Formation of N-doped Graphene Nanoribbons via Chemical Unzipping

Size: px
Start display at page:

Download "Formation of N-doped Graphene Nanoribbons via Chemical Unzipping"

Transcription

1 SUPPORTING INFORMATION FILE FOR: Formation of N-doped Graphene Nanoribbons via Chemical Unzipping Rodolfo Cruz-Silva 1, Aaron Morelos-Gómez 3, Sofia Vega-Díaz 1, Ferdinando Tristán- López 1, Ana L. Elias 2, Nestor Perea-López 2, Hiroyuki Muramatsu 3, Takuya Hayashi 1, Kazunori Fujisawa 1,Yoong A. Kim 1, Morinobu Endo 1, and Mauricio Terrones 1,2 1 Research Center for Exotic Nanocarbons, Shinshu University, Wakasato, Nagano , Japan. 2 Department of Physics, Department of Materials Science and Engineering & Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA 3 Faculty of Engineering, Shinshu University, Wakasato, Nagano , Japan Corresponding author M. Terrones; mut11@psu.edu; mtterrones@shinshu-u.ac.jp Supporting Information Table of contentts: Figure S1. a) SEM, b) diameter distribution, c) TEM, d) XPS and e) TGA of CNx- MWCNTs. Figure S2. SEM images of oxidized nitrogen doped graphene nanoribbons prepared at 60 C and oxidizer to nanotube mass ratio of a) 2.5:1 and b) 1:1. Figure S3. High resolution C 1s core-level spectra of ox-n-gnrs deconvoluted into components. Figure S4. FTIR spectra of a) Graphite oxide, and b) oxidized GNRs prepared from MWCNTs (ox-gnrs), c) oxidized graphene nanoribbons prepared from highly crystalline MWCNTs (ox-hc-gnrs), and d) ox-n-gnrs prepared from CNx-MWCNTs (ox-n-gnrs). Figure S5. XRD patterns (CuK of pristine nitrogen doped multiwalled carbon nanotubes (CNx-MWCNTs), oxidized nitrogen doped graphene nanoribbons (ox-n- GNRs), and nitrogen-doped graphene nanoribbons prepared by thermal reduction of ox- N-GNRs at 800 C and 300 C, (N-GNRs-red800 and N-GNRs-red300, respectively). Figure S6. TEM images of a) oxidized GNRs prepared from (pure carbon) MWCNTs, b) oxidized GNRs prepared from CNx-MWCNTs (ox-n-gnrs), c) Nitrogen-doped graphene nanoribbons reduced at 300 C (N-GNRs-red300), and d) Nitrogen doped graphene nanoribbons reduced at 800 C (N-GNRs-red800). Figure S7. a) Raman and b) UV-vis spectra of oxidized and reduced nanotubes. Table SI. Spectroscopic data from Raman and UV-Visible of the pure carbon and nitrogen containing oxidized graphene nanoribbons and their reduced samples. Figure S8. Cyclic voltammetry curves of graphene nanoribbons in H 2 SO 4 1 M aqueous solution.

2 b) a) 30 Counts CNx-MWCNT diameter (nm) d) 100 nm Intensity (a.u.) Element e) C 1s 100 Atomic % C 96.0 O 2.2 N 1.7 Fe % weight c) N 1s Fe 2p O 1s C weight loss peak Binding Energy (ev) % wt residue Temperature ( C) Figure S1. Nitrogen doped multiwalled carbon nanotubes (CNx-MWCNTs) used as starting material in this study. a) Scanning electron microcope image of the as obtained material after chemical vapor deposition (CVD), b) diameter distribution of the CNx-MWCNTs is bimodal. c) TEM images of a bundle of CNx-MWCNTs. Typical wall thickness is between 20 nm and 30 nm. d) XPS wide scan spectra of the CVD synthesized CNx-MWCNTs. Major features are the C, N and O 1s peak, and very weak Fe 2p peak, that indicates that most catalyst is encapsulated in carbon. e) Thermogravimetric analysis of the CNx-MWCNTs under air flow (300 ml/min). The residue consists mainly on ferric oxide due to the catalyst. The temperature degradation peak (492 C), is a relatively low value as compared with pure carbon MWCNTs (630 C). Lower crystallinity and the presence of defects on CNx-MWCNTs results in higher reactivity towards air oxidation as compared with pure carbon MWCNTs.

