Self-Assembly on the Sphere: A Route to Functional Colloids

Size: px
Start display at page:

Download "Self-Assembly on the Sphere: A Route to Functional Colloids"

Transcription

1 Self-Assembly on the Sphere: A Route to Functional Colloids Tanya L. Chantawansri Glenn H. Fredrickson, Hector D. Ceniceros, and Carlos J. García-Cervera January 23, 2007 CFDC Annual Meeting 2007

2 Contents Motivation 2D Sphere Model/Results Preliminary 3D Sphere Model/Results Current Status Conclusion / Future Plans

3 Functional Colloids Stable suspension of nanometer-sized particles Particles exhibiting novel surface functionalities Structural elements fashioned from several different materials Quantum-scale dimensions produce electronic, optical, catalytic properties different from the bulk material Offers a route to the simple assembly of complex structures Can be used to create a variety of electronic and sensor components A.N. Shipway, E. Katz, and I. Willner, CHEMPHYSCHEM, 1, 18 (2000).

4 Functional Colloids Can be used to build ordered materials on small length scales (micrometer/submicrometer) Particles at this length scale are mostly spheres Important to control the packing of spheres V.N. Manoharan and DJ Pine, MRS Bulletin, (2004).

5 Multivalent Nanoparticles Nanoparticles with precisely controlled number and location of functional sites Phase separation between immiscible polymers nanostructures that comprise of isolated domains Simulations of end-grafted homopolymers Produced structures similar to those found in small clusters of colloidal microspheres (Roan 2006) Experimentally realizable: (Li et al, 2005) Grafted blend of polymer brushes on silica particles Obtained nanoparticles with equilibrium structures induced by chemical incompatibility

6 2D Model Thin but finite film Thin Block Copolymer Film A B Composition only varies parallel to the film surface θ : Colatitude є [0,π] Φ: Longitude є [0,2π) Can be experimentally viable for films where the radius of the sphere is much larger than the thickness

7 Thomson Problem Attempts to find the ground state (lowestenergy) arrangement of N Coulomb charges confined to the surface of a sphere. Bausch et al. (2003) geology.er.usgs.gov

8 Diblock Copolymers in Flat Space Field Theory Representation of the Hamiltonian H[W +,W - ] W + : Pressure Field W - : Exchange Chemical Potential Field f: Fraction of A monomers in the polymer chain χn: AB Flory Parameter, Index of Polymerization Q[w a,w b ]: Partition function Matsen, (2002) M.W. Matsen and M. Schick, PRL 72, 2660 (1994).

9 Diblock Copolymers in Curved Space Effective Hamiltonian: Mean field (saddle point) solution (SCFT) Solving for Q[w a,w b ]: most numerically expensive step Modified Diffusion Equation:

10 Spherical Harmonics (SH) Approximate a function as: SH are Eigenfunctions of Laplacian operator: We can easily transform between l,m space and real space using SPHEREPACK 3.1

11 Solving the 2D Modified Diffusion Equation Modified Diffusion Equation: Operator Splitting Method: Real space l,m space Real space K. O. Rasmussen and G. Kalosakas, Journal of Polymer Science B: Polymer Physics, 2002, 40, 1777

12 Basic Schematic

13 Defects in the Cylindrical and Lamellar Phase Flat Space Self Assembly: Ordered Lattices with few or no defects Sphere: Topology requires defects to occur Cylindrical Phase defect charge = 12 Always 12 more 5-fold than 7-fold disclinations.

14 Cylindrical Phase 12 (5-fold disclinations) 69 (5-fold), 350 (6-fold), and 57 (7-fold)

15 2D SCFT Model: Cylindrical Phase χn=25.0, f = 0.8

16 Grain Boundaries on Spheres Properties: High angled (30º) and freely terminates within the sphere. Consists of 3-5 dislocations and one excess 5-fold disclination. Total of 12 per a sphere Present when: R/a 5 [ a = mean domain spacing] # of domains 360 A.R. Bausch et al. Science, 2003, 299,

17 2D SCFT Model: Grain Boundary Scars R=20 Rg, χn=25.0, f=0.8 Total of 446 domains: 69 (5-fold), 350 (6-fold), and 57 (7-fold)

18 Lamellar phase Spiral Hedgehog Quasibaseball

19 2D SCFT Model: Lamellar Phase χn=12.5, f = 0.5

20 2D SCFT Model: Lamellar Phase χn=12.5, f = 0.5

21 3D model Thin Block Copolymer Film Thin, finite film Composition varies both parallel to the film surface and in the radial direction θ : Colatitude є [0,π] Φ: Longitude є [0,2π) r: Radius є [R 0,R f ] A B

