De Novo Peptide Sequencing: Informatics and Pattern Recognition applied to Proteomics

Size: px
Start display at page:

Download "De Novo Peptide Sequencing: Informatics and Pattern Recognition applied to Proteomics"

Transcription

1 De Novo Peptide Sequencing: Informatics and Pattern Recognition applied to Proteomics John R. Rose Computer Science and Engineering University of South Carolina 1

2 Overview Background Information Theoretic Scoring Function Test Data Set Comparison with Existing Methods Conclusions Future Work 2

3 Background Analogy: Genome Machine Code Proteome Execution of Code Protein identification is important For drug discovery research For the identification microbes in environmental samples Approaches using tandem mass spectrometry data: Database searching De Novo Sequencing Tagging 3

4 Tandem MS Data A peptide is ionized and the peptide bonds are fragmented Fragment ions form peaks in the spectrum corresponding to their mass-charge ratio. Intens. [a.u.] m/z

5 Tandem MS Data Fragment ions include a,b,c,x,y,z, ions. de Novo sequencing focuses on y and b ions. y ions contain the carboxyl terminus b ions containing the amino terminus 5

6 Tandem MS Data A good quality spectrum consists of a ladder of peaks of the y-ions and a ladder of peaks of the b-ions Ex: b-ions y-ions F GLSLVR FG LSLVR FGL SLVR FGLS LVR FGLSL VR FGLSLV R 6

7 Approaches to peptide identification Frank et al. JPR

8 De Novo Sequencing Data: tandem MS spectrum Goal: find the corresponding peptide General approach: Identify y and/or b ions propose candidate peptides Score each candidate Return highest ranking peptides Two key issues: Model for candidate peptide generation Scoring function to evaluate candidates 8

9 Candidate Peptide Generation The peptide sequence can be derived by the mass differences of adjacent peaks in each of the two ladders Ex: b-ions y-ions I YEVEGMR IY EVEGMR IYE VEGMR IYEV EGMR IYEVE GMR IYEVEG MR IYEVEGM R Complicating factors: Missing peaks Posttranslational modifications Many-to-one equivalences, e.g., AG,GA,K,Q,E are similar in mass IYEVEGMR 9

10 Actual example of labeled y and b ion peaks 10

11 The spectrum graph Frank et al. JPR

12 Construction of the NC-spectrum Graph Chen et. al JCB 2001 Create a pair of nodes, N j and C j, for each ion I j. Create two auxiliary nodes N 0 and C 0. to represent the zero mass and parent mass, respectively. Let V = {N 0, N 1,, N k, C 0, C 1,, C k }. Each node x is placed assigned coordinate cord(x) according to the total mass of its amino acids, that is, cord( x) 0 W 18 = wj 1 W wj x x = x = C = N N 0 x = C N 0 C 2 C 1 N 1 N 2 C j j

13 Construction of the NC-spectrum Graph Abundance (100%) W = W 18 cord( x) = w j 1 W w j + 1 x = N x = C x = N x = C 0 0 j j Mass / Charge N 0 C

14 Construction of the NC-spectrum Graph Abundance (100%) W = W 18 cord( x) = w j 1 W w j + 1 x = N x = C x = N x = C 0 0 j j Mass / Charge N 0 C 1 N 1 C

15 Construction of the NC-spectrum Graph Abundance (100%) W = W 18 cord( x) = w j 1 W w j + 1 x = N x = C x = N x = C 0 0 j j Mass / Charge N 0 C 2 C 1 N 1 N 2 C

16 Construction of the NC-spectrum Graph Mass(S) = S Mass(W) = W Mass(R) = R N 0 C 2 C 1 N 1 N 2 C S+W Mass(S+W) =

17 Construction of the NC-spectrum Graph N 0 N 2 C 1 N 1 C 2 C Each path from N 0 to C 0 represents a possible sequence for the peptide A feasible path is a path from N 0 to C 0 that goes through exactly one node for each pair (either N j or C j ). 17

18 Construction of the NC-spectrum Graph N 0 N 2 C 1 N 1 C 2 C This is not a feasible path: misses ion I 2 18

19 Construction of the NC-spectrum Graph N 0 N 2 C 1 N 1 C 2 C This is a feasible path 19

20 Problem Reformulation Input: an NC-spectrum graph G. Output: a feasible path from N 0 to C 0. Difficulty: A longest path does not always go through exactly one of each pair of nodes. This is an NP-hard problem if the graph is a general directed graph. 20

21 Renaming Nodes Rename the nodes from left to right as X 0,, X k,y k,,y 0 N 0 N 2 C 1 N 1 C 2 C X 0 X 1 X 2 Y 2 Y 1 Y X i and Y i form a complementary pair of nodes for ion i. 21

22 Problem Reformulation X 0 X 1 X k Y k Y 1 Y 0 Let M(i, j) be a two-dimensional matrix with 0 i, j k. Let M(i, j)=1 if there exists a path L from X 0 to X i and a path R from Y j to Y 0, such that L and R together contain exactly one of X p and Y p for each P in [0, max{i, j}]. X 0 X 1 X 2 X i Y j Y i Y 2 Y 1 Y 0 L R 22

