Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Selective CO 2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts Xin-Ming Hu, a,b Halvor Høen Hval, a,b Emil Tveden Bjerglund, a,b Kirstine Junker Dalgaard, b Monica Rohde Madsen, a,b Marga-Martina Pohl, c Edmund Welter, d Paolo Lamagni, a,b Kristian Birk Buhl, a,b Martin Bremholm, b Matthias Beller, c Steen U. Pedersen, a,b Troels Skrydstrup, a,b and Kim Daasbjerg*,a,b a Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (inano), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark b Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark c Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock, Germany d Deutsches Elektronen-Synchrotron - A Research Centre of the Helmholtz Association, Notkestraße 85, D Hamburg, Germany * Corresponding author: kdaa@chem.au.dk S1

2 Figure S1 shows that the distribution of N species is similar for all M- electrocatalysts. The red, blue, pink, and green colors represent pyridinic, pyrrolic, graphitic, and oxidized N species, respectively. All atomic percentages of the four kinds of N species of the material are slightly lower than those of M Atomic Percentage (%) Pyridinic Pyrrolic Graphitic Oxidized Figure S1. Percentages of the four kinds of N species present in the and M- (M = Fe, Co, or Ni) materials. S2

3 Figure S2 depicts the experimental and fitted EXAFS spectra in R-space. The position of the first, main peak in χ(r) at Å suggest that the first shell has light backscatters like C, N, and O. More likely, the peak should represent metal-nitrogen or metal-carbon paths. However, EXAFS is poorly suited to distinguish scattering from nitrogen and carbon. The fits using the model with the metal coordinated to four nitrogen in a planar configuration is approximately following the second and third peaks, suggesting that metal-metal coordination is not necessary for a description of R in the range of Å. In other words, the local structure of metal species could all be atomically dispersed ions. All fitting parameters are collected in Tables S4 S Experimental Fit Experimental Fit (R) (Å -3 ) (R) (Å -3 ) R (Å) R (Å) Experimental Fit (R) (Å -3 ) R (Å) Figure S2. Comparison of the experimental FT-EXAFS curves of the M- (M = Fe, Co, or Ni) materials with fitted curves and the structure model used for the fitting. S3

4 Figure S3 shows the EDX spectra of the and M- electrocatalysts. In agreement with the XPS analysis all M- materials reveal mostly carbon, a small amount of nitrogen, and trace amount of the respective metal. In addition, small peaks for oxygen, sodium, silicon, sulfur, and chlorine are detected which originate from either residual silica or glassware contaminants. The pronounced copper signal is from the grid used for these measurements. Intensity (a.u.) C Intensity (a.u.) N O Na Si S Cl Fe Co Cu Ni Energy (kev) Energy (kev) Figure S3. EDX spectra of the and M- (M = Fe, Co, or Ni) materials (left: full range spectra; right: zoom in). S4

5 Figure S4 depicts the HAADF-STEM images spectra of and electrocatalysts. Figure S4. HAADF-STEM images of (A,B) and (C,D). The pictures B and D are taken ~1 min after A and C, respectively, to show the immovability of the positions of single atoms (marked with arrows). S5

6 Figure S5 shows the TEM images of and the graphitic carbon domains in the,, and electrocatalysts. In comparison, Figure 2c in the main text depicts the TEM images of the porous amorphous carbon structure in,,, and. Figure S5. TEM images of (a), (b), (c), and (d). S6

7 Figure S6 shows the diffraction patterns acquired for the,, and electrocatalysts on amorphous and graphitic carbon domains, i.e. both domains exist. a c e /nm /nm /nm b d f /nm /nm /nm Figure S6. Diffraction patterns of (a), (c), and (e) on amorphous carbon domains and of (b), (d), and (f) on graphitic carbon domains. S7

8 Figure S7 depicts the PXRD patterns of the and M- electrocatalysts. The Fe, Co, and Ni doped carbon materials all have two broad peaks with 2θ = 24 and 43, characteristic of graphitic domains in amophous carbon. and show higher percentage of graphitic carbon domains than and. Noteworthy, a sharp peak at 2θ = 26.3 assigned to multi-layer graphene sheets is observed for and, but only weakly for, which indicates that the graphitic domains in are mostly few-layer graphene-like sheets. No peaks from metal based particles could be detected in the three PXRD patterns for M- showing the effectiveness of the acid washing. The two small peaks (2θ = 45.6 and 46.9 ) observed for are assigned to the presence of unknown contaminants as they cannot originate from any of the elements (Ni, C, N, O, and Si) detected by XPS (Table S2) according to the Crystallography Open Database ( Cristobalite Intensity (a.u.) (degree) Figure S7. PXRD patterns of the and M- (M = Fe, Co, or Ni) materials. S8