22 Solving the 3D Modified Diffusion Equation Modified Diffusion Equation: Backwards Differentiation Formula (BDF4) / Adams-Bashford: Orientational portion of Laplacian: spherical harmonics Radial portion: 2 nd order accurate finite difference (O(Δr 2 )) and Robbins Boundary Conditions E. W. Cochran, C. J. Garcia-Cervera, and G. H. Fredrickson Macromolecules 39, 2449

23 Robbins Boundary Conditions Incompressibility constraint: Neumann BC: Suitable for neutral surfaces Robbins BC: Surface has a preferential attraction to one component G. H. Fredrickson, Oxford University Press 2006

24 Current Status

25 3D Preliminary Results χn=15.0, f = 0.5 φ A r (R g0 ) R o = 3 R go, R f = 4 R go Robbins BC at R o, Neumann BC at R f

26 3D Preliminary Results χn=15.0, f = 0.5 R o = 4 R go, R f = 6.1 R go r = 4, 4.51, 5.07, 5.59, 6.1 R g0 Neumann BC at R o and R f (neutral surface)

27 Conclusion/ Future Plans Currently implemented A self-assembly model for a free AB diblock copolymer thin film on the surface of a sphere Surface can prefer either the A or B component Future Plans Develop a self-assembly model for grafted AB diblock copolymers on the surface of the sphere Can compare the different self-assembled patterns obtained from the grafted/free systems Parallelization Domain decomposition and MPI communication calls

28 Acknowledgements August Bosse and Alexander Hexemer Kirill Katsov, Richard Elliot, David R. Nelson, Vincenzo Vitelli, Erin M. Lennon, Won Bo Lee. Funding: NSF IGERT grant DGE MRL Central Facilities: MRSEC Program NSF DMR

Field-based Simulations for Block Copolymer Lithography (Self-Assembly of Diblock Copolymer Thin Films in Square Confinement)

Field-based Simulations for Block Copolymer Lithography (Self-Assembly of Diblock Copolymer Thin Films in Square Confinement) Field-based Simulations for Block Copolymer Lithography (Self-Assembly of Diblock Copolymer Thin Films in Square Confinement) Su-Mi Hur Glenn H. Fredrickson Complex Fluids Design Consortium Annual Meeting

More information

High-Resolution Implementation of Self-Consistent Field Theory

High-Resolution Implementation of Self-Consistent Field Theory High-Resolution Implementation of Self-Consistent Field Theory Eric W. Cochran Chemical and Biological Engineering Iowa State University Carlos Garcia-Cervera Department of Mathematics University of California

More information

Self-consistent field theory simulations of block copolymer assembly on a sphere

Self-consistent field theory simulations of block copolymer assembly on a sphere Self-consistent field theory simulations of block copolymer assembly on a sphere Tanya L. Chantawansri, 1 August W. Bosse, 2 Alexander Hexemer, 3, Hector D. Ceniceros, 4 Carlos J. García-Cervera, 4 Edward

More information

Study of Block Copolymer Lithography using SCFT: New Patterns and Methodology

Study of Block Copolymer Lithography using SCFT: New Patterns and Methodology Study of Block Copolymer Lithography using SCFT: New Patterns and Methodology Su-Mi Hur Glenn Fredrickson Complex Fluids Design Consortium Annual Meeting Monday, February 2, 2009 Materials Research Laboratory

More information

Comparison of Pseudo-Spectral Algorithms for. Field-Theoretic Simulations of Polymers

Comparison of Pseudo-Spectral Algorithms for. Field-Theoretic Simulations of Polymers Comparison of Pseudo-Spectral Algorithms for Field-Theoretic Simulations of Polymers Debra J. Audus,, Kris T. Delaney, Hector D. Ceniceros, and Glenn H. Fredrickson,,, Materials Research Laboratory, University

More information

arxiv: v1 [cond-mat.soft] 11 Oct 2014

arxiv: v1 [cond-mat.soft] 11 Oct 2014 Phase diagram of diblock copolymer melt in dimension d=5 M. Dziecielski, 1 K. Lewandowski, 1 and M. Banaszak 1, 1 Faculty of Physics, A. Mickiewicz University ul. Umultowska 85, 61-614 Poznan, Poland (Dated:

More information

Unit-Cell Approximation for Diblock Copolymer Brushes Grafted to Spherical Particles

Unit-Cell Approximation for Diblock Copolymer Brushes Grafted to Spherical Particles pubs.acs.org/macromolecules Unit-Cell Approximation for Diblock Copolymer Brushes Grafted to Spherical Particles G. H. Griffiths,* B. Vorselaars, and M. W. Matsen* School of Mathematical and Physical Sciences,

More information

Enhancing the Potential of Block Copolymer Lithography with Polymer Self-Consistent Field Theory Simulations

Enhancing the Potential of Block Copolymer Lithography with Polymer Self-Consistent Field Theory Simulations 8290 Macromolecules 2010, 43, 8290 8295 DOI: 10.1021/ma101360f Enhancing the Potential of Block Copolymer Lithography with Polymer Self-Consistent Field Theory Simulations Rafal A. Mickiewicz,, Joel K.

More information

Supporting Online Material. Directed Assembly of Block Copolymer Blends into Non-regular Device Oriented Structures

Supporting Online Material. Directed Assembly of Block Copolymer Blends into Non-regular Device Oriented Structures Supporting Online Material Directed Assembly of Block Copolymer Blends into Non-regular Device Oriented Structures Mark P. Stoykovich, 1 Marcus Müller, 2 Sang Ouk Kim, 1* Harun H. Solak, 3 Erik W. Edwards,

More information

Supratelechelics: thermoreversible bonding in difunctional polymer blends

Supratelechelics: thermoreversible bonding in difunctional polymer blends Supratelechelics: thermoreversible bonding in difunctional polymer blends Richard Elliott Won Bo Lee Glenn Fredrickson Complex Fluids Design Consortium Annual Meeting MRL, UCSB 02/02/09 Supramolecular

More information

Building on Sir Sam s Formalism: Molecularly-Informed Field-Theoretic Simulations of Soft Matter

Building on Sir Sam s Formalism: Molecularly-Informed Field-Theoretic Simulations of Soft Matter Building on Sir Sam s Formalism: Molecularly-Informed Field-Theoretic Simulations of Soft Matter Glenn H. Fredrickson Departments of Chemical Engineering & Materials Materials Research Laboratory (MRL)

More information

My path: BS, Rose-Hulman PhD, UIUC Postdoc, Sandia. Map from Wikimedia Commons

My path: BS, Rose-Hulman PhD, UIUC Postdoc, Sandia. Map from Wikimedia Commons CoarseGrained Modeling of Ionomers and SaltDoped Block Copolymers Lisa Hall H.C. Slip Slider Assistant Professor William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University

More information

Self-Assembled Morphologies of a Diblock Copolymer Melt Confined in a Cylindrical Nanopore

Self-Assembled Morphologies of a Diblock Copolymer Melt Confined in a Cylindrical Nanopore 8492 Macromolecules 2006, 39, 8492-8498 Self-Assembled Morphologies of a Diblock Copolymer Melt Confined in a Cylindrical Nanopore Weihua Li and Robert A. Wickham* Department of Physics, St. Francis XaVier

More information

Soft Nanopolyhedra. Jiunn-Ren Roan. Department of Physics National Chung Hsing University Taichung, Taiwan

Soft Nanopolyhedra. Jiunn-Ren Roan. Department of Physics National Chung Hsing University Taichung, Taiwan Soft Nanopolyhedra Jiunn-Ren Roan Department of Physics National Chung Hsing University Taichung, Taiwan Polymers as flexible chains PE PS PMMA PEO, PEG PDMS From P.-G. de Gennes, Scaling Concepts in Polymer

More information

Chapter 2. Block copolymers. a b c

Chapter 2. Block copolymers. a b c Chapter 2 Block copolymers In this thesis, the lamellar orientation in thin films of a symmetric diblock copolymer polystyrene-polymethylmethacylate P(S-b-MMA) under competing effects of surface interactions

More information

Binary Hairy Nanoparticles: Recent Progress in Theory and Simulations

Binary Hairy Nanoparticles: Recent Progress in Theory and Simulations Binary Hairy Nanoparticles: Recent Progress in Theory and Simulations Cangyi Chen, Ping Tang, Feng Qiu Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan

More information

Project Mentor(s): Dr. Evelyn Sander and Dr. Thomas Wanner

Project Mentor(s): Dr. Evelyn Sander and Dr. Thomas Wanner STABILITY OF EQUILIBRIA IN ONE DIMENSION FOR DIBLOCK COPOLYMER EQUATION Olga Stulov Department of Mathematics, Department of Electrical and Computer Engineering State University of New York at New Paltz