23 Problem Reformulation There is a feasible path if and only if for some i and k, there is an edge e from X i to Y k and M(i, k) = 1, or for some k and j, there is an edge e from X k to Y j and M(k, j) = 1 X 0 X i Y k Y 0 L e R X 0 X k Y j Y 0 L 23 e R

24 Candidate Peptide Generation Complicating factors: Posttranslational modifications Many-to-one equivalences, e.g., AG,GA,K,Q,E are similar in mass Noise Peaks Missing peaks 24

25 Missing peaks Candidate Peptide Generation Now a many-to-many combinatorial problem Ex: ATEEQLK If b 4 ion is missing then b 3 represents ATE and b 5 represents ATEEQ Then the mass difference for EQ is unresolved. Recall that AG,GA,K,Q,E are similar in mass Thus EQ, QE, AGQ, GAQ, AGE, GAE,.. have similar mass 25

26 Candidate Peptide Evaluation Model for candidate generation Traditional focus on fragmentation model Increasing fragmentation model sophistication Better posttranslational modification models No model of peptide amino acid content QuasiNovo approach Unsophisticated fragmentation model No posttranslational modification model Uses information theory to model peptide amino acid content 26

27 Modeling Peptide Amino Acid Content Basic Idea: Examine actual proteins to characterize likely combinations of amino acids Underlying hypothesis: amino acid content is not random Analogy: model letter combinations in a language examine documents in that language compile profiles of letter combinations predict missing letters from partial data Motivation: Ability to distinguish between mass-equivalent combinations Ability to deal with missing peaks 27

28 Amino Acid Distribution Data Tabulation of amino acid distributions: Let <a 1 a 2 a n > be a contiguous sequence of n amino acids. There are n amino acids: <a 1 >, < a 2 >,,<a n > There are n-1 ordered amino acid pairs: <a 1 a 2 >, < a 2 a 3 >,,< a n-1 a n > etc. QuasiNovo has been evaluated with 3-,4-,5-, and 6-tuples Tuple frequencies are then normalized. 28

29 Amino Acid Distribution Data Three amino acid profiles used: 1. Gammaproteobacteria: 206 complete genomes 23,882,564 tryptic peptides 2. Actinobacteria: 58 complete genomes 7,380,927 tryptic peptides generated 3. Mammalia: 4 complete genomes: Bovine, Human, Mouse, Rat 9,835,585 tryptic peptides generated 29

30 QuasiNovo s Use of Tuple-Profiles Score candidate peptides score(fglslvr) = p(slvr)p(l SLVR)p(G LSLV)p(F GLSL) Discard poor scoring candidates Handle missing peaks Find set of a i that maximize P(a i a i-4 a i-3 a i-2 a i-1 ) 30

31 Test Data Set 280 spectra of peptides selected by Frank & Pevzner (2005) molecular mass of up to 1400 Da peptides with 7-16 amino acids (average length of 10.5) source: ISB protein mixture data set and Open Proteomics Database Data set used to compare PepNovo with Sherenga Peaks Lutefisk Later used to compare NovoHMM with PepNovo Sherenga Peaks Lutefisk 31

32 The contenders: PepNovo v1.03 PepNovo+ NovoHMM QuasiNovo QuasiNovo Reranking Results 32

33 Results % Correct PepNovo+ PepNovo v1.03 NovoHMM Quasinovo Quasinovo Reranking Number of Incorrect Residues Results for set of 280 MS-MS test spectra comparing PepNovo+, PepNovo, NovoHMM, with a QuasiNovo reranking and QuasiNovo. 33

34 Results % Correct Number of Incorrect Residues PepNovo+ PepNovo v1.03 NovoHMM Gammaproteobacteria Actinobacteria Mammalia Results for set of 76 MS-MS test spectra for E. coli peptides comparing PepNovo+, PepNovo, NovoHMM, with three QuasiNovo scoring functions based on amino acid distributions in Gammaproteobacteria, Actinobacteria, and Mammalia. 34

35 Results Algorithm PepNovo+ NovoHMM Quasinovo Reranking Terminal ion pair b2-ion y2-ion Complete peptide Comparison of Terminal Pair and Overall Accuracy 35

36 Conclusions and Future Work The QuasiNovo peptide model predicts peptide amino acid content has limited understanding of fragmentation outperforms the PepNovo+ and NovoHMM QuasiNovo reranking reranks PepNovo+ and NovoHMM results proof-of-concept for combining peptide & fragmentation models shows best overall performance Future: Combine QuasiNovo amino acid model with a sophisticated fragmentation model 36

37 Acknowledgements Rose Lab Jimmy Cleveland Achraf Elallali Amadeo Bellotti Fox Lab Alvin Fox Karen Fox Jennifer Intelicato-Young Support Funding from Alfred P. Sloan Foundation Experiments were conducted on a 128-core shared memory computer funded by NSF (CNS ). 37

