

More information

Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons

Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons Dongsheng Li, * Feng Wang, Changrui Ren, and Deren Yang State Key Laboratory of Silicon Materials

More information

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer Normalized Absorbance (a.u.) Normalized PL Intensity (a.u.) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 22 SUPPORTING INFORMATION

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Supporting Information Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Xiaodong Li, a Ying-Chiao Wang, a Liping Zhu,

More information

Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element

Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element Shuyu Zhang, Graham A. Turnbull, * and Ifor D. W. Samuel * An interesting challenge

More information

Supporting Information

Supporting Information Supporting Information A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes Pachaiyappan Rajamalli, Natarajan Senthilkumar, Parthasarathy

More information

Chandigarh, India

Chandigarh, India Efficiency Enhancement of Graphene based flexible Organic light emitting diodes Rita Rana, Rajesh Mehra 1,2 National Institute of Technical Teachers Training and Research, Electronics and Communication,

More information

Towards highly efficient and highly transparent OLEDs: advanced considerations for emission zone coupled with capping layer design

Towards highly efficient and highly transparent OLEDs: advanced considerations for emission zone coupled with capping layer design Towards highly efficient and highly transparent OLEDs: advanced considerations for emission zone coupled with capping layer design Jin Chung, 1 Hyunsu Cho, 1,2 Tae-Wook Koh, 1,3 Jonghee Lee, 2 Eunhye Kim,

More information

Highly Efficient Polymer-Based Optoelectronics Devices Using. PEDOT:PSS and a GO Composite Layer as a Hole Transport Layer

Highly Efficient Polymer-Based Optoelectronics Devices Using. PEDOT:PSS and a GO Composite Layer as a Hole Transport Layer Supporting Information. Highly Efficient Polymer-Based Optoelectronics Devices Using PEDOT:PSS and a GO Composite Layer as a Hole Transport Layer Jae Choul Yu,,, Jeong In Jang, Bo Ram Lee,,, Geon-Woong

More information

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells Photoconductive AFM of Organic Solar Cells APP NOTE 15 Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells Xuan-Dung Dang and Thuc-Quyen Nguyen

More information

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure Xiang Wang and Chao Song ABSTRACT The a-sin

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

University of South Florida Development of a Smart Window for Green Buildings in Florida

University of South Florida Development of a Smart Window for Green Buildings in Florida University of South Florida Development of a Smart Window for Green Buildings in Florida PI: Dr. Sarath Witanachchi Students: Marak Merlak, Ph.D Description: This proposal is aimed at developing a smart

More information

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch*

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Supporting information Inverted P3HT:PC61BM organic solar cells incorporating a -extended squaraine dye with H- and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Department

More information

Plastic Electronics. Joaquim Puigdollers.

Plastic Electronics. Joaquim Puigdollers. Plastic Electronics Joaquim Puigdollers Joaquim.puigdollers@upc.edu Nobel Prize Chemistry 2000 Origins Technological Interest First products.. MONOCROMATIC PHILIPS Today Future Technological interest Low

More information

Enhanced Transmission by Periodic Hole. Arrays in Metal Films

Enhanced Transmission by Periodic Hole. Arrays in Metal Films Enhanced Transmission by Periodic Hole Arrays in Metal Films K. Milliman University of Florida July 30, 2008 Abstract Three different square periodic hole arrays were manufactured on a silver film in order

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered doping of organic semiconductors for enhanced thermoelectric efficiency G.-H. Kim, 1 L. Shao, 1 K. Zhang, 1 and K. P. Pipe 1,2,* 1 Department of Mechanical Engineering, University of Michigan,

More information

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT Fabrication of Nanostructured Heterojunction LEDs Using Self-Forming Moth-Eye Type Arrays of n-zno Nanocones Grown on p-si (111) Substrates by Pulsed Laser Deposition D. J. Rogers 1, V. E. Sandana 1,2,3,

More information

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Journal of Materials Chemistry C Supplementary Information Back-Contacted

More information

56.2: Invited Paper: Pixel-Isolated Liquid Crystal Mode for Plastic Liquid Crystal Displays

56.2: Invited Paper: Pixel-Isolated Liquid Crystal Mode for Plastic Liquid Crystal Displays 56.2: Invited Paper: Pixel-Isolated Liquid Crystal Mode for Plastic Liquid Crystal Displays Jong-Wook Jung, Se-Jin Jang, Min Young Jin, You-Jin Lee, Hak-Rin Kim, and Jae-Hoon Kim Department of Electronics

More information

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes Supporting Information Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes Yifei Shi, Jun Xi,, Ting Lei, Fang Yuan, Jinfei Dai, Chenxin Ran,

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Highly Efficient p-i-n and Tandem Organic Light- Emitting Devices Using an Air-Stable and Low- Temperature-Evaporable Metal Azide as an n-dopant

Highly Efficient p-i-n and Tandem Organic Light- Emitting Devices Using an Air-Stable and Low- Temperature-Evaporable Metal Azide as an n-dopant Highly Efficient p-i-n and Tandem Organic Light- Emitting Devices Using an Air-Stable and Low- Temperature-Evaporable Metal Azide as an n-dopant By Kyoung Soo Yook, Soon Ok Jeon, Sung-Yong Min, Jun Yeob

More information

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel Mol. Cryst. Liq. Cryst., Vol. 531: pp. 73=[373] 81=[381], 2010 Copyright # Taylor & Francis Group, LLC ISSN: 1542-1406 print=1563-5287 online DOI: 10.1080/15421406.2010.499331 Improvement of MgO Characteristics

More information

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM U.S. -KOREA Forums on Nanotechnology 1 CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM February 17 th 2005 Eung-Sug Lee,Jun-Ho Jeong Korea Institute of Machinery & Materials U.S. -KOREA Forums

More information

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Wafer-Scale Single-Domain-Like Graphene by Defect-Selective Atomic Layer Deposition of Hexagonal

More information