Plasma Interface Element2

Size: px
Start display at page:

Download "Plasma Interface Element2"

Transcription

1 Plasma Interface Element2

2 Interface (backside) & Extraction Lens

3 Extraction Lens (-2000 volts)

4 ION OPTICS IF this positive potential is great enough, a discharge from the plasma into the orifice is observed called secondary discharge ( ARCing ) host of bad effects including - orifice (cone) erosion - multiply charged ions - variance in the kinetic energy of the ions

5 Ion Focusing Purpose - deliver ions to mass analyzer focuses and directs ion beam

6 ION LENS (TRANSFER LENS) STACK

7

8

9 ION LENS (TRANSFER LENS) STACK The Transfer Lens system is used to: 1. extract the ions entering the analyzer section through the orifices of the cones with very high velocity; i.e. supersonic speed; 2. focus the divergent ion beam onto the target (Entrance Slit), 3. correct the direction of the beam to the target (Entrance Slit) 4. accelerate the ions to their full speed by applying high voltage 5. shape the ion beam into a flat shape so as to make it through the Entrance slit. The ions are subsequently travelling with the desired velocity through the focus point (Entrance Slit) and start to diverge again slightly. In order to control the ion beam during the travel path through the Magnetic Field and the Electric Field, the system controls the rotation of the beam and focuses again to the next focus point.

10 The proportion of ions sampled from the plasma that make it through to the detector is actually extremely small (1 part in 10 6 to 10 8 ), therefore, a high ion gain detection system is required if low detection limits are to be achieved

11 Ion Focusing General Assumptions 1. All ions are free particles with positive charge 2. Density of ion beam is not great enough to induce repulsion ( space charge effects) 3. Presence of ions does not change electrostatic fields 4. Vacuum conditions are adequate to give ions necessary mean free path 5. Ions originate with a constant kinetic energy

12 Ion Optics In an ideal world... All ions leaving the plasma would have the same kinetic energy regardless of m/z ratio This would result in uniform ion transmission through the lens stack

13 Ion Optics In the real world... All ions are essentially accelerated to the supersonic velocity of Ar in the supersonic jet This results in a range of kinetic energy that is a function of mass

14 ION ENERGY vs m/z MAX. ION KE (ev) m/z

15 Ion Optics What does this mean? A single set of ion lens settings will not be appropriate for all elements Therefore, must COMPROMISE (unless looking at a narrow mass range)

16

17 Space charge effects The mutual repulsion of ions of like (similar) charge limits the total number of ions that can be compressed into a beam of given size

18 Space Charge Effects Plasma - ion flux is balanced by the electron flux - essentially neutral Supersonic jet - ion flux is balanced by the electron flux - essentially neutral Lens stack - electrons are repelled by negative potential - ion beam gains positive charge

19 Space Charge Effects Remember our assumptions - density of ion beam not great enough to induce space charge effects ASSUMPTION NOT MET -further reason for non-ideal behavior and different response across the mass range

20

21 Question: what elements are most likely to be effected by space charge effects?

22 Space Charge Effects Space charge effect is most strongly felt by lighter mass elements The space charge force (positive-positive repulsion) acts on all ions equally

23 Space Charge Effects Recall most of the ions present are Ar = mass 40 Elements lighter than mass 40 are going to undergo space charge effects even if there is no other matrix element!

24 Question: why are the low mass elements effected by space charge effects to a greater degree?

25 Space Charge Effects Heavy elements are effected less than light elements Heavy matrices cause more problems than light matrices Best case scenario = analysis of uranium in water Worst case scenario = analysis of Li in organicrich solution

26 ESA Detector ELEMENT SCANNING HIGH RES ICP-MS DEVICE Entrance slit Quad lenses Magnet & flight tube Extraction lenses Skimmer Sampler ICP Neb & Spray chamber

27 Attom HIGH RES- ICP-MS INSTRUMENT

28 Detectors The purpose of an electron multiplier is to detect every ion of the selected mass that has passed through the energy (mass) filter of a mass spectrometer. The basic physical process that allows an electron multiplier to operate is referred to as secondary electron emission. When an ion or electron strikes a surface it can cause electrons located within the outer layers of atoms to be released. The number of secondary electrons released depends on the type of incident primary particle, its energy, and characteristic of the incident surface. In general, there are two basic types of electron multipliers commonly used in mass spectrometric analysis: these are discrete-dynode and continuousdynode electron multipliers. The Element 2 and AttoM HR-ICP-MS instruments both contain a discretedynode electron multiplier (manufactured by ETP Electron Multipliers, Australia).