9 Figure S8 depicting the Raman spectra of the and M- electrocatalysts shows two intense broad peaks centered around 1350 and 1590 cm 1, which are assigned to the characteristic D and G peaks of graphitic carbon, respectively. The D peak originates from the disorder induced defects, while the G peaks is related to the vibration of sp 2 bonded carbon atoms in a two-dimensional hexagonal lattice. Two small broad peaks are visible in the range of cm 1, corresponding to the 2D and D+Dˈ peaks, respectively. In some cases these two peaks overlap. The Raman spectra clearly show the presence of graphitic structures in the M- electrocatalysts. D G 2D D+D' Intensity (a.u.) Raman Shift (cm -1 ) Figure S8. Raman spectra of the and M- (M = Fe, Co, or Ni) materials. S9

10 Figure S9 shows the nitrogen adsorption-desorption isotherms of the and M- electrocatalysts. The surface areas are calculated from the adsorption isotherms using the Brunauer Emmett Teller (BET) method. The surface areas for the silica-templated,,, and are 807, 742, 559, and 680 m 2 g 1, respectively. In contrast, the -NS material has a much lower surface area (= 107 m 2 g 1 ), highlighting the importance of using the silica templated synthesis. V ads, STP (cm 3 g -1 ) NS Relative Pressure (P/P 0 ) Figure S9. Nitrogen adsorption desorption isotherms of the, M- (M = Fe, Co, or Ni), and -NS materials at 77 K. S10

11 Figure S10 depicts the cyclic voltammograms recorded at the,, and electrocatalysts in the absence and presence of CO j (ma cm -2 ) Ar CO 2 j (ma cm -2 ) Ar Potential (V vs RHE) -14 CO Potential (V vs RHE) 2 0 j (ma cm -2 ) Ar -12 CO Potential (V vs RHE) Figure S10. Cyclic voltammograms recorded at the,, and materials using a sweep rate of 10 mv s 1 in 0.5 M KHCO 3. S11

12 Figure S11 shows cyclic voltammograms of the and M- electrocatalysts recorded between V vs RHE at three different sweep rates in CO 2 saturated aqueous 0.5 M KHCO 3. The double layer capacitive current density was obtained by averaging the cathodic and anodic current density from voltammograms (a c) at 0.25 V vs RHE. From a plot of these current densities against the sweep rate (Figure S11d), the layer capacities are calculated to be 50, 47, 41, and 49 mf cm 2 for,,, and, respectively. The relative electrochemically active surface area (ECSA) is, by and large, the same for all materials, indicating that the activity differences observed for the CO 2 -to-co conversion must originate from the nature of the different active sites. Note that the ECSA ś cannot be compared directly with the relative surface areas obtained by the BET method, considering that the hydrated K + in the capacitive measurements with an effective diameter of 0.6 nm could easily be precluded from populating some of the micropores a 0.8 b j (ma cm -2 ) j (ma cm -2 ) Potential (V vs RHE) Potential (V vs RHE) c d 0.8 j (ma cm -2 ) DL-j (ma cm -2 ) Potential (V vs RHE) (mv s -1 ) Figure S11. Cyclic voltammograms of the and M- (M = Fe, Co, or Ni) materials recorded between V vs RHE at the sweep rate,, of (a) 5, (b) 10, and (c) 20 mv s 1 in CO 2 saturated aqueous 0.5 M KHCO 3. (d) Plot of double layer current densities, DL-j, obtained at 0.25 V vs RHE from voltammograms (a c) vs. S12

13 Figure S12 presents the FE and partial current density for H 2 evolution, j H2, of the 15 min electroylsis performed on the and M- electrocatalysts at various potentials (supplementary to Figure 4c e). Figure 4d shows that the total current density, j, follows the order > > >. However, the situation changes for the partial current density of CO production, j CO, which is almost the same for and (Figure 4e). This indicates that the cobalt doping adds nothing to the CO 2 RR activity. Rather, it leads to a considerably enhanced HER (Figure S12). Figures S12a and S12b also reveal that the activity of and for the HER is small at potentials > 0.6 V, but becomes dominant at more negative potentials. In contrast, the HER activity on remains small, even at extreme potentials, which explains its good selectivity for CO 2 -to-co conversion. FE H2 (%) a j H2 (ma cm -2 ) b Potential (V vs RHE) Potential (V vs RHE) Figure S12. (a) FE and (b) partial current density of H 2 production using and M- (M = Fe, Co, or Ni) electrocatalysts in 15 min electrolyses at various potentials in 0.5 M KHCO 3. S13