38 Gammaproteobacteria x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 11 x = 12 QuasiNovo MM Reranking NovoHMM PepNovo+ x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 11 x = 12 QuasiNovo MM Reranking NovoHMM PepNovo Cumulative results from 174 spectra x = n number of correctly predicted amino acids Note: a predicted amino acid is correct if it appears within 2.5 Da of its position in the actual peptide 38

39 Actinobacteria x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 11 x = 12 QuasiNovo MM Reranking NovoHMM PepNovo+ x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 11 x = 12 QuasiNovo MM Reranking NovoHMM PepNovo Cumulative results from 27 spectra x = n number of correctly predicted amino acids Note: a predicted amino acid is correct if it appears within 2.5 Da of its position in the actual peptide 39

40 Results: Mammalia x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 11 x = 12 QuasiNovo MM Reranking NovoHMM PepNovo+ x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 11 x = 12 QuasiNovo MM Reranking NovoHMM PepNovo Cumulative results from 79 spectra x = n number of correctly predicted amino acids Note: a predicted amino acid is correct if it appears within 2.5 Da of its position in the actual peptide 40

41 EF-Tu Protein DISTILLER/MASCOT identification: AIDKPFLLPIEDVFSISGR QuasiNovo identification: DSDKPFMMPVEDVFSITGR Score(AIDKPFLLPIEDVFSISGR) = e-38 Score(DSDKPFMMPVEDVFSITGR) = e-36 QuasiNovo result supported by microbiological data Gram stain physiological tests visual comparison of spectra of environmental isolates versus known S. aureus and interpretation of Distiller/Mascot sequence assignment Note: Distiller results based on 18 peaks vs 12 peaks for QuasiNovo Peptide displays loss of 3 water molecules 41

De Novo Peptide Identification Via Mixed-Integer Linear Optimization And Tandem Mass Spectrometry

De Novo Peptide Identification Via Mixed-Integer Linear Optimization And Tandem Mass Spectrometry 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 De Novo Peptide Identification Via Mixed-Integer Linear

More information

CSE182-L8. Mass Spectrometry

CSE182-L8. Mass Spectrometry CSE182-L8 Mass Spectrometry Project Notes Implement a few tools for proteomics C1:11/2/04 Answer MS questions to get started, select project partner, select a project. C2:11/15/04 (All but web-team) Plan

More information

MS-MS Analysis Programs

MS-MS Analysis Programs MS-MS Analysis Programs Basic Process Genome - Gives AA sequences of proteins Use this to predict spectra Compare data to prediction Determine degree of correctness Make assignment Did we see the protein?

More information

De Novo Peptide Sequencing

De Novo Peptide Sequencing De Novo Peptide Sequencing Outline A simple de novo sequencing algorithm PTM Other ion types Mass segment error De Novo Peptide Sequencing b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 A NELLLNVK AN ELLLNVK ANE LLLNVK

More information

QuasiNovo: Algorithms for De Novo Peptide Sequencing

QuasiNovo: Algorithms for De Novo Peptide Sequencing University of South Carolina Scholar Commons Theses and Dissertations 2013 QuasiNovo: Algorithms for De Novo Peptide Sequencing James Paul Cleveland University of South Carolina Follow this and additional

More information

A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry

A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry Ting Chen Department of Genetics arvard Medical School Boston, MA 02115, USA Ming-Yang Kao Department of Computer

More information

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra Xiaowen Liu Department of BioHealth Informatics, Department of Computer and Information Sciences, Indiana University-Purdue

More information

Tandem Mass Spectrometry: Generating function, alignment and assembly

Tandem Mass Spectrometry: Generating function, alignment and assembly Tandem Mass Spectrometry: Generating function, alignment and assembly With slides from Sangtae Kim and from Jones & Pevzner 2004 Determining reliability of identifications Can we use Target/Decoy to estimate

More information

Proteomics. November 13, 2007

Proteomics. November 13, 2007 Proteomics November 13, 2007 Acknowledgement Slides presented here have been borrowed from presentations by : Dr. Mark A. Knepper (LKEM, NHLBI, NIH) Dr. Nathan Edwards (Center for Bioinformatics and Computational

More information

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems Protein Identification Using Tandem Mass Spectrometry Nathan Edwards Informatics Research Applied Biosystems Outline Proteomics context Tandem mass spectrometry Peptide fragmentation Peptide identification

More information

via Tandem Mass Spectrometry and Propositional Satisfiability De Novo Peptide Sequencing Renato Bruni University of Perugia

via Tandem Mass Spectrometry and Propositional Satisfiability De Novo Peptide Sequencing Renato Bruni University of Perugia De Novo Peptide Sequencing via Tandem Mass Spectrometry and Propositional Satisfiability Renato Bruni bruni@diei.unipg.it or bruni@dis.uniroma1.it University of Perugia I FIMA International Conference

More information

De novo peptide sequencing methods for tandem mass. spectra

De novo peptide sequencing methods for tandem mass. spectra De novo peptide sequencing methods for tandem mass spectra A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons.

