Dec 4 9:41 AM. Dec 4 9:41 AM. Dec 4 9:42 AM. Dec 4 9:42 AM. Dec 4 9:44 AM. Dec 4 9:44 AM. Mostly coal, petroleum and natural gas

Size: px
Start display at page:

Download "Dec 4 9:41 AM. Dec 4 9:41 AM. Dec 4 9:42 AM. Dec 4 9:42 AM. Dec 4 9:44 AM. Dec 4 9:44 AM. Mostly coal, petroleum and natural gas"

Transcription

1 Quality vs Quantity of Energy Your textbook discusses the idea that although energy is conserved we face an energy crisis because the quality of energy we have available to do work like heat our homes and run industry is decreasing. This happens because when we use energy to do work we lower its usefulness or its quality. Another way of looking at it is concentrated energy spread energy use to do work One form of concentrated energy that we use today is in the form of fossil fuels. What are fossil fuels? Remains of decayed plants over millions of years Hydrocarbons with stored energy from photosynthesis What are the types of fossil fuels? Mostly coal, petroleum and natural gas What is petroleum? What are the components of petroleum and how are they separated? Dec 4 9:41 AM Dec 4 9:41 AM The Greenhouse Effect and Global Warming What is the Greenhouse Effect? Visible light waves emitted by the Sun pass through the Earth s atmosphere. These waves strike the Earth and get reradiated (bounce off) at longer wavelengths. The visible waves get changed into infrared or heat waves. These heat waves cannot escape back into space because they get absorbed (or trapped) by certain gases in our atmosphere. The trapped heat waves cause the atmosphere of our planet to increase in temperature. This is a good thing because it keeps the Earth from freezing. This phenomenon is called the Greenhouse effect because we observe the same kind of effect in a greenhouse. In a greenhouse, the visible light waves from the Sun pass through the glass, strike the ground, and get reradiated out as heat or infrared waves. These longer waves cannot pass through the glass, and thus get trapped in the greenhouse. In this way the greenhouse stays warm. What are the greenhouse gases? These are gases whose molecular structure absorbs heat or infrared waves. The gases are: carbon dioxide, CO2 methane, CH4 water vapor, H2O Dec 4 9:42 AM Dec 4 9:42 AM What is global warming? Global warming is a theory that our planet is heating up because we are adding more and more greenhouse gases into our atmosphere. The main gas is carbon dioxide, which is a product of the combustion of fossil fuels like coal and gasoline. The idea is that the more carbon dioxide we put in our atmosphere, the more heat waves get trapped and the warmer the planet gets. What are possible consequences of global warming? Models predict the following: Changing climates around the world Melting of polar ice caps resulting in rising sea levels displacing millions of people Increase incidence of diseases such as malaria Thermodynamics Thermodynamics is the study of energy and its interconversions. It also studies whether reactions will occur that is, the spontaneity of reactions. To a chemist a spontaneous reaction means one that can occur. To determine the spontaneity of a reaction, three factors must be considered: 1. the enthalpy change ( H) 2. the entropy change ( S) 3. the temperature (in Kelvin) Dec 4 9:44 AM Dec 4 9:44 AM 1