14 Figure S13 shows the CO 2 RR activity of Fe, Co, and Ni porphyrins immobilised on multi-walled carbon nanotubes (MTPP-MWCNT) to make a comparison with the corresponding M- electrocatalysts possible. CoTPP-MWCNT exhibits both higher FE CO and j than FeTPP-MWCNT and, in particular, NiTPP-MWCNT that shows no activity for CO production H 2 CO j FE (%) j (ma cm -2 ) 0 FeTPP-MWCNT CoTPP-MWCNT NiTPP-MWCNT 0 Figure S13. FE and j of 15 min electrolyses of CO 2 at 0.57 V vs RHE using three different carbon supported metalloporphyrins in 0.5 M KHCO 3. S14

15 Table S1. Details on the Preparation of Carbon Electrocatalysts. Material T ( C) Metal salt Template Acid washing 2nd pyrolysis Yield (%) a 1000 No Yes Yes Yes FeCl 3 Yes Yes Yes CoCl 2 Yes Yes Yes NiCl 2 Yes Yes Yes 4 -NS 1000 FeCl 3 No Yes Yes 43 -NA 1000 FeCl 3 Yes No Yes 41 -N2P 1000 FeCl 3 Yes Yes No 31 a Yield is calculated relative to the mass of the organic precursor, i.e. o-phenylenediamine. S15

16 Table S2. Elemental Composition of Carbon Electrocatalysts Determined by XPS. Material C N M Si O (at%) (at%) (at%) (at%) (at%) NS NA N2P XPS is a semi-quantitative technique, where the determination of low metal contents in the carbon material is associated with a large uncertainty. Hence, we employed a more accurate technique, ICP-OES, to determine the metal content in the and M- electrocatalysts (Table S3). As seen the results obtained by the two techniques are fully consistent. Table S3. Comparison of Metal Content in Carbon Electrocatalysts Determined by XPS and ICP-OES. Metal content XPS (wt%) a ICP-MS (wt%) a Weight percentage of the metal is calculated from the corresponding atomic percentage listed in Table S2. S16

17 Tables S4 S6 show the fit parameters from the EXFAS analysis. Although the fits match well with the experimental data in Figure S2, some issues emerge in the fits of the model. Firstly, the fitted S 2 0 value for Fe is larger than 1.0. Secondly, the refined energy shift, E 0, for the Ni edge is larger than 10 ev. Finally, the radial shifts, ΔR, with respect to the model distances for the carbon atoms in the Fe and Co sample do not all have the same sign, resulting in contraction except for M-C4. These issues may to some extent be resolved by e.g. inclusion of more multiple scattering paths, but the presence of multiple of varying local coordination is likely intrinsic to these samples. Some variation in the metal coordination is expected, i.e. the coordination number and the ratio of carbon and nitrogen atoms vary within the same system. The atomic structure model is considered as an effective description of the three systems. The analysis shows the metal atoms are atomically dispersed, but the quantitative results should be interpreted with caution. Table S4. EXAFS Fitting Parameter for. a Path Coordination numbers R (Å) σ 2 (Å 2 ) Fe-N (1) 0.012(2) Fe-C (2) 0.016(3) Fe-C (2) - Fe-C (9) - Fe-C (6) - a Transmission data were used; R-factor: 0.020; Reduced χ 2 : 1203; Energy shift, E 0 : ev; S 0 2 : Table S5. EXAFS Fitting Parameter for. a Path Coordination numbers R (Å) σ 2 (Å 2 ) Co-N (2) 0.014(3) Co-C (1) 0.009(2) Co-C (1) - Co-C (6) - Co-C (6) - a Fluorescence data were used; R-factor: 0.041; Reduced χ 2 : 1050; Energy shift, E 0 : ev; S 0 2 : S17