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons. Supplementary Figure 1 Fragment indexing allows efficient spectra similarity comparisons. The cost and efficiency of spectra similarity calculations can be approximated by the number of fragment comparisons

More information

Modeling Mass Spectrometry-Based Protein Analysis

Modeling Mass Spectrometry-Based Protein Analysis Chapter 8 Jan Eriksson and David Fenyö Abstract The success of mass spectrometry based proteomics depends on efficient methods for data analysis. These methods require a detailed understanding of the information

More information

Protein Sequencing and Identification by Mass Spectrometry

Protein Sequencing and Identification by Mass Spectrometry Protein Sequencing and Identification by Mass Spectrometry Tandem Mass Spectrometry De Novo Peptide Sequencing Spectrum Graph Protein Identification via Database Search Identifying Post Translationally

More information

SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS

SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS 1 Yan Yan Department of Computer Science University of Western Ontario, Canada OUTLINE Background Tandem mass spectrometry

More information

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry by Xi Han A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Computational Methods for Mass Spectrometry Proteomics

Computational Methods for Mass Spectrometry Proteomics Computational Methods for Mass Spectrometry Proteomics Eidhammer, Ingvar ISBN-13: 9780470512975 Table of Contents Preface. Acknowledgements. 1 Protein, Proteome, and Proteomics. 1.1 Primary goals for studying

More information

NovoHMM: A Hidden Markov Model for de Novo Peptide Sequencing

NovoHMM: A Hidden Markov Model for de Novo Peptide Sequencing Anal. Chem. 2005, 77, 7265-7273 NovoHMM: A Hidden Markov Model for de Novo Peptide Sequencing Bernd Fischer, Volker Roth, Franz Roos, Jonas Grossmann, Sacha Baginsky, Peter Widmayer, Wilhelm Gruissem,

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables PROTEOME DISCOVERER Workflow concept Data goes through the workflow Spectra Peptides Quantitation A Node contains an operation An edge represents data flow The results are brought together in tables Protein

More information

A New Hybrid De Novo Sequencing Method For Protein Identification

A New Hybrid De Novo Sequencing Method For Protein Identification A New Hybrid De Novo Sequencing Method For Protein Identification Penghao Wang 1*, Albert Zomaya 2, Susan Wilson 1,3 1. Prince of Wales Clinical School, University of New South Wales, Kensington NSW 2052,

More information

Mass Spectrometry Based De Novo Peptide Sequencing Error Correction

Mass Spectrometry Based De Novo Peptide Sequencing Error Correction Mass Spectrometry Based De Novo Peptide Sequencing Error Correction by Chenyu Yao A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Tutorial 1: Setting up your Skyline document

Tutorial 1: Setting up your Skyline document Tutorial 1: Setting up your Skyline document Caution! For using Skyline the number formats of your computer have to be set to English (United States). Open the Control Panel Clock, Language, and Region

More information

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University Protein Quantitation II: Multiple Reaction Monitoring Kelly Ruggles kelly@fenyolab.org New York University Traditional Affinity-based proteomics Use antibodies to quantify proteins Western Blot Immunohistochemistry

More information

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University Protein Quantitation II: Multiple Reaction Monitoring Kelly Ruggles kelly@fenyolab.org New York University Traditional Affinity-based proteomics Use antibodies to quantify proteins Western Blot RPPA Immunohistochemistry

More information

Computational Analysis of Mass Spectrometric Data for Whole Organism Proteomic Studies

Computational Analysis of Mass Spectrometric Data for Whole Organism Proteomic Studies University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Computational Analysis of Mass Spectrometric Data for Whole Organism Proteomic

More information

DE NOVO PEPTIDE SEQUENCING FOR MASS SPECTRA BASED ON MULTI-CHARGE STRONG TAGS

DE NOVO PEPTIDE SEQUENCING FOR MASS SPECTRA BASED ON MULTI-CHARGE STRONG TAGS DE NOVO PEPTIDE SEQUENCING FO MASS SPECTA BASED ON MULTI-CHAGE STONG TAGS KANG NING, KET FAH CHONG, HON WAI LEONG Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore

More information

Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry Methods Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry Pavel A. Pevzner, 1,3 Zufar Mulyukov, 1 Vlado Dancik, 2 and Chris L Tang 2 Department of

More information

MS2DB: An Algorithmic Approach to Determine Disulfide Linkage Patterns in Proteins by Utilizing Tandem Mass Spectrometric Data

MS2DB: An Algorithmic Approach to Determine Disulfide Linkage Patterns in Proteins by Utilizing Tandem Mass Spectrometric Data MS2DB: An Algorithmic Approach to Determine Disulfide Linkage Patterns in Proteins by Utilizing Tandem Mass Spectrometric Data Timothy Lee 1, Rahul Singh 1, Ten-Yang Yen 2, and Bruce Macher 2 1 Department

More information

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA LECTURE-25 Quantitative proteomics: itraq and TMT TRANSCRIPT Welcome to the proteomics course. Today we will talk about quantitative proteomics and discuss about itraq and TMT techniques. The quantitative