29 Detectors Discrete-dynode electron multipliers amplify the secondary electron emission process by using an array of electrodes referred to as dynodes. Ions hitting the first dynode cause secondary electrons to be emitted from the surface. The optics of the dynodes focuses these secondary electrons onto the next dynode of the array, which in turn emits even more secondary electrons from its surface than the first dynode. Consequently, a cascade of electrons is produced between successive dynodes, with each dynode increasing the number of electrons in the cascade by a factor of 2 to 3. This process is allowed to continue until the cascade of electrons reaches the output electrode where the signal is extracted. A typical discrete-dynode electron multiplier has between 12 and 24 dynodes and is used with an operating gain of between 10 4 and 10 8.

30 Detectors For a new (unused) electron multiplier, the gain is achieved with a lower applied voltage (~1800 volts). With time and usage, the surfaces of the dynodes slowly become covered with contaminants from the high vacuum system, which results in a decrease of their secondary electron emission capacity (and consequently drop in gain ). Thus, the operating high voltage applied to the electron multipliers must be periodically increased in order to maintain the required multiplier gain.

31 ELECTRON MULTIPLIER V ANALOG OUT, GATE GAIN ~ V PULSE COUNTING OUTPUT GAIN ~ 10 8

32 Detectors

33 Detectors discrete dynode electron multiplier

34 Detector cont d Single detector with two stages- Upper ANALOG stage for high intensity signals (>5x10 6 counts per second- cps) Lower PULSE counting stage for low intensity signals (<100,000 cps) Both stages can be used in the range of 100,000 to 5x10 6 cps However, the two stages need to be calibrated against one another

35 Detector Calibration This procedure converts the analog signal to an effective count rate (cps) in order to plot intensity on the same scale from the ppb to ppm range During the calibration, the lens voltage is adjusted to attenuate the ion beam in order to obtain points in the cross calibration region Only one solution is required for this calibration procedure

36

37 Detector Calibration - AttoM The detector system of the AttoM comprises up to three different stages: Pulse counting electron multiplier, attenuated pulse-counting multiplier and Faraday (not available on our instrument) The instrument continuously monitors beam intensity and performs automatic switchover between detector modes as required. The crossover between the modes should be calibrated on a regular basis, depending on the applications and the required precision.

38 Sample Introduction System Liquid Peristaltic pump or automated sampling system Nebulizer Spray chamber Plasma torch

39

40 Sample Introduction System Peristaltic Pump Pump liquid sample towards nebulizer and plasma torch

41 Sample Introduction System NEBULIZER Its function is to mix the liquid sample with the nebulizer gas (Argron) to produce a fine sample aerosol for introduction to the plasma discharge area.

42 Sample Introduction System NEBULIZERS 3 main categories Pneumatic - concentric, cross flow, Babington, v-groove, Cone Spray Ultrasonic Direct insertion

43 Aerosol production Liquid sample aspirated either in free aspiration mode or with a peristaltic pump -usually made of glass or various kinds of polymers (for highly corrosive liquids/samples) Ar gas (0.6 to 1.2 L/min)

44

45 Elemental Scientific Inc. MicroFlow PFA Nebulizer 100% Teflon Self-aspiration: 20 µl/min 50 µl/min 100 µl/min 400 µl/min

46 Concentric nebulizers

47 Concentric nebulizers Self-actuating Solutions are drawn up by the pressure drop generated as the nebulizer gas passes through the orifice also referred to as freerunning or self-aspiration. Thus, a peristaltic pump is not necessarily required. Advantage- Generally, the ion signal is much more stable

48 Concentric nebulizers Disadvantages cannot handle high total dissolved salts (TDS % m/v solids); i.e. 250 mg sample dissolved in 100 g of solution samples with different viscosities will have different flow rates liquid uptake tied to nebulizer gas flow cannot easily increase flow for different samples