18 Table S6. EXAFS Fitting Parameter for. a Path Coordination numbers R (Å) σ 2 (Å 2 ) Ni-N (1) 0.011(2) Ni-C (3) 0.014(4) Ni-C (3) - Ni-C (9) - Ni-C (8) - a Transmission data were used; R-factor: 0.037; Reduced χ 2 : 2473; Energy shift, E 0 : ev; S 0 2 : S18

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction Supporting Information Mesoporous N-Doped Carons Prepared with Thermally Removale Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction Wenhan Niu, a Ligui Li,* a Xiaojun Liu,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Supporting Information The chemical identity, state and structure of catalytically active

More information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Reviewers' Comments: Reviewer #1 (Remarks to the Author) Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript reports the synthesis of a series of Mo2C@NPC-rGO hybrid HER electrocatalysts by employing the precursor of PMo12 (H3PMo12O40)-PPy/rGO

More information

Supplementary Figure 1 SEM image for the bulk LCO.

Supplementary Figure 1 SEM image for the bulk LCO. Supplementary Figure 1 SEM image for the bulk LCO. S1 Supplementary Figure 2 TEM and HRTEM images of LCO nanoparticles. (a)-(c) TEM, HRTEM images, and SAED pattern for the 60 nm LCO, respectively. (d)-(f)

More information

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Self-Growth-Templating Synthesis of

More information

Efficient Graphene Production by Combined Bipolar Electrochemistry and High-Shear Exfoliation

Efficient Graphene Production by Combined Bipolar Electrochemistry and High-Shear Exfoliation Supporting Information Efficient Graphene Production by Combined Bipolar Electrochemistry and High-Shear Exfoliation Emil Tveden Bjerglund, Michael Ellevang Pagh Kristensen,, Samantha Stambula, Gianluigi

More information

A doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media

A doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media Supporting Information A doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media Chang Hyuck Choi, a Min Wook Chung, b Sung Hyeon Park, a and

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Supplementary Figure 1. TEM analysis of Co0.5 showing (a) a SAED pattern, and (b-f) bright-field images of the microstructure. Only two broad rings

Supplementary Figure 1. TEM analysis of Co0.5 showing (a) a SAED pattern, and (b-f) bright-field images of the microstructure. Only two broad rings Supplementary Figure 1. TEM analysis of Co0.5 showing (a) a SAED pattern, and (bf) brightfield images of the microstructure. Only two broad rings were observed in the SAED pattern, as expected for amorphous

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Nitrogen and sulfur co-doped porous carbon derived from human hair as. highly efficient metal-free electrocatalyst for hydrogen evolution reaction

Nitrogen and sulfur co-doped porous carbon derived from human hair as. highly efficient metal-free electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nitrogen and sulfur co-doped porous

More information

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT.

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT. 1 Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT sample. (a, b TEM images of CNT; (c EDS of CNT. Cobalt is not detected in the original CNT sample (Note: The accidentally

More information

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C a 2 15 before cycle test mean particle size: 3.8 ± 1.2 nm b 2 15 after.6v - 1.V 1k cycle test mean particle size: 4.1 ± 1.5 nm Number 1 total number: 558 Number 1 total number: 554 5 5 1 2 3 4 5 6 7 8

More information

Experimental Section Chemicals. Tetraethyl orthosilicate (TEOS), ammonia aqueous solution (NH 4 OH, 28 wt.%), and dopamine hydrochloride (DA) were

Experimental Section Chemicals. Tetraethyl orthosilicate (TEOS), ammonia aqueous solution (NH 4 OH, 28 wt.%), and dopamine hydrochloride (DA) were Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Experimental Section Chemicals. Tetraethyl orthosilicate (TEOS), ammonia aqueous

More information

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Supporting Information for Fast Direct Synthesis and Compaction of Phase

More information

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res.

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res. Electronic Supplementary Material Shaped Pt Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction Jun Gu 1,, Guangxu

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany Supporting information: Stability limits of tin-based electrocatalyst supports Simon Geiger a,*, Olga Kasian a, Andrea M. Mingers a, Karl J. J. Mayrhofer a,b,c, Serhiy Cherevko a,b,* a Department of Interface

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Electronic Supplementary Information (ESI) Atomic Interpretation of High Activity on Transition Metal and

Electronic Supplementary Information (ESI) Atomic Interpretation of High Activity on Transition Metal and Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) Atomic Interpretation of High