More information

Parallel Algorithms For Real-Time Peptide-Spectrum Matching

Parallel Algorithms For Real-Time Peptide-Spectrum Matching Parallel Algorithms For Real-Time Peptide-Spectrum Matching A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Master of Science

More information

Computationally Analyzing Mass Spectra of Hydrogen Deuterium Exchange Experiments Kevin S. Drew University of Chicago May 21, 2005

Computationally Analyzing Mass Spectra of Hydrogen Deuterium Exchange Experiments Kevin S. Drew University of Chicago May 21, 2005 Computationally Analyzing Mass Spectra of Hydrogen Deuterium Exchange Experiments Kevin S. Drew University of Chicago May 21, 2005 1 Abstract Hydrogen deuterium exchange (HDX) using Mass Spectrometers

More information

Biological Mass Spectrometry

Biological Mass Spectrometry Biochemistry 412 Biological Mass Spectrometry February 13 th, 2007 Proteomics The study of the complete complement of proteins found in an organism Degrees of Freedom for Protein Variability Covalent Modifications

More information

Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously Proteomics Sample prep 144 Lecture 5 Quantitation techniques Search Algorithms Proteomics

More information

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics Chih-Chiang Tsou 1,2, Dmitry Avtonomov 2, Brett Larsen 3, Monika Tucholska 3, Hyungwon Choi 4 Anne-Claude Gingras

More information

Peptide Sequence Tags for Fast Database Search in Mass-Spectrometry

Peptide Sequence Tags for Fast Database Search in Mass-Spectrometry Peptide Sequence Tags for Fast Database Search in Mass-Spectrometry Ari Frank,*, Stephen Tanner, Vineet Bafna, and Pavel Pevzner Department of Computer Science & Engineering, University of California,

More information

Quality Assessment of Tandem Mass Spectra Based on Cumulative Intensity Normalization

Quality Assessment of Tandem Mass Spectra Based on Cumulative Intensity Normalization Quality Assessment of Tandem Mass Spectra Based on Cumulative Intensity Normalization Seungjin Na and Eunok Paek* Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea

More information

Jiří Novák and David Hoksza

Jiří Novák and David Hoksza ParametrisedHausdorff HausdorffDistance Distanceas asa Non-Metric a Non-Metric Similarity Similarity Model Model for Tandem for Tandem Mass Mass Spectrometry Spectrometry Jiří Novák and David Hoksza Jiří

More information

UC San Diego UC San Diego Electronic Theses and Dissertations

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Algorithms for tandem mass spectrometry-based proteomics Permalink https://escholarship.org/uc/item/89f7x81r Author Frank, Ari Michael

More information

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database Overview - MS Proteomics in One Slide Obtain protein Digest into peptides Acquire spectra in mass spectrometer MS masses of peptides MS/MS fragments of a peptide Results! Match to sequence database 2 But

More information

PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY

PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY Michael Kinter Department of Cell Biology Lerner Research Institute Cleveland Clinic Foundation Nicholas E. Sherman Department of Microbiology

More information

Comprehensive support for quantitation

Comprehensive support for quantitation Comprehensive support for quantitation One of the major new features in the current release of Mascot is support for quantitation. This is still work in progress. Our goal is to support all of the popular

More information

Aplicació de la proteòmica a la cerca de Biomarcadors proteics Barcelona, 08 de Juny 2010

Aplicació de la proteòmica a la cerca de Biomarcadors proteics Barcelona, 08 de Juny 2010 Aplicació de la proteòmica a la cerca de Biomarcadors proteics Barcelona, 8 de Juny 21 Eliandre de Oliveira Plataforma de Proteòmica Parc Científic de Barcelona Protein Chemistry Proteomics Hypothesis-free

More information

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion s s Key questions of proteomics What proteins are there? Bioinformatics 2 Lecture 2 roteomics How much is there of each of the proteins? - Absolute quantitation - Stoichiometry What (modification/splice)

More information

An SVM Scorer for More Sensitive and Reliable Peptide Identification via Tandem Mass Spectrometry

An SVM Scorer for More Sensitive and Reliable Peptide Identification via Tandem Mass Spectrometry An SVM Scorer for More Sensitive and Reliable Peptide Identification via Tandem Mass Spectrometry Haipeng Wang, Yan Fu, Ruixiang Sun, Simin He, Rong Zeng, and Wen Gao Pacific Symposium on Biocomputing

More information

A Suboptimal Algorithm for De Novo Peptide Sequencing via Tandem Mass Spectrometry. BINGWEN LU and TING CHEN ABSTRACT

A Suboptimal Algorithm for De Novo Peptide Sequencing via Tandem Mass Spectrometry. BINGWEN LU and TING CHEN ABSTRACT JOURNAL OF COMPUTATIONAL BIOLOGY Volume 10, Number 1, 2003 Mary Ann Liebert, Inc. Pp. 1 12 A Suboptimal Algorithm for De Novo Peptide Sequencing via Tandem Mass Spectrometry BINGWEN LU and TING CHEN ABSTRACT