More information

Fluctuations in polymer blends

Fluctuations in polymer blends Fluctuations in polymer blends Dominik Düchs and Friederike Schmid Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld E-mail: {schmid, duechs}@physik.uni-bielefeld.de We have

More information

Phase Diagram of Diblock Copolymer Melt in Dimension d = 5

Phase Diagram of Diblock Copolymer Melt in Dimension d = 5 COMPUTTIONL METHODS IN SCIENCE ND TECHNOLOGY 7(-2), 7-23 (2) Phase Diagram o Diblock Copolymer Melt in Dimension d = Faculty o Physics,. Mickiewicz University ul. Umultowska 8, - Poznań, Poland e-mail:

More information

Hexatic and microemulsion phases in a 2D quantum Coulomb gas

Hexatic and microemulsion phases in a 2D quantum Coulomb gas Hexatic and microemulsion phases in a 2D quantum Coulomb gas Bryan K Clark (University of Illinois at Urbana Champaign) Michele Casula (Ecole Polytechnique, Paris) David M Ceperley (University of Illinois

More information

Block copolymer templated self-assembly of disk-shaped molecules. Abstract

Block copolymer templated self-assembly of disk-shaped molecules. Abstract Block copolymer templated self-assembly of disk-shaped molecules J.L. Aragones a and A. Alexander-Katz b Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge,

More information

Diblock Copolymer Melt in Spherical Unit Cells of Higher Dimensionalities

Diblock Copolymer Melt in Spherical Unit Cells of Higher Dimensionalities Vol. 11 (01 ACTA PHYSICA POLONICA A No. 3 Diblock Copolymer Melt in Spherical Unit Cells of Higher Dimensionalities M. Banaszak, A. Koper, P. Knychaªa and K. Lewandowski Faculty of Physics, A. Mickiewicz

More information

Monica Olvera de la Cruz Northwestern University Department of Materials Science and Engineering 2220 Campus Drive Evanston, IL 60202

Monica Olvera de la Cruz Northwestern University Department of Materials Science and Engineering 2220 Campus Drive Evanston, IL 60202 Introduction to Biomaterials and Biomolecular Self Assembly Monica Olvera de la Cruz orthwestern University Department of Materials Science and Engineering 0 Campus Drive Evanston, IL 600 Outline Introduction

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films

Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films EUROPHYSICS LETTERS 15 December 1997 Europhys. Lett., 40 (6), pp. 643-648 (1997) Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films T. L. Morkved and H. M. Jaeger The James

More information

Monte Carlo Study of Crystalline Order and Defects on Weakly Curved Surfaces

Monte Carlo Study of Crystalline Order and Defects on Weakly Curved Surfaces University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 11-29-2007 Monte Carlo Study of Crystalline Order and Defects on Weakly Curved Surfaces Alexander Hexemer

More information

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan Department of Chemical Engineering University of Texas@Austin Origins of Mechanical and Rheological Properties of Polymer Nanocomposites Venkat Ganesan $$$: NSF DMR, Welch Foundation Megha Surve, Victor

More information

I. NANOFABRICATION O AND CHARACTERIZATION Chap. 2 : Self-Assembly

I. NANOFABRICATION O AND CHARACTERIZATION Chap. 2 : Self-Assembly I. Nanofabrication and Characterization : TOC I. NANOFABRICATION O AND CHARACTERIZATION Chap. 1 : Nanolithography Chap. 2 : Self-Assembly Chap. 3 : Scanning Probe Microscopy Nanoscale fabrication requirements

More information

Strong-segregation limit of the self-consistent field theory for diblock copolymer melts

Strong-segregation limit of the self-consistent field theory for diblock copolymer melts Eur. Phys. J. E 33, 97 36 1) DOI 1.11/epje/i1-1673- Regular rticle THE EUROPEN PHYSICL JOURNL E Strong-segregation limit of the self-consistent field theory for diblock copolymer melts M.W. Matsen a Department

More information

Simulations of Self-Assembly of Polypeptide-Based Copolymers

Simulations of Self-Assembly of Polypeptide-Based Copolymers East China University of Science and Technology Theory, Algorithms and Applications of Dissipative Particle Dynamics Simulations of Self-Assembly of Polypeptide-Based Copolymers Jiaping LIN ( 林嘉平 ) East