More information

Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis

Supplemental Information. In Situ Electrochemical Production. of Ultrathin Nickel Nanosheets. for Hydrogen Evolution Electrocatalysis Chem, Volume 3 Supplemental Information In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis Chengyi Hu, Qiuyu Ma, Sung-Fu Hung, Zhe-Ning Chen, Daohui

More information

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Supporting Information An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Liang Chang, 1 Dario J. Stacchiola 2 and Yun Hang Hu 1, * 1. Department

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells Electronic Supplementary Information for One-Pot Synthesis of Core-Shell-like 3 Co Nanoparticle Electrocatalyst with -enriched Surface for Oxygen Reduction Reaction in Fuel Cells Ji-Hoon Jang b, Juyeong

More information

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 1 Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

More information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China Electronic Supplementary Material A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various ph media

More information

Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No ) peaks, the blue

Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No ) peaks, the blue Supplementary Figure 1. (a) XRD pattern of NCUNs. The red lines present the standard nickel hydroxide hydrate (JCPDS No. 22-0444) peaks, the blue lines demonstrate the standard cobalt hydroxide (JCPDS

More information

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral Supporting Information Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO 2 Electroreduction Polyansky* Yu-Chi Hsieh, Sanjaya D. Senanayake,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 SEM/EDS mapping of LiNi 0.4 Mn 0.4 Co 0.18 Ti 0.02 O 2. The experimental error of the mapping is ±1%. The atomic percentages of each element are based on multiple

More information

unique electronic structure for efficient hydrogen evolution

unique electronic structure for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Atom-scale dispersed palladium in conductive

More information

Electronic Supplementary Information (ESI )

Electronic Supplementary Information (ESI ) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI ) Hollow nitrogen-doped carbon spheres as an efficient

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 SUPPLEMENTARY INFORMATION From Melamine-Resorcinol-Formaldehyde to Nitrogen-Doped

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. a) SEM image of Cu foil after electropolishing (5 µm scale bar). SEM images of Cu foils treated with H 2 plasma at 100W for 2 minutes b) as prepared and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Adding refractory 5d transition metal W into PtCo

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis and Application of Hexagonal Perovskite BaNiO 3 with Quadrivalent

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Formation of N-doped Graphene Nanoribbons via Chemical Unzipping

Formation of N-doped Graphene Nanoribbons via Chemical Unzipping SUPPORTING INFORMATION FILE FOR: Formation of N-doped Graphene Nanoribbons via Chemical Unzipping Rodolfo Cruz-Silva 1, Aaron Morelos-Gómez 3, Sofia Vega-Díaz 1, Ferdinando Tristán- López 1, Ana L. Elias

More information

were obtained from Timesnano, and chloroplatinic acid hydrate (H 2 PtCl 6, 37%-40%

were obtained from Timesnano, and chloroplatinic acid hydrate (H 2 PtCl 6, 37%-40% Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Support Information Chemicals: Potassium borohydride (KBH 4 ), sodium oxalate (NaC 2 O 4

More information

Electronic Supplementary Information. Precursor Salt Assisted Syntheses of High-Index Faceted Concave Hexagon and Nanorod like Polyoxometalates

Electronic Supplementary Information. Precursor Salt Assisted Syntheses of High-Index Faceted Concave Hexagon and Nanorod like Polyoxometalates Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Precursor Salt Assisted Syntheses of High-Index Faceted Concave

More information

Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced. methanol oxidation

Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced. methanol oxidation Supplementary Information Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced methanol oxidation Xiao-Jing Liu, Chun-Hua Cui, Ming Gong, Hui-Hui Li, Yun Xue, Feng-Jia Fan and Shu-Hong

More information

Electronic Supplementary Information. Experimental details graphene synthesis

Electronic Supplementary Information. Experimental details graphene synthesis Electronic Supplementary Information Experimental details graphene synthesis Graphene is commercially obtained from Graphene Supermarket (Reading, MA, USA) 1 and is produced via a substrate-free gas-phase

More information

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage (Supporting Information) Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage Sanjay Kumar Singh, Xin-Bo Zhang, and Qiang Xu* National Institute of Advanced Industrial

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information Nickel as a co-catalyst for photocatalytic hydrogen

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201701456 Selective Etching of Nitrogen-Doped Carbon by Steam

More information

Zhengping Zhang, Junting Sun, Meiling Dou, Jing Ji, Feng Wang*

Zhengping Zhang, Junting Sun, Meiling Dou, Jing Ji, Feng Wang* Supporting Information Nitrogen and Phosphorus Codoped Mesoporous Carbon Derived from Polypyrrole as Superior Metal-Free Electrocatalyst towards the Oxygen Reduction Reaction Zhengping Zhang, Junting Sun,