3 a) 2.5:1, C/O=2.51 b) 1:1; C/O=3.43 Figure S2. SEM images depicting the morphologies of the oxidized nitrogen-doped graphene nanoribbons (ox-n-gnrs) prepared at 60 C using a lower oxidizer to nanotube ratio: a) oxidizer/nanotube mass ratio 2.5:1.0, and b) oxidizer/nanotube mass ratio to 1:1. Green arrows point to flat nanoribbons, whereas blue arrows indicate "u" shape unzipped nanotubes.

4 a) ox-n-gnrs 20 C C/O= % 17% 14% 9% b) ox-n-gnrs 40 C C/O= % 29% 13% 46% Intensity [a.u.] c) ox-n-gnrs 60 C C/O= % 23% 20% 34% d) ox-n-gnrs 80 C C/O= % 25% 14% 34% e) ox-n-gnrs 60 C 2.5:1 oxidizer ratio 60 C C/O= % 24% 46% 12% f) ox-n-gnrs 60 C 1:1 oxidizer ratio 60 C C/O= % 12% 10% 64% Binding energy [ev] Figure S3. High resolution C 1s core-level spectra of ox-n-gnrs. Deconvolution shows the individual contribution of oxygenated species. a), b), c) and d) show the C 1s peak of nitrogen-doped oxidized graphene nanoribbons (ox-n-gnrs) prepared at 20 C, 40 C, 60 C and 80 C, respectively. e) and f) show the C 1s peak of oxidized nitrogen doped graphene nanoribbons (ox-n-gnrs) prepared at 60 C using a lower ratio of oxidizer/nanotube ratio. e) oxidizer/nanotube mass ratio to 2.5:1.0, and f) oxidizer/nanotube mass ratio to 1:1.

5 a) Graphite oxide Transmittance (A.U) O-H C-H b) ox-gnrs c) ox-hc-gnrs HOH C/O=2.33 C/O=3.12 C/O=2.44 d) ox-n-gnrs C/O= Wavenumber (cm -1 ) Figure S4. Fourier-Transformed Infrared Spectroscopy spectra of a) Graphite oxide, and b) oxidized GNRs prepared from MWCNTs (ox-gnrs), c) oxidized graphene nanoribbons prepared from highly crystalline MWCNTs (ox-hc-gnrs), and d) ox-n- GNRs prepared from CNx-MWCNTs (ox-n-gnrs). There is a striking similarity in the relative abundance of different functional groups between graphite oxide and oxidized pure carbon multiwalled nanotubes. On the other hand, ox-n-gnrs have greater abundance of carbonyl groups.

6 Intensity (arb. units) CNx-MWCNTs ox-n-gnrs (001) GO N-GNRs-red800 N-GNRs-red300 C/O=49.00 C/O=2.16 C/O=19.7 C/O=15.2 (002)* Figure S5. XRD patterns (CuK of pristine nitrogen doped multiwalled carbon nanotubes (CNx-MWCNTs), oxidized nitrogen doped graphene nanoribbons (ox-n- GNRs), and nitrogen-doped graphene nanoribbons prepared by thermal reduction of ox- N-GNRs at 800 C and 300 C, (N-GNRs-red800 and N-GNRs-red300, respectively). The C/O atomic ratio was calculated by XPS and indicates the degree of oxidation. After oxidation of CNx-MWCNTs, a peak indicating exfoliation of the graphitic layers appears close to 10, and disappears after thermal treatment.

7 a) ox GNRs C/O=3.12 b) ox N GNRs C/O= nm c) N GNRs red300 C/O= nm 100 nm d) N GNRs red800 C/O= nm Figure S6. TEM images of a) oxidized GNRs prepared from (pure carbon) MWCNTs, b) oxidized GNRs prepared from CNx-MWCNTs (ox-n-gnrs), c) Nitrogen-doped graphene nanoribbons reduced at 300 C (N-GNRs-red300), and d) Nitrogen doped graphene nanoribbons reduced at 800 C (N-GNRs-red800). While nanoribbons reduced at 300 C show a flat ribbon morphology of several microns long, reduction at 800 C leads to significant fragmentation of the nanostructures.