49 Optimal Ar gas flow rate

50 Concentric nebulizers However.. Can use concentric nebulizer in conjunction with peristaltic pump - more commonly used than selfaspirating mode viscosity effects are reduced liquid uptake is metered by pump rate pump rate can be changed for each sample Disadvantages - Can occasionally lead to poorer precision due to pulsing of the flow

51 Ion signal pulsing

52 Spray Chamber Its function is to eliminate all droplets with the exception of those that are the correct size and velocity for introduction into the plasma since plasma discharge is inefficient at dissociating large droplets (>10 micron- 1x10-6 metres). The latter are eliminated by gravity and exit through a drain tube. An aerosol with a diameter of ~1-5 microns is considered to have an ideal diameter for introduction into the plasma. Its secondary purpose is to smooth out pulses that occur during the nebulization process

53 SPRAY CHAMBER & SOLVENT REMOVAL Aerosol out Coolant Drain Fig. 21. Cooled spray chambers for solvent removal. a) cooled double pass Scott chamber b) Cyclone chamber, side and top views. In both chambers, most of the large droplets are deposited at the bends, while fine droplets pass out to the plasma.

54

55 Example of wet plasma introduction system -Spray chamber is cooled to 5 C in order to provide thermal stability, minimize the amount of sample entering the plasma, and reducing the quantity of oxide species. -Oxide species (M + O - vs. M + ) should be kept to below 3% of total ion signal; If not, then the plasma has not been correctly fine-tuned.

56 Desolvating Introduction System- Dry Plasma (e.g. DSN-100, Nu Instruments)

57 DSN-100 The main purpose of the heated spray chamber and PTFE membrane is to drive-off water from the sample, and thus reducing the overall size of the aerosols (hence the term dry plasma). This action results in increasing the instrument s sensitivity ; i.e. the DSN-100 introduction system yields ~10 times more ion signal compared to a meinhard nebulizer + cyclonic spray chamber (wet plasma) introduction system.

58 DSN-100 Sample aspiration occurs in free aspiration mode, typically at a rate of 50 to 100 microlitres per minute, with a Meinhard (micromist) nebulizer The nebulized sample (fine aerosols) are introduced into a heated (110ºC) spray chamber, where it is vapourized The vapourized sample is then carried into a heated (110ºC), semi-porous PTFE membrane wall and then transported away by an external gas stream (membrane gas flow)

59 Torches 2 main types: fixed and demountable fixed: 1 piece demountable: injector tube removable

60 Torches typically constructed of quartz glass injector tubes can be made of a variety of materials alumina tubes for HF solutions injector tubes can have varying diameters to accept a range of TDS solutions

61 Sample Analysis Design Solution Mode

62 Sample Analysis Design Step I Sample preparation The quality of your data will only be as good as the quality of your sample i.e. did you adequately prepare your sample in the clean lab? With respect to the destruction of matrices for samples requiring digestion Did you adequately spike samples with the correct internal standard? Sample handling protocol is extremely important, e.g. weighing

63 Sample Analysis Design Solid Samples Analyze in solid state via LA-ICP-MS? Analyze in solid state via SIMS secondary ion mass spectrometry? Convert into a glass bead and analyze via XRF x-ray fluoresence? Take powder and digest into solution with acids?

64 Sample Analysis Design- Liquid (aqueous) samples run as-is? filter then run? dilute then run? acidify, dilute, then run?

65 Sample Analysis Design Method of sample preparation also depends upon the elements of interest e.g. don t analyze your samples in a hydrofluoric acid medium if you wish to measure Si abundances why? Elemental concentration determinations at ultra-trace level (ppb, ppt) are very susceptible to contamination during sample preparation and therefore should be conducted in clean laboratory environments

66 Sample Analysis Design Clean room environment Laboratory clean room is a facility in which the concentration of airborne particles is controlled to specified limits. Eliminating sub-micron airborne contamination is a control-driven process since contaminants are generated by people, process, facilities and equipment. Hence, sub-micron particles must be continually removed from the air.

67 Sample Analysis Design Clean room environment Typical office building air contains from 500,000 to 1,000,000 particles (0.5 microns or larger) per cubic foot of air. A Class 100 cleanroom is designed to never allow more than 100 particles (0.5 microns or larger) per cubic foot of air. Class 1000 and Class 10,000 cleanrooms are designed to limit particles to 1000 and 10,000, respectively

68 Sample Analysis Design Clean room environment A human hair is about microns in diameter. A particle 200 times smaller (0.5 micron) than the human hair can cause major disaster in a clean room. Human hair typically concentrates elements/contaminants such as Pb!