More information

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2019 Supporting Information Atomically dispersed Ni as the active site towards selective hydrogenation

More information

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting Supporting Information for Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting Zhengfei Dai,,, Hongbo Geng,,, Jiong Wang, Yubo Luo, Bing Li, ǁ Yun Zong, ǁ Jun Yang, Yuanyuan

More information

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery Longtao Ma 1, Shengmei Chen 1, Zengxia Pei 1 *, Yan Huang 2, Guojin Liang 1, Funian Mo 1,

More information

Supporting Information

Supporting Information Supporting Information High Performance Electrocatalyst: Pt-Cu Hollow Nanocrystals Xiaofei Yu, a Dingsheng, a Qing Peng a and Yadong Li* a a Department of Chemistry, Tsinghua University, Beijing, 100084

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supplementary Information Cross-linker Mediated Formation of Sulfur-functionalized V 2 O 5 /Graphene

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Name PRACTICE Unit 3: Periodic Table

Name PRACTICE Unit 3: Periodic Table 1. Compared to the atoms of nonmetals in Period 3, the atoms of metals in Period 3 have (1) fewer valence electrons (2) more valence electrons (3) fewer electron shells (4) more electron shells 2. On the

More information

Supporting Information

Supporting Information Supporting Information Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shaped-Controlled Pt-Ni Nanoparticles by Thermal Annealing Elucidating the Surface Atomic Structural

More information

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material Shaikh Parwaiz, 1 Kousik Bhunia, 1 Ashok Kumar Das, 1 Mohammad Mansoob

More information

Supporting Information

Supporting Information Supporting Information Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts Kotaro Sasaki 1*, Nebojsa Marinkovic 2, Hugh S. Isaacs 1, Radoslav

More information

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction Supporting Information: Magnesiothermic synthesis of sulfur-doped as an efficient metal-free electrocatalyst for oxygen reduction Jiacheng Wang, 1,2,3, * Ruguang Ma, 1,2,3 Zhenzhen Zhou, 1,2,3 Guanghui

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

Supporting Information

Supporting Information Supporting Information Enhanced Stability of Immobilized Pt Nanoparticles on Carbon Nanotubes through Nitrogen Heteroatoms on Doped Carbon Supports Wen Shi, Kuang-Hsu Wu, Junyuan Xu ǁ, Qiang Zhang, Bingsen

More information

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information CdS/mesoporous ZnS core/shell particles for efficient

More information

Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes

Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes Begüm Bozkaya 1, Jochen Settelein 1, Henning Lorrmann 1, Gerhard Sextl 1, 2 1 Fraunhofer Institute for Silicate

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/8/e1700732/dc1 This PDF file includes: Supplementary Materials for Oriented assembly of anisotropic nanoparticles into frame-like superstructures Jianwei Nai,

More information

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 )

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 ) Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes Shizhang Qiao ( 乔世璋 ) s.qiao@adelaide.edu.au The University of Adelaide, Australia 18 19 January 216, Perth 1.

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites Here H 2 SO 4 was used as an intercalant and H 2 O 2 as an oxidant. Expandable

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information Simple conversion of earth-abundant coal to high-performance

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information Precise-Control Synthesis of α-/β-mno 2 Materials by Adding

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2011 Supporting Information for Adv. Mater., DOI: 10.1002/adma.201102200 Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core

More information

3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane Fuel Cell

3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane Fuel Cell Electronic Supplementary Information for Journal of Materials Chemistry 3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (Murexide) for supercapacitor application

Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (Murexide) for supercapacitor application Electronic upplementary Material (EI) for RC Advances. This journal is The Royal ociety of Chemistry 2017 Electronic upplementary Information (EI) Template-free synthesis of nitrogen doped carbon materials

More information

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of Supplemental Information (SI: Cobalt-iron (oxyhydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism Michaela S. Burke, Matthew G. Kast,

More information

Electronic Supplementary Material

Electronic Supplementary Material Electronic Supplementary Material Synthesis and characterization of mesoporous Si MCM-41 materials and their application as solid acid catalysts in some esterification reactions by Tarun F Parangi (pp

More information

Role of iron in preparation and oxygen reduction reaction activity of nitrogen-doped carbon