8 a) CNx-MWNTs b) Intensity (arb. units) N-GNRs-redNH2 GNRs-redNH2 N-GNRs-red800 N-GNRs-red300 ox-gnrs ox-n-gnrs Absorbance (arb. units) CNx-MWCNTs ox-gnrs GNRs-redNH2 GNRs-red800 ox-n-gnrs N-GNRs-redNH2 N-GNRs-red Raman shift (cm -1 ) Wavelength (nm) Figure S7. a) Raman and b) UV-vis spectra of pristine nitrogen doped carbon nanotubes (CNx- MWCNTs), oxidized graphene nanoribbons (ox-gnrs) and oxidized nitrogen doped graphene nanoribbons (ox-n-gnrs), N-doped graphene nanoribbons obtained by thermal reduction at 300 C (N-GNRs-red300) and 800 C (N-GNRs-red800), and chemically reduced GNRs (GNRsredNH2) and chemically reduced N doped GNRs (N-GNRs-redNH2).

9 Table SI. Spectroscopic data from Raman and UV-Visible of the pure carbon and nitrogen containing oxidized graphene nanoribbons and their corresponding chemically and thermally reduced graphene nanoribbons samples. Sample UV Vis Rama n I G cm 1 I D /I G CNxP MWCNTs ox N GNRs ox GNRs N GNRs rednh GNRs rednh N GNRs red N GNRs red i (ma) a) GNRs-red E (V vs Ag AgCl) i (ma) b) N-GNRs-redNH E (V vs Ag AgCl) 500 mv/s 200 mv/s 100 mv/s 50 mv/s 25 mv/s 10 mv/s Figure S8. Cyclic voltammetry curves of graphene nanoribbons in H 2 SO 4 1 M aqueous solution: a) Graphene nanoribbons after oxidation of MWCNTs and thermally reduced at 800 C, and b) nitrogen doped graphene nanoribbons obtained by oxidation of CNx- MWCNTs and reduced with hydrazine (N-GNRs-redNH2).

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1600322/dc1 Supplementary Materials for Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering Simin Feng, Maria Cristina

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.160 Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes Aaron Morelos-Gomez, 1 Rodolfo Cruz-Silva,

More information

Instantaneous reduction of graphene oxide at room temperature

Instantaneous reduction of graphene oxide at room temperature Instantaneous reduction of graphene oxide at room temperature Barun Kuma Burman, Pitamber Mahanandia and Karuna Kar Nanda Materials Research Centre, Indian Institute of Science, Bangalore-560012, India

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Band-like transport in highly crystalline graphene films from

Band-like transport in highly crystalline graphene films from Supplementary figures Title: Band-like transport in highly crystalline graphene films from defective graphene oxides R. Negishi 1,*, M. Akabori 2, T. Ito 3, Y. Watanabe 4 and Y. Kobayashi 1 1 Department

More information

Zirconium Oxynitride Catalyzed Oxygen Reduction. Reaction at Polymer Electrolyte Fuel Cell Cathodes

Zirconium Oxynitride Catalyzed Oxygen Reduction. Reaction at Polymer Electrolyte Fuel Cell Cathodes Supporting Information Zirconium Oxynitride Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes Mitsuharu Chisaka, *, Akimitsu Ishihara,, Hiroyuki Morioka, # Takaaki Nagai, Shihong

More information

Supporting Information

Supporting Information Supporting Information Robust Co-Catalytic Performance of Nanodiamonds Loaded on WO 3 for the Decomposition of Volatile Organic Compounds under Visible Light Hyoung il Kim, a Hee-na Kim, a Seunghyun Weon,

More information

Hasegawa, Takayuki, Arenas, Danie Author(s) deo X

Hasegawa, Takayuki, Arenas, Danie Author(s) deo X Kochi University of Technology Aca Optimizing Growth Conditions for Title alled Carbon Nanotubes Hasegawa, Takayuki, Arenas, Danie Author(s) deo Fullerenes, Nanotubes and Carbon Citation, 23(8): 687-690

More information

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT.