More information

Mass spectrometry in proteomics

Mass spectrometry in proteomics I519 Introduction to Bioinformatics, Fall, 2013 Mass spectrometry in proteomics Haixu Tang School of Informatics and Computing Indiana University, Bloomington Modified from: www.bioalgorithms.info Outline

More information

Quantitative Proteomics

Quantitative Proteomics Quantitative Proteomics Quantitation AND Mass Spectrometry Condition A Condition B Identify and quantify differently expressed proteins resulting from a change in the environment (stimulus, disease) Lyse

More information

Spectrum-to-Spectrum Searching Using a. Proteome-wide Spectral Library

Spectrum-to-Spectrum Searching Using a. Proteome-wide Spectral Library MCP Papers in Press. Published on April 30, 2011 as Manuscript M111.007666 Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library Chia-Yu Yen, Stephane Houel, Natalie G. Ahn, and William

More information

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra Andrew Keller Outline Need to validate peptide assignments to MS/MS spectra Statistical approach to validation Running PeptideProphet

More information

Was T. rex Just a Big Chicken? Computational Proteomics

Was T. rex Just a Big Chicken? Computational Proteomics Was T. rex Just a Big Chicken? Computational Proteomics Phillip Compeau and Pavel Pevzner adjusted by Jovana Kovačević Bioinformatics Algorithms: an Active Learning Approach 215 by Compeau and Pevzner.

More information

HOWTO, example workflow and data files. (Version )

HOWTO, example workflow and data files. (Version ) HOWTO, example workflow and data files. (Version 20 09 2017) 1 Introduction: SugarQb is a collection of software tools (Nodes) which enable the automated identification of intact glycopeptides from HCD

More information

PepHMM: A Hidden Markov Model Based Scoring Function for Mass Spectrometry Database Search

PepHMM: A Hidden Markov Model Based Scoring Function for Mass Spectrometry Database Search PepHMM: A Hidden Markov Model Based Scoring Function for Mass Spectrometry Database Search Yunhu Wan, Austin Yang, and Ting Chen*, Department of Mathematics, Department of Pharmaceutical Sciences, and

More information

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software Supplementary Methods Software Interpretation of Tandem mass spectra Tandem mass spectra were extracted from the Xcalibur data system format (.RAW) and charge state assignment was performed using in house

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length By: Tamir Tuller & Benny Chor

Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length By: Tamir Tuller & Benny Chor Biological Networks:,, and via Relative Description Length By: Tamir Tuller & Benny Chor Presented by: Noga Grebla Content of the presentation Presenting the goals of the research Reviewing basic terms

More information

Chapter 4. strategies for protein quantitation Ⅱ

Chapter 4. strategies for protein quantitation Ⅱ Proteomics Chapter 4. strategies for protein quantitation Ⅱ 1 Multiplexed proteomics Multiplexed proteomics is the use of fluorescent stains or probes with different excitation and emission spectra to

More information

MS-based proteomics to investigate proteins and their modifications

MS-based proteomics to investigate proteins and their modifications MS-based proteomics to investigate proteins and their modifications Francis Impens VIB Proteomics Core October th 217 Overview Mass spectrometry-based proteomics: general workflow Identification of protein

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

TANDEM mass spectrometry (MS/MS) is an essential and

TANDEM mass spectrometry (MS/MS) is an essential and IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 217 Predicting Molecular Formulas of Fragment Ions with Isotope Patterns in Tandem Mass Spectra Jingfen

More information

Introduction to spectral alignment

Introduction to spectral alignment SI Appendix C. Introduction to spectral alignment Due to the complexity of the anti-symmetric spectral alignment algorithm described in Appendix A, this appendix provides an extended introduction to the

More information

Properties of Average Score Distributions of SEQUEST

Properties of Average Score Distributions of SEQUEST Research Properties of Average Score Distributions of SEQUEST THE PROBABILITY RATIO METHOD* S Salvador Martínez-Bartolomé, Pedro Navarro, Fernando Martín-Maroto, Daniel López-Ferrer **, Antonio Ramos-Fernández,

More information

Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments

Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments pubs.acs.org/jpr Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments Marina Spivak, Michael S. Bereman, Michael J. MacCoss, and William Stafford

More information

The Pitfalls of Peaklist Generation Software Performance on Database Searches

The Pitfalls of Peaklist Generation Software Performance on Database Searches Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, CO, June 1-5, 2008 The Pitfalls of Peaklist Generation Software Performance on Database Searches Aenoch J. Lynn,

More information

Proteome-wide label-free quantification with MaxQuant. Jürgen Cox Max Planck Institute of Biochemistry July 2011

Proteome-wide label-free quantification with MaxQuant. Jürgen Cox Max Planck Institute of Biochemistry July 2011 Proteome-wide label-free quantification with MaxQuant Jürgen Cox Max Planck Institute of Biochemistry July 2011 MaxQuant MaxQuant Feature detection Data acquisition Initial Andromeda search Statistics

More information

Protein identification problem from a Bayesian pointofview

Protein identification problem from a Bayesian pointofview Statistics and Its Interface Volume 5 (2012 21 37 Protein identification problem from a Bayesian pointofview YongFugaLi,RandyJ.Arnold,PredragRadivojac and Haixu Tang We present a generic Bayesian framework