69 Facilities: Sample Analysis Design - Sources of contamination Walls, floors and ceilings Paint and coatings Construction material (sheet rock, saw dust etc.) Air conditioning debris Room air and vapors Spills and leaks

70 People: Sample Analysis Design - Sources of contamination Skin flakes and oil Cosmetics and perfume Spittle Clothing debris (lint, fibers etc.) Hair

71 Sample Analysis Design - Contamination Control HEPA (High Efficiency Particulate Air Filter) - Extremely important for reducing contamination - filter particles as small as 0.3 microns with a 99.97% minimum particle-collective efficiency. Clean room design requires air flow dynamics to be the least disruptive as possible laminar flow Cleaning!

72 Sample Analysis Design - Contamination Control Purity of reagents, acids, cleanliness of digestion vessels, sample bottles, etc can dramatically effect background levels and data quality If possible, use highest purity commercial acids At the minimum - sometimes need to further process reagents e.g. acid distillation in our laboratory Digestion vessels made of disposable fluorinated polymers (teflon, PFTE, PFA, etc) Solutions stored in polypropylene or equivalent

73 Sample Analysis Design Concentration terminology Concentrations are typically expressed as either µg/g, or µg/ml (1 µg - microgram = 1 x 10-6 grams), or ppm, ppb, ppt ppm = parts per million = 1 x 10-6 g/g = 1 µg/g (µg = microgram) ppb = parts per billion = 1 x 10-9 g/g = 1 ng/g (ng = nanogram) ppt = parts per trillion = 1 x g/g = 1 pg/g (pg = picogram)

74 Sample Analysis Design Concentration terminology E.g. Zircon ZrSiO 4 ZrO 2 = 67.2 wt% SiO 2 = 32.8 wt% Atomic mass of Zr= Atomic mass of Si= Atomic mass of O= % Zr in ZrO 2 = /( ( *2)) = 74 % Si in SiO 2 = /( ( *2)) = 46.7

75 Sample Analysis Design Concentration terminology If 100% = 1,000,000 ppm, then 74% Zr (out of 67.2 wt%) = 49.73% or 497,300 ppm (or µg/g) 46.7% Si (out of 32.8 wt%) = 15.32% or 153,200 ppm (or µg/g) If you are asked to weigh out g of zircon, then the amounts of total Zr and Si you would have are: Zr = 497,300 µg/g x g = 4.97 µg Si = 153,200 µg/g x g = 1.53 µg

76 Sample Analysis Design Concentration terminology However, you are asked to prepare a solution of this zircon sample for ICP-MS analysis in solution mode; then what would be the minimum dilution factor required given that the maximal amount of ion signal intensity allowed is 50 x 10 6 cps and the yield for both elements in medium resolution mode is ~60,000 cps/ppb?

77 Sample Analysis Design Concentration terminology Maximum allowable concentration is = Max. count rate/ yield = 50 x 10 6 cps/ 60,000 cps/ppb = 833 ppb (ng/g) 4.97 µg of Zr needs to be diluted into? ml of 5% HNO µg = 4970 ng/833 ng/g = ~5.97 g (ml) of 5% HNO 3

Sample Analysis Design. Solution Mode

Sample Analysis Design. Solution Mode Sample Analysis Design Solution Mode Step I Sample preparation The quality of your data will only be as good as the quality of your sample i.e. did you adequately prepare your sample in the clean lab?