2 It is impossible to measure the enthalpy of a substance. It is possible to measure the change in enthalpy a substance undergoes during a physical or chemical change: H = H products H reactants Problem Write the equation showing the standard heat of formation of solid ammonium chloride. In an endothermic reaction heat is absorbed and the H is positive. In an exothermic reaction heat is released and H is negative. This change in enthalpy is known as the heat of the reaction. The heat of reaction is a generic term. Chemists often refer to particular kinds of reactions, such as the heat of combustion or the heat of fusion. One important kind of reaction involves the formation of a compound from its elements under standard conditions. This is termed the standard heat of formation of a compound, as is expressed in kj/mol of compound formed. It has the symbol Hf. Hf = heat involved in the formation of a compound from its elements in their standard states The standard conditions referred to here are not the same as STP conditions we discussed when studying the gas laws. Here the standard conditions refer to: 25 o C or 298K 760 mm Hg = 1 atm = kpa Based on Table I, which compound is most stable? Which compound is least stable? Illustrate with PE diagram of each noting the ΔH s. The standard heats of formation of various compounds can be easily looked up in the Handbook of Chemistry and Physics but we will avail ourselves to reference table I (discussed earlier in chapter 9), which gives the values for generic heats of reactions. Keep in mind that only those reactions involving elements forming compounds are heats of formation type reactions. Note from the above table that those compounds having large negative heats of formation are stable, while those having positive heats of formation are unstable. Why is this? Recall that in exothermic reactions the products have a lower PE compared to the reactants and are energetically, or we should say thermodynamically, more stable. The more exothermic the reaction, the bigger the H and the more stable the compound. Conversely compounds formed via endothermic reactions have a higher PE compared to the elements from which they formed, and are thermodynamically less stable Ways to Calculate H 1. via constant pressure calorimeter where Q = H = mc T 2. via Hess Law of Constant Heat Summation when a reaction can be expressed as the algebraic sum of a sequence of two or more other reactions, then the heat of the reaction is the sum of the heats of these other reactions. For example Note the following: H is an extensive property it depends on the number of moles; hence, if we double the moles of product we must double the H; if we halve the moles we halve the H If we reverse a reaction we must reverse the sign of H Sn(s) + Cl2(g) SnCl2(s) SnCl2(s) + Cl2(g) SnCl4(s) H = kj H = kj Net: Dec 4 9:46 AM Dec 4 9:46 AM 2

3 Use the following equations to calculate the standard heat of formation of sulfur dioxide gas: S(s) + O2(g) SO2(g) 1. S(s) + 3/2 O2(g) SO3(g) ΔH = 395 kj 2. 2 SO2(g) + O2(g) 2 SO3(g) ΔH = 198 kj 3. via heats of formations: H = Σn Hfproducts Σn Hfreactants note the Hf of an element is taken to equal zero; keep in mind H is an extensive property (depends on n) ΔH f C 2H 6(g) = 84 kj/mol ΔH f CO 2(g) = 394 kj/mol ΔH f H 2O(l) = 286 kj/mol calculate the H o for the reaction: C 2H 6(g) + 5/2O 2(g) 2CO 2(g) + 3H 2O(l) Dec 4 9:47 AM Dec 4 9:47 AM Demonstration In this demonstration a M&M will be burned in a pure source of oxygen gas. The oxygen gas is obtained by decomposing a metal chlorate. a) Write an equation for the combustion of glucose: b) Calculate the standard ΔH for this combustion, given the following andard sδh f values: ΔH f glucose = 1275 kj/mol ΔH f H 2O(g) = 242 kj/mol ΔH f CO 2(g) = 394 kj/mol Entropy Entropy is a measure of the disorder or randomness of a system. Entropy has the symbol S and a change in entropy is given by the symbol S. c) If an M&M weighs.80 g and is 90.0% glucose, calculate the heat energy involved in the combustion of an M&M: d) If the heat energy in (c) is added to g of water at a temperature of 25.0oC, what will be the final temperature of the water? S = S products S reactants A relative measure of the entropy of a system can be seen by looking at the change in state (phase) the system undergoes: solid liquid gas increasing entropy Chemists have observed that systems tend to go towards states of maximum entropy. Tell that to your parents the next time they yell at you for your messy room! The second law of thermodynamics can be stated as: The entropy of the universe is always increasing Your textbook describes the cause of this entropy due to energy spread (i.e. exothermic reactions) and matter spread (i.e. i.e. gas occupies volume it is placed in). Dec 4 9:48 AM Dec 4 9:48 AM Spontaneity of a Reaction and Gibbs Free Energy Chemists have observed the following: Nature favors exothermic reactions those having a negative H; that is, those reactions in which energy is released (energy spread) tend to occur or are spontaneous. Nature favors increasing disorder those reactions having a positive S; that is, those reactions in which the products have a greater randomness compared to the reactants (matter spread) tend to occur or are spontaneous. The mathematician Willard Gibbs proposed a thermodynamic concept to simultaneously incorporate the concepts of entropy and enthalpy. He called this concept free energy. It is now called Gibbs free energy in his honor and is given the symbol G. The free energy change, or G (or Gibb s free energy) is thought of as the net driving force of a reaction. It is expressed mathematically as: G = H T S when G = reaction is spontaneous G = + reaction is not spontaneous G = 0 reaction is at equilibrium Note that to a chemist the term spontaneous has the specific meaning that the reaction can occur. It does not mean it will occur instantaneously. 3