More information

Ordered Morphologies of Confined Diblock Copolymers

Ordered Morphologies of Confined Diblock Copolymers Mat. Res. Soc. Symp. Proc. Vol. 61 21 Materials Research Society Ordered Morphologies of Confined Diblock Copolymers Yoav Tsori and David Andelman School of Physics and Astronomy Raymond and Beverly Sackler

More information

Nanostructured Materials and New Processing Strategies Through Polymer Chemistry

Nanostructured Materials and New Processing Strategies Through Polymer Chemistry Nanostructured Materials and New Processing Strategies Through Polymer Chemistry Professor Christopher J. Ellison McKetta Department of Chemical Engineering and Texas Materials Institute The University

More information

Nanopattern Formation of a Block Copolymer by Water as a Non-Solvent

Nanopattern Formation of a Block Copolymer by Water as a Non-Solvent Nanopattern Formation of a Block Copolymer by Water as a Non-Solvent Shigeru Okamoto Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan. okamoto.shigeru@nitech.ac.jp Keywords:

More information

Applicable Simulation Methods for Directed Self-Assembly -Advantages and Disadvantages of These Methods

Applicable Simulation Methods for Directed Self-Assembly -Advantages and Disadvantages of These Methods Review Applicable Simulation Methods for Directed Self-Assembly -Advantages and Disadvantages of These Methods Hiroshi Morita Journal of Photopolymer Science and Technology Volume 26, Number 6 (2013) 801

More information

Kinetics of layer hopping in a diblock copolymer lamellar phase

Kinetics of layer hopping in a diblock copolymer lamellar phase Eur. Phys. J. E 27, 407 411 (2008) DOI 10.1140/epje/i2008-10402-8 THE EUROPEAN PHYSICAL JOURNAL E Kinetics of layer hopping in a diblock copolymer lamellar phase A.B. Croll 1,M.W.Matsen 2, A.-C. Shi 1,

More information

Improving polymeric microemulsions with block copolymer polydispersity

Improving polymeric microemulsions with block copolymer polydispersity Improving polymeric microemulsions with block copolymer polydispersity Article Published Version Thompson, R. B. and Matsen, M. W. (2000) Improving polymeric microemulsions with block copolymer polydispersity.

More information

Supporting Information for: Rapid Ordering in. Wet Brush Block Copolymer/Homopolymer

Supporting Information for: Rapid Ordering in. Wet Brush Block Copolymer/Homopolymer Supporting Information for: Rapid Ordering in Wet Brush Block Copolymer/Homopolymer Ternary Blends Gregory S. Doerk* and Kevin G. Yager Center for Functional Nanomaterials, Brookhaven National Laboratory,

More information

Perfect mixing of immiscible macromolecules at fluid interfaces

Perfect mixing of immiscible macromolecules at fluid interfaces Perfect mixing of immiscible macromolecules at fluid interfaces Sergei S. Sheiko, 1* Jing Zhou, 1 Jamie Boyce, 1 Dorota Neugebauer, 2+ Krzysztof Matyjaszewski, 2 Constantinos Tsitsilianis, 4 Vladimir V.

More information

Confinement of polymer chains and gels

Confinement of polymer chains and gels Confinement of polymer chains and gels Nefeli Georgoulia - Student number: 70732831 1 Introduction Confinement of polymer chains is significant in industrial as well as biological applications. For this

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

PHYSICAL REVIEW E 69,

PHYSICAL REVIEW E 69, Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers Ping Tang, Feng Qiu,* Hongdong Zhang, and Yuliang Yang Department of Macromolecular Science, The Key Laboratory

More information

Hierarchy in Block Copolymer Morphology (Web report) MANGESH CHAMPHEKAR (Materials Science and Engg.)

Hierarchy in Block Copolymer Morphology (Web report) MANGESH CHAMPHEKAR (Materials Science and Engg.) Hierarchy in Block Copolymer Morphology (Web report) By MANGESH CHAMPHEKAR (Materials Science and Engg.) ABSTRACT In the recent years, the study of block copolymers has received special attention from

More information

RESEARCH HIGHLIGHTS. Polymer Photonic Crystals by Self-Assembly Raymond Weitekamp

RESEARCH HIGHLIGHTS. Polymer Photonic Crystals by Self-Assembly Raymond Weitekamp RESEARCH HIGHLIGHTS From the Resnick Sustainability Institute Graduate Research Fellows at the California Institute of Technology Polymer Photonic Crystals by Self-Assembly Global Significance Urbanization