More information

Interface (backside) & Extraction Lens

Interface (backside) & Extraction Lens Plasma Interface Interface (backside) & Extraction Lens Extraction Lens (-2000 volts) ION OPTICS Tip of the sampler cone is positioned to be in the region of maximum ionization Ions no longer under control

More information

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS APPLICATION NOTE ICP - Mass Spectrometry Author Kenneth Ong PerkinElmer, Inc. Singapore Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS Introduction The control of impurity

More information

Spectrometric Methods of Analysis. OCN 633 Fall 2013

Spectrometric Methods of Analysis. OCN 633 Fall 2013 Spectrometric Methods of Analysis OCN 633 Fall 2013 Plasma Emission and Plasma Mass Spectroscopy Two fields of elemental analysis undergoing the most study Myriad analytical applications Three categories

More information

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Application Note Semiconductor Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Tokyo, Japan Introduction

More information

PRINCIPLE OF ICP- AES

PRINCIPLE OF ICP- AES INTRODUCTION Non- flame atomic emission techniques, which use electrothermal means to atomize and excite the analyte, include inductively coupled plasma and arc spark. It has been 30 years since Inductively

More information

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces

More information

Application note. Trace level analysis of sulfur, phosphorus, silicon and chlorine in NMP using the Agilent 8800 Triple Quadrupole ICP-MS

Application note. Trace level analysis of sulfur, phosphorus, silicon and chlorine in NMP using the Agilent 8800 Triple Quadrupole ICP-MS Trace level analysis of sulfur, phosphorus, silicon and chlorine in NMP using the Agilent 8800 Triple Quadrupole ICP-MS Application note Semiconductor Author Naoki Sugiyama Agilent Technologies, Tokyo,

More information

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma THE PLASMA Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces a current within a stream of Argon (Ar) gas, which

More information

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS TECHNICAL NOTE 4322 Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS Keywords Argon gas dilution, AGD, High matrix samples, Seawater Goal To critically

More information

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur Introduction What is ICP-MS? Inductively Coupled Plasma Mass Spectrometry Mass spectrometry

More information

Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry

Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry Fundamentals and Applications to the Petrochemical Industry Outline Some background and fundamentals of ICPMS

More information

Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES

Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES Application Note - AN1508 Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES Introduction Page 1 The combination of hydride generation with

More information

The 30-Minute Guide to ICP-MS

The 30-Minute Guide to ICP-MS TECHNICAL NOTE The 30-Minute Guide to ICP-MS ICP - Mass Spectrometry A Worthy Member of the Atomic Spectroscopy Team For nearly 30 years, inductively coupled plasma mass spectrometry (ICP-MS) has been

More information

Low level Os isotopic measurements using multiple ion counting

Low level Os isotopic measurements using multiple ion counting APPLICATION NOTE 30355 Low level Os isotopic measurements using multiple ion counting Authors Introduction Jean Louis Birck, Delphine Limmois, Institut de Physique du Globe de Paris, Sorbonne Paris Cité,

More information

Thermo Scientific icap RQ ICP-MS: Typical limits of detection

Thermo Scientific icap RQ ICP-MS: Typical limits of detection TECHNICAL NOTE 43427 Thermo Scientific icap RQ ICP-MS: Typical limits of detection Author Tomoko Vincent Keywords BEC, interference removal, KED, LOD Introduction Inductively Coupled Plasma Mass Spectrometry

More information

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY Edited by AKBAR MONTASER George Washington University Washington, D.C. 20052, USA WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Defining quality standards for the analysis of solid samples

Defining quality standards for the analysis of solid samples Defining quality standards for the analysis of solid samples Thermo Scientific Element GD Plus Glow Discharge Mass Spectrometer Redefine your quality standards for the elemental analysis of solid samples

More information

Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution

Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution APEX-ACM Ca Ratios Rapid and precise calcium isotope ratio determinations using the Apex-ACM desolvating inlet system with sector-field ICP-MS in low resolution Abstract High resolution ICP-MS is used

More information

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode Application note Semiconductor Authors Michiko Yamanaka, Kazuo Yamanaka and Naoki

More information

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS Application note Energy and fuels Authors Jenny Nelson, Agilent Technologies, USA Ed McCurdy, Agilent Technologies, UK Introduction

More information

Mass Spectrometry in MCAL

Mass Spectrometry in MCAL Mass Spectrometry in MCAL Two systems: GC-MS, LC-MS GC seperates small, volatile, non-polar material MS is detection devise (Agilent 320-MS TQ Mass Spectrometer) Full scan monitoring SIM single ion monitoring

More information

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS Application Note Semiconductor Authors Junichi Takahashi Agilent Technologies Tokyo, Japan Abstract Ammonium hydroxide