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT. 1 Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT sample. (a, b TEM images of CNT; (c EDS of CNT. Cobalt is not detected in the original CNT sample (Note: The accidentally

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube- Nanographene Complexes Yanguang Li, Wu Zhou, Hailiang Wang, Liming Xie, Yongye Liang, Fei Wei, Juan-Carlos Idrobo,

More information

Comparative study of herringbone and stacked-cup carbon nanofibers

Comparative study of herringbone and stacked-cup carbon nanofibers Comparative study of herringbone and stacked-cup carbon nanofibers Yoong-Ahm Kim*, Takuya Hayashi, Satoru Naokawa, Takashi Yanagisawa and Morinobu Endo Faculty of Engineering, Shinshu University, 4-17-1

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

CdSe Quantum Dots-decorated Double Walled Carbon Nanotubes: The Effect of Chemical Moieties

CdSe Quantum Dots-decorated Double Walled Carbon Nanotubes: The Effect of Chemical Moieties CdSe Quantum Dots-decorated Double Walled Carbon Nanotubes: The Effect of Chemical Moieties Yoong Ahm Kim*, Hiroyuki Muramatsu, Ki Chul Park, Daisuke Shimamoto, Yong Chae Jung, Jin Hee Kim, Takuya Hayashi,

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Supporting Information

Supporting Information Supporting Information Fluorescent Carbon Nanoparticle: Synthesis, Characterization and Bio-imaging Application S.C. Ray (a),*, Arindam Saha, Nikhil R. Jana * and Rupa Sarkar Centre for Advanced Materials,

More information

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information (ESI) for Bandgap engineering through nanocrystalline

More information

Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char. Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang*

Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char. Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang* Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang* CAS Key Laboratory

More information

Hydrogenation of Single Walled Carbon Nanotubes

Hydrogenation of Single Walled Carbon Nanotubes Hydrogenation of Single Walled Carbon Nanotubes Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement A. Nikitin 1), H. Ogasawara 1), D.

More information

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material Shaikh Parwaiz, 1 Kousik Bhunia, 1 Ashok Kumar Das, 1 Mohammad Mansoob

More information

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction

Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction Supporting Information Mesoporous N-Doped Carons Prepared with Thermally Removale Nanoparticle Templates: an Efficient Electrocatalyst for Oxygen Reduction Reaction Wenhan Niu, a Ligui Li,* a Xiaojun Liu,

More information

Fast and facile preparation of graphene. oxide and reduced graphene oxide nanoplatelets

Fast and facile preparation of graphene. oxide and reduced graphene oxide nanoplatelets Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets Jianfeng Shen, Yizhe Hu, Min Shi, Xin Lu, Chen Qin, Chen Li, Mingxin Ye Department of Materials Science, Fudan University,

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

nanocomposites: synthesis and characterization

nanocomposites: synthesis and characterization National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca Romania Carbon nanotubes-polypyrrole nanocomposites: synthesis and characterization R. Turcu a, O. Pana

More information

SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT

SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT Yanxin Liu, Zhongjie Du, Yan Li, Chen Zhang, Xiaoping Yang, Hangquan Li, The Key Laboratory of Beijing City on Preparation

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 156 Copper Nanoparticles: Green Synthesis Characterization Y.Suresh*1, S.Annapurna*2, G.Bhikshamaiah*3, A.K.Singh#4 Abstract Present work describes the synthesis nanoparticles using papaya extract as a

More information

[Supporting Information]

[Supporting Information] Transmittance (a.u.) Intensity (a.u.) Intensity (a.u.) [Supporting Information] New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content Sunita Dey, P. Chithaiah,

More information

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral 7. Carbon Nanotubes 1. Overview: Global status market price 2. Types MWNT / SWNT zig-zag / armchair / chiral 3. Properties electrical others 4. Synthesis arc discharge / laser ablation / CVD 5. Applications

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Supporting Information The chemical identity, state and structure of catalytically active

More information

GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, CHARACTERIZATION AND APPLICATIONS

GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, CHARACTERIZATION AND APPLICATIONS Pittsburg State University Pittsburg State University Digital Commons Electronic Thesis Collection Spring 5-12-2017 GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, CHARACTERIZATION