4 Case 1. S(s) + O2(g) SO2(g) + heat Case 2. N2(g) + 3H2(g) + heat 2NH3(g) Case 3. NH4Cl(s) + heat NH4Cl(aq) Case 4. Mg(s) + Cl2(g) MgCl2(s) + heat Use thermodynamic principles to explain the spontaneity of the following reaction: The H for a reaction = +293kJ and the S = J/K. Calculate G at 25 o C. Will the reaction be 2KClO 3(s) + heat 2KCl(s) + 3O 2(g) spontaneous at 100 o C? Dec 4 9:51 AM 4

5 Demonstration How can you test for the presence of ammonia gas? Consider the reaction between two solid ionic compounds, ammonium thiocyanate and barium hydroxide octahydrate: 2NH 4SCN(s) + Ba(OH) 2. 8H 2O(s) Ba(SCN) 2(aq) + 2NH 3(g) + 10 H 2O(l) The two solids are mixed in a flask which is placed on a wet piece of wood. The water surrounding the flask froze yet the water inside the flask did not freeze. Can you offer an explanation? What is the sign for the enthalpy change, H? Explain. What is the sign for the entropy change, S? Explain. Is the reaction spontaneous at room temperature? Which factor, H or S, drives the reaction? Explain. Dec 4 9:51 AM Dec 4 9:52 AM 5

Thermodynamics. Thermodynamics1.notebook. December 14, Quality vs Quantity of Energy

Thermodynamics. Thermodynamics1.notebook. December 14, Quality vs Quantity of Energy Thermodynamics Quality vs Quantity of Energy Your textbook discusses the idea that although energy is conserved we face an energy crisis because the quality of energy we have available to do work like

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Chapter 10 (part 2) Energy. Copyright Cengage Learning. All rights reserved 1

Chapter 10 (part 2) Energy. Copyright Cengage Learning. All rights reserved 1 Chapter 10 (part 2) Energy Copyright Cengage Learning. All rights reserved 1 Section 10.7 Hess s Law In going from a particular set of reactants to a particular set of products, the change in enthalpy

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 16.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

7.2. Thermodynamics and Equilibrium. What Conditions Favour a Change? 328 MHR Unit 4 Chemical Systems and Equilibrium

7.2. Thermodynamics and Equilibrium. What Conditions Favour a Change? 328 MHR Unit 4 Chemical Systems and Equilibrium 7.2 Thermodynamics and Equilibrium Section Preview/ Specific Expectations In this section, you will identify qualitatively entropy changes that are associated with physical and chemical processes describe

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Energy Relationships in Chemical Reactions

Energy Relationships in Chemical Reactions Energy Relationships in Chemical Reactions What is heat? What is a state function? What is enthalpy? Is enthalpy a state function? What does this mean? How can we calculate this? How are the methods the

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O Chapter 19. Spontaneous Change: Entropy and Free Energy In previous chapters we have studied: How fast does the change occur How is rate affected by concentration and temperature How much product will

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes I. Thermochemistry: study of heat in chemical reactions and phase changes II. A. Heat equation (change in temperature): Q = m. C. p T 1. Q = heat (unit is Joules) 2. m = mass (unit is grams) 3. C p = specific

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

THE ENERGY OF THE UNIVERSE IS CONSTANT.

THE ENERGY OF THE UNIVERSE IS CONSTANT. Chapter 6 Thermochemistry.notebook Chapter 6: Thermochemistry Jan 29 1:37 PM 6.1 The Nature of Energy Thermodynamics: The study of energy and its interconversions Energy: the capacity to do work or to

More information

What is energy??? The ability to do work or produce heat. Potential Energy (PE) energy due to position or composition

What is energy??? The ability to do work or produce heat. Potential Energy (PE) energy due to position or composition Chapter 10: Energy What is energy??? The ability to do work or produce heat. Potential Energy (PE) energy due to position or composition Kinetic Energy (KE) energy due to motion Law of Conservation of

More information

Chapter 6. Heat Flow

Chapter 6. Heat Flow Chapter 6 Thermochemistry Heat Flow Heat (q): energy transferred from body at high T to body at low T Two definitions: System: part of universe we are interested in Surrounding: the rest of the universe

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Propose a method for measuring your results.