More information

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS Enhancing the productivity of food sample analysis with the Agilent 77x ICP-MS Application note Foods testing Authors Sebastien Sannac, Jean Pierre Lener and Jerome Darrouzes Agilent Technologies Paris,

More information

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Chapter 9 Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Emission Spectroscopy Flame and Plasma Emission Spectroscopy are based upon those particles that are

More information

ICPMS Doherty Lecture 1

ICPMS Doherty Lecture 1 ICPMS Doherty Lecture 1 Mass Spectrometry This material provides some background on how to measure isotope abundances by means of mass spectrometry. Mass spectrometers create and separate ionized atoms

More information

Trace Analyses in Metal Matrices Using the ELAN DRC II

Trace Analyses in Metal Matrices Using the ELAN DRC II www.perkinelmer.com Trace Analyses in Metal Matrices Using the ELAN DRC II Introduction Analyses of matrices containing high levels of metals present a challenge for ICP-MS. First, the concentrations of

More information

Hands on mass spectrometry: ICP-MS analysis of enriched 82 Se samples for the LUCIFER experiment

Hands on mass spectrometry: ICP-MS analysis of enriched 82 Se samples for the LUCIFER experiment : ICP-MS analysis of enriched 82 Se samples for the LUCIFER experiment Max Planck Institute for Nuclear Physics, Heidelberg, Germany E-mail: mykola.stepaniuk@mpi-hd.mpg.de Stefano Nisi E-mail: stefano.nisi@lngs.infn.it

More information

Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Petrochemical Authors Ed McCurdy & Don Potter Agilent Technologies Ltd. Lakeside Cheadle Royal

More information

Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode

Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode Application Note Pharmaceutical Authors Rebeca Santamaria-Fernandez, SheilaMerson,

More information

ICP-MS. High Resolution ICP-MS.

ICP-MS. High Resolution ICP-MS. ICP-MS attom ES High Resolution ICP-MS www.nu-ins.com Attom ES Enhanced Sensitivity Enhanced Speed Enhanced Selectivity Enhanced Software The Attom ES from Nu Instruments is a double focussing inductively

More information

Application. Determination of Trace Metal Impurities in Semiconductor-Grade Hydrofluoric Acid. Authors. Introduction. Abstract.

Application. Determination of Trace Metal Impurities in Semiconductor-Grade Hydrofluoric Acid. Authors. Introduction. Abstract. Determination of Trace Metal Impurities in Semiconductor-Grade Hydrofluoric Acid Application Semiconductor Authors Abe G. Gutiérrez Elemental Scientific 2440 Cuming St Omaha, NE 68131 USA abe@icpms.com

More information

Following documents shall be used for reference on quantities, units, prefixes and other technical vocabulary in this document:

Following documents shall be used for reference on quantities, units, prefixes and other technical vocabulary in this document: SPECIFICATION SPECIFICATION Inductively Coupled Plasma Mass Spectrometry System 1. Scope This specification describes the requirements for an Inductively Coupled Plasma Mass Spectrometry System ( System

More information

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Application note Semiconductor Authors Junichi Takahashi Agilent Technologies, Japan Introduction

More information

Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS

Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS APPLICATION NOTE 43374 Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS Authors Tomoko Vincent, Product Specialist, Thermo Fisher Scientific Keywords

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

The Characterization of Nanoparticle Element Oxide Slurries Used in Chemical-Mechanical Planarization by Single Particle ICP-MS

The Characterization of Nanoparticle Element Oxide Slurries Used in Chemical-Mechanical Planarization by Single Particle ICP-MS A P P L I C AT I O N N O T E ICP - Mass Spectrometry Authors: Lee Davidowski Chady Stephan PerkinElmer, Inc. Shelton, CT The Characterization of Nanoparticle Element Oxide Slurries Used in Chemical-Mechanical

More information

Thermo VG PQ EXCELL INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER

Thermo VG PQ EXCELL INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL 001.847.913.0777 for Certified, Refurbished Lab Equipment Thermo VG PQ EXCELL INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER TECHNICAL

More information

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ Application Note Semiconductor Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Japan Introduction Hydrochloric

More information

Determination of Elements at Sub-ppb Concentrations in Naphtha Mixtures Using the NexION 300 ICP-MS