More information

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Supplementary Material (ESI) for Chemical Communications Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Sung Dae Cho, a Jin Kyu Im, b Han-Ki Kim, c Hoon Sik

More information

Production of Multi-walled Carbon Nanotubes via Catalytic Decomposition of Methane in the Chemical Vapor Decomposition process

Production of Multi-walled Carbon Nanotubes via Catalytic Decomposition of Methane in the Chemical Vapor Decomposition process Production of Multi-walled Carbon Nanotubes via Catalytic Decomposition of Methane in the Chemical Vapor Decomposition process GHAZALEH ALLAEDINI 1*, SITI MASRINDA TASIRIN 1, PAYAM AMINAYI 2, ZAHIRA YAAKOB

More information

Supporting Information

Supporting Information Supporting Information Enhanced Stability of Immobilized Pt Nanoparticles on Carbon Nanotubes through Nitrogen Heteroatoms on Doped Carbon Supports Wen Shi, Kuang-Hsu Wu, Junyuan Xu ǁ, Qiang Zhang, Bingsen

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

Microwave-assisted modified polyimide synthesis: A facile route. to the enhancement of visible-light-induced photocatalytic

Microwave-assisted modified polyimide synthesis: A facile route. to the enhancement of visible-light-induced photocatalytic Microwave-assisted modified polyimide synthesis: A facile route to the enhancement of visible-light-induced photocatalytic performance for dye degradation Jhilly Dasgupta a, Jaya Sikder a, *, Sudip Chakraborty

More information

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Dopamine-Mo VI complexation-assisted large-scale aqueous synthesis of single-layer MoS 2 /carbon

More information

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach Xiu-Zhi Tang, a Zongwei Cao, b Hao-Bin Zhang, a Jing Liu

More information

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 216 Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

More information

Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO 2 under Visible Light Irradiation

Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO 2 under Visible Light Irradiation Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO 2 under Visible Light Irradiation Yasuhiro Shiraishi,*, Hirokatsu Sakamoto, Keisuke Fujiwara, Satoshi

More information

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

The characterization of MnO nanostructures synthesized using the chemical bath deposition method The characterization of MnO nanostructures synthesized using the chemical bath deposition method LF Koao 1, F B Dejene 1* and HC Swart 2 1 Department of Physics, University of the Free State (Qwaqwa Campus),

More information

SYNTHESIS OF CARBON NANOPARTICLES. 4.0 Production and Characterization of Carbon Nanoballs and other Nanoparticles

SYNTHESIS OF CARBON NANOPARTICLES. 4.0 Production and Characterization of Carbon Nanoballs and other Nanoparticles 4.0 Production and Characterization of Carbon Nanoballs and other Nanoparticles A series of experiments was carried out to synthesize carbon nanoparticles and membrane for fuel cell applications and the

More information

TECHNICAL SPECIFICATION

TECHNICAL SPECIFICATION TECHNICAL SPECIFICATION ISO/TS 13278 First edition 2011-11-01 Nanotechnologies Determination of elemental impurities in samples of carbon nanotubes using inductively coupled plasma mass spectrometry Nanotechnologies

More information

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F Today s advanced batteries require a range of specialized analytical tools to better understand the electrochemical processes that occur during battery cycling. Evans Analytical Group (EAG) offers a wide-range

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and expanded graphites (EG-1hr and EG-5hr). The crystalline structures of PG, GO, EG-1hr, and EG-5hr were characterized

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Supporting Information for Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation Haiqing Zhou a,1, Fang Yu a,1, Jingying Sun a, Ran He a, Shuo Chen

More information

Electronic Supplementary Information. Experimental details graphene synthesis

Electronic Supplementary Information. Experimental details graphene synthesis Electronic Supplementary Information Experimental details graphene synthesis Graphene is commercially obtained from Graphene Supermarket (Reading, MA, USA) 1 and is produced via a substrate-free gas-phase

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Information Vertical Heterostructures of MoS2 and Graphene Nanoribbons

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol

Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol Hideyuki Igarashi, a Hiroto Murakami, a Yoichi Murakami, b Shigeo Maruyama,

More information

Electronic Supplementary Information (ESI )

Electronic Supplementary Information (ESI ) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI ) Hollow nitrogen-doped carbon spheres as an efficient