Propose a method for measuring your results. System vs. Surroundings In thermodynamics, a system is defined as that part of the universe that is under consideration (the part of the universe that you are studying). A hypothetical boundary separates

More information

Gummy Bear Demonstration:

Gummy Bear Demonstration: Name: Unit 8: Chemical Kinetics Date: Regents Chemistry Aim: _ Do Now: a) Using your glossary, define chemical kinetics: b) Sort the phrases on the SmartBoard into the two columns below. Endothermic Rxns

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Thermochemistry Thermochemistry is a part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? - Will a reaction proceed

More information

UNIT ONE BOOKLET 6. Thermodynamic

UNIT ONE BOOKLET 6. Thermodynamic DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that

More information

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS SOLUTIONS Practice Problems In your notebook, solve the following problems. SECTION 16.1 PROPERTIES OF SOLUTIONS 1. The solubility of CO 2 in water at 1.22 atm is 0.54 g/l. What is the solubility of carbon

More information

8.6 The Thermodynamic Standard State

8.6 The Thermodynamic Standard State 8.6 The Thermodynamic Standard State The value of H reported for a reaction depends on the number of moles of reactants...or how much matter is contained in the system C 3 H 8 (g) + 5O 2 (g) > 3CO 2 (g)

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

Chapter 17: Energy and Kinetics

Chapter 17: Energy and Kinetics Pages 510-547 S K K Chapter 17: Energy and Kinetics Thermochemistry: Causes of change in systems Kinetics: Rate of reaction progress (speed) Heat, Energy, and Temperature changes S J J Heat vs Temperature

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chpter 17 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these phase changes is an endothermic process? a.

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Chapter 10 Lecture Notes: Thermodynamics

Chapter 10 Lecture Notes: Thermodynamics Chapter 10 Lecture Notes: Thermodynamics During this unit of study, we will cover three main areas. A lot of this information is NOT included in your text book, which is a shame. Therefore, the notes you

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Accelerated Chemistry Study Guide Chapter 12, sections 1 and 2: Heat in Chemical Reactions

Accelerated Chemistry Study Guide Chapter 12, sections 1 and 2: Heat in Chemical Reactions Accelerated Chemistry Study Guide Chapter 12, sections 1 and 2: Heat in Chemical Reactions Terms, definitions, topics Joule, calorie (Re-read p 57-58) Thermochemistry Exothermic reaction Endothermic reaction

More information

Ch. 14 In-Class Exercise

Ch. 14 In-Class Exercise 1 Chemistry 123/125 Ch. 14 In-Class Exercise Many physical and chemical processes proceed naturally in one direction, but not in the other. In other words, these processes are spontaneous in the direction

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

Thermodynamics part 2

Thermodynamics part 2 Thermodynamics part 2 The thermodynamic standard state of a substance is its most stable pure form under standard pressure (one atmosphere) and at some specific temperature (25 C or 298 K unless otherwise

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6 Thermochemistry Section 5.6 The Kinetic Molecular Theory of Gases http://www.scuc.txed.net/webpages/dmackey/files /chap06notes.pdf ..\..\..\..\..\..\Videos\AP Videos\Thermochemistry\AP

More information

Chapter 20: Thermodynamics

Chapter 20: Thermodynamics Chapter 20: Thermodynamics Thermodynamics is the study of energy (including heat) and chemical processes. First Law of Thermodynamics: Energy cannot be created nor destroyed. E universe = E system + E

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

Contents and Concepts

Contents and Concepts Contents and Concepts 1. First Law of Thermodynamics Spontaneous Processes and Entropy A spontaneous process is one that occurs by itself. As we will see, the entropy of the system increases in a spontaneous

More information

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909 Exam 1A 1) The molar solubility of a salt M 2 X 3 is 1.9 10 3 M. (M is the cation and X is the anion.) What is the value of Ksp for this salt? a) 1.5E-13 b) 2.7E-12 c) 2.5E-14 d) 8.9E-13 e) 3.8E-3 2) What

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes 5.2 Energy 5.2.1 Lattice Enthalpy Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

CHM 112 Chapter 16 Thermodynamics Study Guide

CHM 112 Chapter 16 Thermodynamics Study Guide CHM 112 Chapter 16 Thermodynamics Study Guide Remember from Chapter 5: Thermodynamics deals with energy relationships in chemical reactions Know the definitions of system, surroundings, exothermic process,

More information

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H.