Determination of Elements at Sub-ppb Concentrations in Naphtha Mixtures Using the NexION 300 ICP-MS application Note ICP Mass Spectrometry Authors Stan Smith PerkinElmer, Inc. Oak Brook, IL 60523 Monica Bolchi Riccardo Magarini PerkinElmer, Inc. Monza, Italy Determination of Elements at Sub-ppb Concentrations

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Total Mercury Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-106-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

AN INTRODUCTION TO ATOMIC SPECTROSCOPY AN INTRODUCTION TO ATOMIC SPECTROSCOPY Atomic spectroscopy deals with the absorption, emission, or fluorescence by atom or elementary ions. Two regions of the spectrum yield atomic information- the UV-visible

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Atomic Absorption Spectrophotometry Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Defination In analytical chemistry, Atomic absorption spectroscopy is a

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

MODULE 4.3 Atmospheric analysis of particulates

MODULE 4.3 Atmospheric analysis of particulates MODULE 4.3 Atmospheric analysis of particulates Measurement And Characterisation Of The Particulate Content 1 Total particulate concentration 1 Composition of the particulate 1 Determination of particle

More information

Fundamentals of Particle Counting

Fundamentals of Particle Counting Fundamentals of Particle Counting 1 Particle Counting: Remains the most significant technique for determining the cleanliness level of a fluid Useful as a tool for qualification and monitoring cleanroom

More information

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Application note Geochemistry, metals, mining Authors John Cauduro Agilent Technologies, Mulgrave, Australia Introduction

More information

ENVG FALL ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques

ENVG FALL ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques ENVG 60500 FALL 2013 ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques HISTORY In the 1940s, arc and high-voltage spark spectrometry became widely utilized for metal analysis

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer Defining quality standards for the analysis of solid samples Redefine your quality standards for the elemental analysis of solid samples

More information

Agilent ICP-MS. Fundamentals of ICP-MS Analysis and Its Applications for Low Level Elemental Determination in Cannabis

Agilent ICP-MS. Fundamentals of ICP-MS Analysis and Its Applications for Low Level Elemental Determination in Cannabis Agilent ICP-MS Fundamentals of ICP-MS Analysis and Its Applications for Low Level Elemental Determination in Cannabis High Sample Matrix Tolerance Superior & Simple Interference Removal Ultra Wide Linear

More information

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Chemistry Instrumental Analysis Lecture 37. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 37 Most analytes separated by HPLC are thermally stable and non-volatile (liquids) (unlike in GC) so not ionized easily by EI or CI techniques. MS must be at

More information

Sample Analysis Design PART II

Sample Analysis Design PART II Sample Analysis Design PART II Sample Analysis Design Generating high quality, validated results is the primary goal of elemental abundance determinations It is absolutely critical to plan an ICP-MS analysis

More information

1. The range of frequencies that a measurement is sensitive to is called the frequency

1. The range of frequencies that a measurement is sensitive to is called the frequency CHEM 3 Name Exam 1 Fall 014 Complete these problems on separate paper and staple it to this sheet when you are finished. Please initial each sheet as well. Clearly mark your answers. YOU MUST SHOW YOUR

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

Sampling. Information is helpful in implementing control measures for reducing pollutant concentration to acceptable levels

Sampling. Information is helpful in implementing control measures for reducing pollutant concentration to acceptable levels Types of pollutant sampling and measurement: Air quality monitoring: Sampling and measurement of air pollutants generally known, as air quality monitoring. It is an integral component of any air pollution

More information

Lead isotope analysis: Removal of 204 Hg isobaric interference from 204 Pb using ICP-QQQ in MS/MS mode

Lead isotope analysis: Removal of 204 Hg isobaric interference from 204 Pb using ICP-QQQ in MS/MS mode Lead isotope analysis: Removal of Hg isobaric interference from using ICP-QQQ in MS/MS mode Application note Authors Geochemistry and isotope analysis Glenn Woods Agilent Technologies, LDA UK Ltd., Stockport,

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

DISCLAIMER: This method:

DISCLAIMER: This method: Inorganic arsenic determination in fresh mussels using water bath extraction and anion exchange chromatography-inductively coupled plasma mass spectrometry DISCLAIMER: This method: - has to be considered

More information

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein. Mass Analyzers After the production of ions in ion sources, the next critical step in mass spectrometry is to separate these gas phase ions according to their mass-to-charge ratio (m/z). Ions are extracted