More information

PREPARATION AND CHARACTERIZATION OF ATBN- FUNCTIONALIZED GRAPHENE NANOPLATELETS AND THE EPOXY NANOCOMPOSITES

PREPARATION AND CHARACTERIZATION OF ATBN- FUNCTIONALIZED GRAPHENE NANOPLATELETS AND THE EPOXY NANOCOMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS PREPARATION AND CHARACTERIZATION OF ATBN- FUNCTIONALIZED GRAPHENE NANOPLATELETS AND THE EPOXY NANOCOMPOSITES J. H. Hwang 1, D. Cho 1 *, L. T. Drzal

More information

Surfactant-Free Solution Synthesis of Fluorescent Platinum Subnanoclusters

Surfactant-Free Solution Synthesis of Fluorescent Platinum Subnanoclusters This journal is (c) The Royal Society of Chemistry 21 Surfactant-Free Solution Synthesis of Fluorescent Platinum Subnanoclusters Hideya KAWASAKI,*, Hiroko YAMAMOTO, Hiroki FUJIMORI, Ryuichi ARAKAWA, Mitsuru

More information

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2011) Special Session 5 6-2011 Understanding Irreducible and Reducible Oxides as Catalysts for Carbon

More information

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite RESULTS AND DISCUSSION 4.1. Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite 4.1.1. Scanning electron microscopy analysis (SEM) SEM images of prepared CaO are shown in Fig. 4.1 (a and b). CaO

More information

Supporting Information. Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of. Fluoride from Water: A Mechanistic and Kinetic Study

Supporting Information. Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of. Fluoride from Water: A Mechanistic and Kinetic Study Supporting Information Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of Fluoride from Water: A Mechanistic and Kinetic Study Gautam Kumar Sarma and Md. Harunar Rashid* Department

More information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 MoS 2 /TiO 2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly

More information

TECHNICAL SPECIFICATION

TECHNICAL SPECIFICATION TECHNICAL SPECIFICATION ISO/TS 13278 First edition 2011-11-01 Nanotechnologies Determination of elemental impurities in samples of carbon nanotubes using inductively coupled plasma mass spectrometry Nanotechnologies

More information

Supporting Information

Supporting Information Supporting Information Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur Drew C. Higgins, Md Ariful Hoque, Fathy Hassan, Ja-Yeon Choi, Baejung Kim, Zhongwei

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

Candle Flame Synthesis and Electrochemical Behavior of Chain-like Carbon Nano-onions on 304 Stainless Steel

Candle Flame Synthesis and Electrochemical Behavior of Chain-like Carbon Nano-onions on 304 Stainless Steel Chiang Mai J. Sci. 2015; 42(3) 745 Chiang Mai J. Sci. 2015; 42(3) : 745-751 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Candle Flame Synthesis and Electrochemical Behavior of Chain-like Carbon

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201601814 Nitrogen-Doped Core-Sheath Carbon Nanotube Array for

More information

Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization

Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization OPEN ACCESS http://sciforum.net/conference/ecm-1 Proceedings Paper Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization Fabio Faraguna, Elvira

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

Enhanced solvent-free selective oxidation of cyclohexene to. 1,2-cyclohexanediol by nanotubes

Enhanced solvent-free selective oxidation of cyclohexene to. 1,2-cyclohexanediol by nanotubes . Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A Supporting Information Enhanced solvent-free selective oxidation of cyclohexene to 1,2-cyclohexanediol by polyaniline@halloysite

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Exploring the Electrochemical Performance of Graphite and Graphene Paste Electrodes Composed of Varying Lateral Flake Sizes

Exploring the Electrochemical Performance of Graphite and Graphene Paste Electrodes Composed of Varying Lateral Flake Sizes Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Electronic Supplementary Information (ESI): Exploring the Electrochemical Performance

More information

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive

More information

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before conversion. Most of the graphene sample was folded after

More information

Electronic Supplementary Information (ESI):

Electronic Supplementary Information (ESI): Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI): Surfactant exfoliated 2D hexagonal

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 213. Supporting Information for Adv. Energy Mater., DOI: 1.12/aenm.2131565 Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Supporting Information Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Liuan Gu, Jingyu Wang *, Hao Cheng, Yunchen Du and Xijiang Han* Department