More information

Field Theoretic Simulations of Complex Coacervates

Field Theoretic Simulations of Complex Coacervates FieldTheoretic Simulations of Complex Coacervates Debra J. Audus Glenn H. Fredrickson CFDC 2009 Annual Meeting Contents Introduction/Motivation Theory and the Model Polyelectrolyte Phase Diagrams Theoretical

More information

Electrostatic Self-assembly : A New Route Towards Nanostructures

Electrostatic Self-assembly : A New Route Towards Nanostructures 1 Electrostatic Self-assembly : A New Route Towards Nanostructures J.-F. Berret, P. Hervé, M. Morvan Complex Fluids Laboratory, UMR CNRS - Rhodia n 166, Cranbury Research Center Rhodia 259 Prospect Plains

More information

A theoretical study for nanoparticle partitioning in the lamellae of diblock copolymers

A theoretical study for nanoparticle partitioning in the lamellae of diblock copolymers THE JOURNAL OF CHEMICAL PHYSICS 128, 074901 2008 A theoretical study for nanoparticle partitioning in the lamellae of diblock copolymers Jiezhu Jin and Jianzhong Wu a Department of Chemical and Environmental

More information

Imaging Polymer Morphology Using Atomic Force Microscopy

Imaging Polymer Morphology Using Atomic Force Microscopy Imaging Polymer Morphology Using Atomic Force Microscopy Russell J. Composto Materials Science and Engineering, and the Laboratory for Research on the Structure of Matter, University of Pennsylvania Agilent

More information

Topological defects in spherical crystals

Topological defects in spherical crystals Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: María del Carmen Miguel López Abstract: Spherical crystals present properties that are quite different

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

DISCRETE MINIMAL ENERGY PROBLEMS

DISCRETE MINIMAL ENERGY PROBLEMS DISCRETE MINIMAL ENERGY PROBLEMS Lecture II E. B. Saff Center for Constructive Approximation Vanderbilt University University of Crete, Heraklion May, 2017 Recall Notation ω N = {x 1,..., x N } A, A compact,

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

φ(z) Application of SCF to Surfaces and Interfaces (abridged from notes by D.J. Irvine)

φ(z) Application of SCF to Surfaces and Interfaces (abridged from notes by D.J. Irvine) Application of SCF to Surfaces and Interfaces (abridged from notes by D.J. Irvine) Edwards continuum field theory reviewed above is just one flavor of selfconsistent mean field theory, but all mean field

More information

arxiv: v1 [cond-mat.mtrl-sci] 14 Nov 2018

arxiv: v1 [cond-mat.mtrl-sci] 14 Nov 2018 Self-assembly of cylinder forming diblock copolymers on modulated substrates: a simulation study arxiv:1811.06084v1 [cond-mat.mtrl-sci] 14 Nov 2018 Karim Gadelrab and Alfredo Alexander-Katz* Department

More information

Size-Selective Nanoparticle Assembly on Substrates. by DNA Density Patterning

Size-Selective Nanoparticle Assembly on Substrates. by DNA Density Patterning Supporting Information: Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning Benjamin D. Myers 1,2, Qing-Yuan Lin 1, Huanxin Wu 3, Erik Luijten 1,3,4, Chad A. Mirkin 1,5,6 and Vinayak

More information

Efficient Order-Adaptive Methods for Polymer Self-Consistent Field Theory

Efficient Order-Adaptive Methods for Polymer Self-Consistent Field Theory Efficient Order-Adaptive Methods for Polymer Self-Consistent Field Theory Hector D. Ceniceros November 3, 218 Abstract A highly accurate and memory-efficient approach for the solution of polymer selfconsistent

More information

Lecture 8. Polymers and Gels

Lecture 8. Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Many of physical properties of polymers have universal characteristic related to

More information

MOLECULAR DYNAMICS SIMULATIONS OF IONIC COPOLYMERS

MOLECULAR DYNAMICS SIMULATIONS OF IONIC COPOLYMERS COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 6, 15-24 (2000) MOLECULAR DYNAMICS SIMULATIONS OF IONIC COPOLYMERS MICHAŁ BANASZAK Macromolecular Physics Laboratory Institute of Physics, Adam Mickiewicz

More information

Spherical phases with tunable steric interactions formed in

Spherical phases with tunable steric interactions formed in pubs.acs.org/macroletters σ Phase Formed in Conformationally Asymmetric AB-Type Block Copolymers Nan Xie, Weihua Li,*, Feng Qiu, and An-Chang Shi State Key Laboratory of Molecular Engineering of Polymers,