More information

MALDI-HDMS E : A Novel Data Independent Acquisition Method for the Enhanced Analysis of 2D-Gel Tryptic Peptide Digests

MALDI-HDMS E : A Novel Data Independent Acquisition Method for the Enhanced Analysis of 2D-Gel Tryptic Peptide Digests -HDMS E : A Novel Data Independent Acquisition Method for the Enhanced Analysis of 2D-Gel Tryptic Peptide Digests Emmanuelle Claude, 1 Mark Towers, 1 and Rachel Craven 2 1 Waters Corporation, Manchester,

More information

TUTORIAL EXERCISES WITH ANSWERS

TUTORIAL EXERCISES WITH ANSWERS TUTORIAL EXERCISES WITH ANSWERS Tutorial 1 Settings 1. What is the exact monoisotopic mass difference for peptides carrying a 13 C (and NO additional 15 N) labelled C-terminal lysine residue? a. 6.020129

More information

ASCQ_ME: a new engine for peptide mass fingerprint directly from mass spectrum without mass list extraction

ASCQ_ME: a new engine for peptide mass fingerprint directly from mass spectrum without mass list extraction ASCQ_ME: a new engine for peptide mass fingerprint directly from mass spectrum without mass list extraction Jean-Charles BOISSON1, Laetitia JOURDAN1, El-Ghazali TALBI1, Cécile CREN-OLIVE2 et Christian

More information

Last updated: Copyright

Last updated: Copyright Last updated: 2012-08-20 Copyright 2004-2012 plabel (v2.4) User s Manual by Bioinformatics Group, Institute of Computing Technology, Chinese Academy of Sciences Tel: 86-10-62601016 Email: zhangkun01@ict.ac.cn,

More information

Dehua Hang, Matthew Rupp, and Eric Torng Departments of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA

Dehua Hang, Matthew Rupp, and Eric Torng Departments of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA FOCUS: PROTEOMICS Automated Data Interpretation Based on the Concept of Negative Signature Mass for Mass-Mapping Disulfide Structures of Cystinyl Proteins Jianfeng Qi* and Wei Wu Department of Chemistry,

More information

Electrospray ionization mass spectrometry (ESI-

Electrospray ionization mass spectrometry (ESI- Automated Charge State Determination of Complex Isotope-Resolved Mass Spectra by Peak-Target Fourier Transform Li Chen a and Yee Leng Yap b a Bioinformatics Institute, 30 Biopolis Street, Singapore b Davos

More information

Methods for proteome analysis of obesity (Adipose tissue)

Methods for proteome analysis of obesity (Adipose tissue) Methods for proteome analysis of obesity (Adipose tissue) I. Sample preparation and liquid chromatography-tandem mass spectrometric analysis Instruments, softwares, and materials AB SCIEX Triple TOF 5600

More information

Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent

Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent concentrations of PcTS (100 µm, blue; 500 µm, green; 1.5 mm,

More information

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were developed to allow the analysis of large intact (bigger than

More information

A graph-based filtering method for top-down mass spectral identification

A graph-based filtering method for top-down mass spectral identification Yang and Zhu BMC Genomics 2018, 19(Suppl 7):666 https://doi.org/10.1186/s12864-018-5026-x METHODOLOGY Open Access A graph-based filtering method for top-down mass spectral identification Runmin Yang and

More information

Purdue-UAB Botanicals Center for Age- Related Disease

Purdue-UAB Botanicals Center for Age- Related Disease Purdue-UAB Botanicals Center for Age- Related Disease MALDI-TOF Mass Spectrometry Fingerprinting Technique Landon Wilson MALDI-TOF mass spectrometry is an advanced technique for rapid protein identification

More information

ADVANCEMENT IN PROTEIN INFERENCE FROM SHOTGUN PROTEOMICS USING PEPTIDE DETECTABILITY

ADVANCEMENT IN PROTEIN INFERENCE FROM SHOTGUN PROTEOMICS USING PEPTIDE DETECTABILITY ADVANCEMENT IN PROTEIN INFERENCE FROM SHOTGUN PROTEOMICS USING PEPTIDE DETECTABILITY PEDRO ALVES, 1 RANDY J. ARNOLD, 2 MILOS V. NOVOTNY, 2 PREDRAG RADIVOJAC, 1 JAMES P. REILLY, 2 HAIXU TANG 1, 3* 1) School

More information

A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra

A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores D.C. Anderson*, Weiqun Li, Donald G. Payan,

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

UCD Conway Institute of Biomolecular & Biomedical Research Graduate Education 2009/2010

UCD Conway Institute of Biomolecular & Biomedical Research Graduate Education 2009/2010 EMERGING PROTEOMIC TECHNOLOGIES - MODULE SCHEDULE & OUTLINE 2010 Course Organiser: Dr. Giuliano Elia Module Co-ordinator: Dr Giuliano Elia Credits: 5 Date & Time Session & Topic Coordinator 14th April