More information

Aminopropyltrimethoxysilane-Functionalized Boron Nitride. Nanotube Based Epoxy Nanocomposites with Simultaneous High

Aminopropyltrimethoxysilane-Functionalized Boron Nitride. Nanotube Based Epoxy Nanocomposites with Simultaneous High Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Aminopropyltrimethoxysilane-Functionalized

More information

SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS. Abstract. Introduction. Experimental

SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS. Abstract. Introduction. Experimental SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS Shinn-Shyong Tzeng, Ting-Bin Liang, Sheng-Chuan Wang, Ting-Yu Wu and Yu-Hun Lin Department of Materials Engineering,

More information

For more information, please contact: or +1 (302)

For more information, please contact: or +1 (302) Introduction Graphene Raman Analyzer: Carbon Nanomaterials Characterization Dawn Yang and Kristen Frano B&W Tek Carbon nanomaterials constitute a variety of carbon allotropes including graphene, graphene

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.01 pp 226-232, 2016 One pot easy synthesis and optical characterization of Cd 1-x Co x S/rGO composites starting

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Scalable Holey Graphene Synthesis and Dense Electrode Fabrication Toward High Performance Ultracapacitors

Scalable Holey Graphene Synthesis and Dense Electrode Fabrication Toward High Performance Ultracapacitors Supporting Information Scalable Holey Graphene Synthesis and Dense Electrode Fabrication Toward High Performance Ultracapacitors Xiaogang Han, 1 Michael R. Funk, 2,3 Fei Shen, 1 Yu-Chen Chen, 1 Yuanyuan

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201302406 Mechanically Flexible and Multifunctional Polymer-Based Graphene

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Introduction to Cyclic Voltammetry Measurements *

Introduction to Cyclic Voltammetry Measurements * OpenStax-CNX module: m34669 1 Introduction to Cyclic Voltammetry Measurements * Xianyu Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Supporting Information

Supporting Information Supporting Information 1. Microcapsules characterization 1.1. Thermogravimetric analysis (TGA) Thermal degradation in air and nitrogen of the synthesized microcapsules is shown in figure S1. 100 Weight

More information

Supporting Information

Supporting Information Supporting Information Identification of the nearby hydroxyls role in promoting HCHO oxidation over a Pt catalyst Ying Huo #, Xuyu Wang #, Zebao Rui *, Xiaoqing Yang, Hongbing Ji * School of Chemical Engineering

More information

Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface.

Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface. Synopsis Synopsis of the thesis entitled Titanium Nitride-ased Electrode Materials for Oxidation of Small Molecules: pplications in Electrochemical Energy Systems submitted by Muhammed Musthafa O. T under

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/9/e1600858/dc1 Supplementary Materials for Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis This PDF file includes: Jiawei Liu,

More information

Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion

Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion Supporting information for: Defect mitigation of Solution-Processed 2D WSe 2 Nano-flakes for Solar-to- Hydrogen Conversion Xiaoyun Yu, Néstor Guijarro, Melissa Johnson, and Kevin Sivula* Laboratory for

More information

The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4

The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4 Nor Aida

More information

Low temperature atomic layer deposition of cobalt oxide as an effective catalyst for photoelectrochemical water splitting devices

Low temperature atomic layer deposition of cobalt oxide as an effective catalyst for photoelectrochemical water splitting devices Low temperature atomic layer deposition of cobalt oxide as an effective catalyst for photoelectrochemical water splitting devices Jiyeon Kim, a Tomi Iivonen, b Jani Hämäläinen, b Marianna Kemell, b Kristoffer

More information

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide Supplementary Information for Scientific Reports Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide Sheets for the Application in High-Performance Asymmetric

More information

Selective Optical Property Modification of Double Walled Carbon Nanotubes by Fluorination

Selective Optical Property Modification of Double Walled Carbon Nanotubes by Fluorination Selective Optical Property Modification of Double Walled Carbon Nanotubes by Fluorination Takuya Hayashi, Daisuke Shimamoto, Yoong Ahm Kim, Hiroyuki Muramatsu, Fujio Okinor, Hidekazu Touhara, Takashi Shimada,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information Simple conversion of earth-abundant coal to high-performance

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information