More information

Dynamic modelling of morphology development in multiphase latex particle Elena Akhmatskaya (BCAM) and Jose M. Asua (POLYMAT) June

Dynamic modelling of morphology development in multiphase latex particle Elena Akhmatskaya (BCAM) and Jose M. Asua (POLYMAT) June Dynamic modelling of morphology development in multiphase latex particle Elena Akhmatskaya (BCAM) and Jose M. Asua (POLYMAT) June 7 2012 Publications (background and output) J.M. Asua, E. Akhmatskaya Dynamic

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Coupled flow-polymer dynamics via statistical field theory: modeling and computation

Coupled flow-polymer dynamics via statistical field theory: modeling and computation Coupled flow-polymer dynamics via statistical field theory: modeling and computation Hector D. Ceniceros 1 Glenn H. Fredrickson 2 George O. Mohler 3, Abstract Field-theoretic models, which replace interactions

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Physical interpretation of coarse-grained bead-spring models of complex fluids. Kirill Titievsky

Physical interpretation of coarse-grained bead-spring models of complex fluids. Kirill Titievsky Physical interpretation of coarse-grained bead-spring models of complex fluids by Kirill Titievsky Submitted to the Department of Chemical Engineering in partial fulfillment of the requirements for the

More information

Directed Assembly of Functionalized Nanoparticles with Amphiphilic Diblock Copolymers. Contents

Directed Assembly of Functionalized Nanoparticles with Amphiphilic Diblock Copolymers. Contents Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supplementary Information for Directed Assembly of Functionalized Nanoparticles

More information

2 Current status of the project

2 Current status of the project 1 Background The current research project started in September 2015 and its objective was to prepare and characterizise supramolecular block copolymer thin lms. Special interest was to study whether it

More information

Self-Assembly of Polyhedral Hybrid Colloidal Particles

Self-Assembly of Polyhedral Hybrid Colloidal Particles Mater. Res. Soc. Symp. Proc. Vol. 1135 2009 Materials Research Society 1135-CC06-08 Self-Assembly of Polyhedral Hybrid Colloidal Particles Adeline Perro 1, Etienne Duguet 3, Serge Ravaine 4 and Vinothan

More information

Supporting Information

Supporting Information Supporting Information Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix Yulong Chen 1, Qian Xu 1, Yangfu Jin 1, Xin Qian 1 *, Li Liu 2, Jun Liu 2 *, and Venkat Ganesan 3 *

More information

Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length

Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length THE JOURNAL OF CHEMICAL PHYSICS 125, 184903 2006 Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length Mark A. Horsch and Zhenli Zhang

More information

Supporting Information

Supporting Information Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles Yunyong Guo, Saman Harirchian-Saei, Celly M. S. Izumi and Matthew G. Moffitt* Department of Chemistry, University of Victoria, P.O. Box

More information

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial: St Hugh s 2 nd Year: Quantum Mechanics II Reading The following sources are recommended for this tutorial: The key text (especially here in Oxford) is Molecular Quantum Mechanics, P. W. Atkins and R. S.

More information

Final Morphology of Complex Materials

Final Morphology of Complex Materials 120314 Final Morphology of Complex Materials 1) Proteins are the prototypical model for hierarchy. a) Give the generic chemical structure for an amino acid and a protein molecule (a tripeptide). b) Label

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Polymer Chains by Ju Li. Given August 16, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use the

More information

Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes. G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich

Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes. G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich Motivation: Endo- and Exocytosis Membrane transport of

More information

Previous Faraday Discussions

Previous Faraday Discussions Previous Faraday Discussions All previous volumes can be viewed at Faraday Discussions from 2011 onwards are listed at Faraday Discussions 2000-2010 147: Chemistry of the Planets Introductory Lecture:

More information

Interactions between brush-coated clay sheets in a polymer matrix

Interactions between brush-coated clay sheets in a polymer matrix JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 20 22 MAY 2003 Interactions between brush-coated clay sheets in a polymer matrix Rong Wang, Feng Qiu, a) Hongdong Zhang, and Yuliang Yang Department of Macromolecular

More information

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_4 Sunday, February 03, 008 Page 1 Name: Date: 1. A point charged particle is placed at the center of a spherical Gaussian surface. The net electric flux Φ net