More information

InsPecT: Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra

InsPecT: Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra Anal. Chem. 2005, 77, 4626-4639 InsPecT: Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra Stephen Tanner,*, Hongjun Shu, Ari Frank, Ling-Chi Wang, Ebrahim Zandi, Marc Mumby,

More information

HMMatch: Peptide Identification by Spectral Matching of Tandem Mass Spectra Using Hidden Markov Models ABSTRACT

HMMatch: Peptide Identification by Spectral Matching of Tandem Mass Spectra Using Hidden Markov Models ABSTRACT JOURNAL OF COMPUTATIONAL BIOLOGY Volume 14, Number 8, 2007 Mary Ann Liebert, Inc. Pp. 1025 1043 DOI: 10.1089/cmb.2007.0071 HMMatch: Peptide Identification by Spectral Matching of Tandem Mass Spectra Using

More information

Probabilistic Arithmetic Automata

Probabilistic Arithmetic Automata Probabilistic Arithmetic Automata Applications of a Stochastic Computational Framework in Biological Sequence Analysis Inke Herms PhD thesis defense Overview 1 Probabilistic Arithmetic Automata 2 Application

More information

Chapter 5. Finite Automata

Chapter 5. Finite Automata Chapter 5 Finite Automata 5.1 Finite State Automata Capable of recognizing numerous symbol patterns, the class of regular languages Suitable for pattern-recognition type applications, such as the lexical

More information

TOMAHAQ Method Construction

TOMAHAQ Method Construction TOMAHAQ Method Construction Triggered by offset mass accurate-mass high-resolution accurate quantitation (TOMAHAQ) can be performed in the standard method editor of the instrument, without modifications

More information

Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries

Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries Anal. Chem. 2006, 78, 5678-5684 Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries Barbara E. Frewen, Gennifer E. Merrihew, Christine C. Wu, William Stafford

More information

Protein Sequencing Research Group ABRF 2015 annual meeting

Protein Sequencing Research Group ABRF 2015 annual meeting Protein Sequencing Research Group ABRF 2015 annual meeting » N-terminal sequencing is in the midst of a technology transition from classical Edman sequencing to mass spectrometry (MS)-based sequencing»

More information

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra Andrew Keller Day 2 October 17, 2006 Andrew Keller Rosetta Bioinformatics, Seattle Outline Need to validate peptide assignments to MS/MS

More information

Background: Imagine it is time for your lunch break, you take your sandwich outside and you sit down to enjoy your lunch with a beautiful view of

Background: Imagine it is time for your lunch break, you take your sandwich outside and you sit down to enjoy your lunch with a beautiful view of Background: Imagine it is time for your lunch break, you take your sandwich outside and you sit down to enjoy your lunch with a beautiful view of Montana s Rocky Mountains. As you look up, you see what

More information

Chemoinformatics and information management. Peter Willett, University of Sheffield, UK

Chemoinformatics and information management. Peter Willett, University of Sheffield, UK Chemoinformatics and information management Peter Willett, University of Sheffield, UK verview What is chemoinformatics and why is it necessary Managing structural information Typical facilities in chemoinformatics

More information

Proteome Informatics. Brian C. Searle Creative Commons Attribution

Proteome Informatics. Brian C. Searle Creative Commons Attribution Proteome Informatics Brian C. Searle searleb@uw.edu Creative Commons Attribution Section structure Class 1 Class 2 Homework 1 Mass spectrometry and de novo sequencing Database searching and E-value estimation

More information

On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering

On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering Jiří Novák, David Hoksza, Jakub Lokoč, and Tomáš Skopal Siret Research Group, Faculty of Mathematics and Physics, Charles

More information

Your Name: Question 1. Standard Fragmentations in Mass Spectrometry. (20 points)

Your Name: Question 1. Standard Fragmentations in Mass Spectrometry. (20 points) Exam #4, ovember 14-16, 2007. MU, hemistry 8160, FS07, Dr. Glaser Your ame: Question 1. Standard Fragmentations in Mass Spectrometry. (20 points) For (b) (d), draw the complete structure of the substrate

More information

Ping-Chiang Lyu. Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University.

Ping-Chiang Lyu. Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University. Pharmacophore-based Drug design Ping-Chiang Lyu Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University 96/08/07 Outline Part I: Analysis The analytical

More information

Chapter 5. Complexation of Tholins by 18-crown-6:

Chapter 5. Complexation of Tholins by 18-crown-6: 5-1 Chapter 5. Complexation of Tholins by 18-crown-6: Identification of Primary Amines 5.1. Introduction Electrospray ionization (ESI) is an excellent technique for the ionization of complex mixtures,

More information

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Supporting Information Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Christophe Schmitz, Robert Vernon, Gottfried Otting, David Baker and Thomas Huber Table S0. Biological Magnetic

More information

Protein Sequencing and Identification by Mass Spectrometry

Protein Sequencing and Identification by Mass Spectrometry Protein Sequencing and Identification by Mass Spectrometry Outline Tandem Mass Spectrometry De Novo Peptide Sequencing Spectrum Graph Protein Identification via Database Search Identifying Post Translationally

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information