Role of iron in preparation and oxygen reduction reaction activity of nitrogen-doped carbon Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Role of iron in preparation and oxygen reduction reaction

More information

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation Supporting Information for Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation An-Xiang Yin, Xiao-Quan Min, Wei Zhu, Hao-Shuai Wu, Ya-Wen Zhang* and Chun-Hua

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1600322/dc1 Supplementary Materials for Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering Simin Feng, Maria Cristina

More information

Supporting Information. Electrochemical CO 2 Reduction

Supporting Information. Electrochemical CO 2 Reduction Supporting Information Exclusive Ni-N 4 Sites Realize Near-unity CO Selectivity for Electrochemical CO 2 Reduction Xiaogang Li 1, Wentuan Bi 1, Minglong Chen 2, Yuexiang Sun 1, Huanxin Ju 3, Wensheng Yan

More information

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Supporting Information Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Dorottya Hursán 1,2 and Csaba Janáky 1,2* 1 Department of Physical

More information

Supporting Information

Supporting Information Supporting Information Chemically Modulated Carbon Nitride Nanosheets for Highly Selective Electrochemiluminescent Detection of Multiple Metal-ions Zhixin Zhou, Qiuwei Shang, Yanfei Shen, Linqun Zhang,

More information

Supporting Information Ultrathin Porous Bi 5 O 7 X (X=Cl, Br, I) Nanotubes for Effective Solar Desalination

Supporting Information Ultrathin Porous Bi 5 O 7 X (X=Cl, Br, I) Nanotubes for Effective Solar Desalination Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Ultrathin Porous Bi 5 O 7 X (X=Cl, Br, I) Nanotubes

More information

Supporting Information. From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake

Supporting Information. From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake Supporting Information From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake Hai-Long Jiang, Bo Liu, Ya-Qian Lan, Kentaro Kuratani, Tomoki Akita, Hiroshi

More information

Supporting Information for. Size-Dependent Oxidation State and CO Oxidation Activity of Tin

Supporting Information for. Size-Dependent Oxidation State and CO Oxidation Activity of Tin Supporting Information for Size-Dependent Oxidation State and CO Oxidation Activity of Tin Oxide Clusters Yusuke Inomata, Ken Albrecht,, Kimihisa Yamamoto *,, Laboratory for Chemistry and Life Science,

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 213. Supporting Information for Adv. Energy Mater., DOI: 1.12/aenm.2131565 Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising

More information

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information Xiujun Fan, * Yuanyue Liu, ς Zhiwei Peng, Zhenhua Zhang, # Haiqing Zhou, Xianming Zhang, Boris

More information

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary information for rganically doped palladium: a highly efficient catalyst for

More information

Supporting Information. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability

Supporting Information. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability Supporting Information Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability Experimental part Chemicals and materials Platinum(II)acetylacetonate

More information

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation

More information

Supporting Information for Active Pt 3 Ni (111) Surface of Pt 3 Ni Icosahedron for Oxygen Reduction

Supporting Information for Active Pt 3 Ni (111) Surface of Pt 3 Ni Icosahedron for Oxygen Reduction Supporting Information for Active Pt 3 Ni (111) Surface of Pt 3 Ni Icosahedron for Oxygen Reduction Jianbing Zhu,, Meiling Xiao,, Kui Li,, Changpeng Liu, Xiao Zhao*,& and Wei Xing*,, State Key Laboratory

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

Supporting Information

Supporting Information Supporting Information Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core-Shell Quantum Dots Zhou Yang 1, Li Lu 2, Christopher J. Kiely 1,2, Bryan W. Berger* 1,3, and Steven McIntosh* 1 1

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/content/351/6271/361/suppl/dc1 Supplementary Materials for Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts Donghui Guo,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 218 Supporting Information Concave-curvature facets benefit the oxygen electroreduction

More information

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction Xiaohong Xie, Siguo Chen*, Wei Ding, Yao Nie, and Zidong Wei* Experimental

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient

More information

Pt-Cu Hierarchical Quasi Great Dodecahedrons with Abundant

Pt-Cu Hierarchical Quasi Great Dodecahedrons with Abundant Electronic Supplementary Material Material (ESI) for (ESI) Chemical for ChemComm. Science. This journal is is The The Royal Royal Society Society of Chemistry of Chemistry 2017 2017 Supporting Information

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191

Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts Ying Liu and William E. Mustain* Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 Auditorium

More information