More information

arxiv: v1 [cond-mat.soft] 20 Aug 2016

arxiv: v1 [cond-mat.soft] 20 Aug 2016 Defect-free Perpendicular Diblock Copolymer Films: The Synergistic Effect of Surface Topography and Chemistry arxiv:1608.05785v1 [cond-mat.soft] 20 Aug 2016 Xingkun Man, 1,2 Pan Zhou, 3 Jiuzhou Tang, 4

More information

Interfacial Properties of Siloxane Containing Semifluorinated Diblock Copolymer and Nanocomposite Under Confinement

Interfacial Properties of Siloxane Containing Semifluorinated Diblock Copolymer and Nanocomposite Under Confinement Clemson University TigerPrints All Dissertations Dissertations 5-2016 Interfacial Properties of Siloxane Containing Semifluorinated Diblock Copolymer and Nanocomposite Under Confinement Umesh M. Shrestha

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems

Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems e-polymers 2012, no. 079 http://www.e-polymers.org ISSN 1618-7229 Dynamic lattice liquid (DLL) model in computer simulation of the structure and dynamics of polymer condensed systems Anna Blim *, Tomasz

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Scienza e Tecnologia dei Materiali Ceramici. Modulo 2: Materiali Nanostrutturati

Scienza e Tecnologia dei Materiali Ceramici. Modulo 2: Materiali Nanostrutturati Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura A.A. 2016-2017 Scienza e Tecnologia dei Materiali Ceramici Modulo 2: Materiali Nanostrutturati - Lezione 5 - Vanni Lughi vlughi@units.it

More information

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by.

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by. PROCEEDINGS OF SPIE Alternative Lithographic Technologies VII Douglas J. Resnick Christopher Bencher Editors 23-26 February 2015 San Jose, California, United States Sponsored by SPIE Cosponsored by DNS

More information

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels From Polymer Gel Nanoparticles to Nanostructured Bulk Gels Zhibing Hu Departments of Physics and Chemistry, University of North Texas Denton, TX 76203, U. S. A. Phone: 940-565 -4583, FAX: 940-565-4824,

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

Modeling and Computation Core (MCC)

Modeling and Computation Core (MCC) List of Research by Research Cluster Modeling and Computation Core (MCC) GOAL 1: Develop multiscale theories and materials databank that complement experimental approaches for materials design Objective

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle Self-assembly of Fe x Pt 1-x nanoparticles. M. Ulmeanu, B. Stahlmecke, H. Zähres and M. Farle Institut für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47048 Duisburg Future magnetic storage media

More information

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology Chiu Fan Lee Department of Bioengineering, Imperial College London, UK Biology inspires new physics Biology Physics

More information

General-purpose Coarse-grained. Molecular Dynamics Program COGNAC

General-purpose Coarse-grained. Molecular Dynamics Program COGNAC General-purpose Coarse-grained Molecular Dynamics Program COGNAC (COarse-Grained molecular dynamics program by NAgoya Cooperation) Takeshi Aoyagi JCII, Doi project 0 sec -3 msec -6 sec -9 nsec -12 psec

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

Layer-by-Layer (LBL) Self-Assembly

Layer-by-Layer (LBL) Self-Assembly Layer-by-Layer (LBL) Self-Assembly 1 Layer-by-Layer (LBL) Self-Assembly No! Layers! Onions have layers! Ogres have Layers! Onions have Layers. You get it? We both have layers. Sherk 2001 Oh, you both have

More information

Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts M. W. Matsen*

Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts M. W. Matsen* pubs.acs.org/ Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts M. W. Matsen* School of Mathematical and Physical Sciences, University of Reading, Whiteknights, Reading RG6

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

The standard Gaussian model for block copolymer melts

The standard Gaussian model for block copolymer melts INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) R21 R47 PII: S0953-8984(02)17948-3 TOPICAL REVIEW The standard Gaussian model for block copolymer

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

Self-Assembly. Self-Assembly of Colloids.

Self-Assembly. Self-Assembly of Colloids. Self-Assembly Lecture 5-6 Self-Assembly of Colloids. Liquid crystallinity Colloidal Stability and Phases The range of forces attractive and repelling forces exists between the colloidal particles van der

More information

Elastic Properties and Line Tension of. Self-Assembled Bilayer Membranes

Elastic Properties and Line Tension of. Self-Assembled Bilayer Membranes Elastic Properties and Line Tension of Self-Assembled Bilayer Membranes ELASTIC PROPERTIES AND LINE TENSION OF SELF-ASSEMBLED BILAYER MEMBRANES BY KYLE PASTOR, B.Sc. a thesis submitted to the department

More information