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H. Enthalpy Changes The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H. During chemical reactions, the enthalpy can increase or decrease. The change in enthalpy during

More information

What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance

What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance Why do some reactions occur spontaneously & others do not? Atoms react to

More information

Enthalpy, Entropy, and Free Energy Calculations

Enthalpy, Entropy, and Free Energy Calculations Adapted from PLTL The energies of our system will decay, the glory of the sun will be dimmed, and the earth, tideless and inert, will no longer tolerate the race which has for a moment disturbed its solitude.

More information

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. Entropy is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

(03) WMP/Jun10/CHEM4

(03) WMP/Jun10/CHEM4 Thermodynamics 3 Section A Answer all questions in the spaces provided. 1 A reaction mechanism is a series of steps by which an overall reaction may proceed. The reactions occurring in these steps may

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Energy -Very much a chemistry topic Every chemical change has an accompanying change of. Combustion of fossil fuels The discharging a battery Metabolism of foods If we are to

More information

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom.

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom. Energy Relations in Chemistry: Thermochemistry The Nature of Energy Sugar you eat is "combusted" by your body to produce CO 2 and H 2 O. During this process energy is also released. This energy is used

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Chemistry 30: Thermochemistry. Practice Problems

Chemistry 30: Thermochemistry. Practice Problems Name: Period: Chemistry 30: Thermochemistry Practice Problems Date: Heat and Temperature 1. Pretend you are doing a scientific study on the planet Earth. a. Name three things in the system you are studying.

More information

Accelerated Chemistry Semester 2 Review Sheet

Accelerated Chemistry Semester 2 Review Sheet Accelerated Chemistry Semester 2 Review Sheet The semester test will be given in two parts. The first part is a performance assessment and will be given the day before the semester test. This will include

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

Work hard. Be nice. 100% EVERYDAY.

Work hard. Be nice. 100% EVERYDAY. Name: Period: Date: UNIT 10: Energy Lesson 1: Entropy vs. Enthalpy By the end of today, you will have an answer to: What conditions are favored during reactions? Definition Enthalpy is another word for

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

Unit 5 A3: Energy changes in industry

Unit 5 A3: Energy changes in industry 1. ENTHALPY CHANGES Unit 5 A3: Energy changes in industry 1.1 Introduction to enthalpy and enthalpy changes 2 1.2 Enthalpy profile diagrams 2 1.3 Activation energy 3 1.4 Standard conditions 5 1.5 Standard

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. , S is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints on

More information

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen CHAPTER 12: Thermodynamics Why Chemical Reactions Happen Useful energy is being "degraded" in the form of unusable heat, light, etc. A tiny fraction of the sun's energy is used to produce complicated,

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy of motion:

More information

Thermodynamics. 1. Which of the following processes causes an entropy decrease?

Thermodynamics. 1. Which of the following processes causes an entropy decrease? Thermodynamics 1. Which of the following processes causes an entropy decrease? A. boiling water to form steam B. dissolution of solid KCl in water C. mixing of two gases in one container D. beach erosion

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Overview Everything in the world is a balance of energy, in various forms from biological processes to the rusting of a nail. Two of the most important questions chemists ask are:

More information

Energy: Heat, Nutrients, and Enthalpy Page 13

Energy: Heat, Nutrients, and Enthalpy Page 13 V. Thermochemistry A. Thermochemistry is concerned with the B. Such reactions and changes are. VI. Chemical Reactions A. Chemical compounds contain B. Chemical potential energy. C. In chemical reactions,

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy Thermodynamics Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy 1 Thermodynamically Favored Processes Water flows downhill. Sugar dissolves in coffee. Heat flows from hot

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information

17.2 Thermochemical Equations

17.2 Thermochemical Equations 17.2. Thermochemical Equations www.ck12.org 17.2 Thermochemical Equations Lesson Objectives Define enthalpy, and know the conditions under which the enthalpy change in a reaction is equal to the heat absorbed

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

THERMODYNAMICS. Dr. Sapna Gupta

THERMODYNAMICS. Dr. Sapna Gupta THERMODYNAMICS Dr. Sapna Gupta FIRST LAW OF THERMODYNAMICS Thermodynamics is the study of heat and other forms of energy involved in chemical or physical processes. First Law of Thermodynamics Energy cannot

More information