More information

Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application

Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application Semiconductor Author Junichi Takahashi Koichi Yono Agilent Technologies, Inc. 9-1, Takakura-Cho, Hachioji-Shi,

More information

Analysis of Polar Metabolites using Mass Spectrometry

Analysis of Polar Metabolites using Mass Spectrometry Analysis of Polar Metabolites using Mass Spectrometry TransMed Course: Basics in Clinical Proteomics and Metabolomics. Oct 10-19, 2012 dd.mm.yyyy Vidya Velagapudi, Ph.D, Adjunct Professor Head of the Metabolomics

More information

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell Trace elemental analysis of distilled alcoholic beverages using the Agilent 77x ICP-MS with octopole collision/ reaction cell Application note Food testing Author Glenn Woods Agilent Technologies Cheadle

More information

Determination the elemental composition of soil samples

Determination the elemental composition of soil samples 4. Experiment Determination the elemental composition of soil samples Objectives On this practice you will determine the elemental composition of soil samples by Inductively Coupled Plasma Optical Emission

More information

ICP-MS. Inductively Coupled Plasma Mass Spectrometry. A Primer

ICP-MS. Inductively Coupled Plasma Mass Spectrometry. A Primer ICP-MS Inductively Coupled Plasma Mass Spectrometry A Primer Table of Contents ICP-MS Primer Section 1 Introduction to ICP-MS 1 History and Development of ICP-MS 2 Agilent Technologies - History in ICP-MS

More information

Sample Analysis Design Polyatomic Interferences

Sample Analysis Design Polyatomic Interferences Sample Analysis Design Polyatomic Interferences More serious than isobaric interferences Result from possible, short-lived combination of atomic species in the plasma or during ion transfer Common recombinants

More information

The Easy Guide to: Inductively Coupled Plasma- Mass Spectrometry (ICP-MS)

The Easy Guide to: Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) The Easy Guide to: Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) By Arianne Bazilio & Jacob Weinrich December 2012 Contents Introduction... 2 Sample Introduction... 3 Torch... 4 Interface... 6

More information

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company Key Analytical Issues: Sample Preparation, Interferences and Variability Tim Shelbourn, Eli Lilly and Company Presentation Outline Sample preparation objectives and challenges Some common interferences

More information

Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company

Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company Why ICP Mass Spectrometry? Ultra-trace multi-element analytical

More information

FEASIBILITY OF IN SITU TXRF

FEASIBILITY OF IN SITU TXRF FEASIBILITY OF IN SITU TXRF A. ngh 1, P. Goldenzweig 2, K. Baur 1, S. Brennan 1, and P. Pianetta 1 1. Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309, US 2. Binghamton University, New York,

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

ICP-OES Application Note Number 35

ICP-OES Application Note Number 35 ICP-OES Application Note Number 35 Rapid measurement of major, minor and trace levels in soils using the Varian 730-ES Vincent Calderon Varian, Inc. Introduction As part of the global strategy for sustainable

More information

Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS

Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS ICP-MS Environmental Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS Application Note Steve Wilbur Analysis of arsenic and selenium in seawater at trace

More information

Agilent 7500a Inductively Coupled Plasma Mass Spectrometer (ICP-MS)

Agilent 7500a Inductively Coupled Plasma Mass Spectrometer (ICP-MS) www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment Agilent 7500a Inductively Coupled Plasma Mass Spectrometer (ICP-MS) The Agilent

More information

Application Note GA-301E. MBMS for Preformed Ions. Extrel CMS, 575 Epsilon Drive, Pittsburgh, PA I. SAMPLING A CHEMICAL SOUP

Application Note GA-301E. MBMS for Preformed Ions. Extrel CMS, 575 Epsilon Drive, Pittsburgh, PA I. SAMPLING A CHEMICAL SOUP Application Note MBMS for Preformed Ions, 575 Epsilon Drive, Pittsburgh, PA 15238 (Poster Presented at 45th ASMS Conference on Mass Spectrometry, June 1-5, 1997) In order to accurately characterize a plasma

More information

Portable type TXRF analyzer: Ourstex 200TX

Portable type TXRF analyzer: Ourstex 200TX Excerpted from Adv. X-Ray. Chem. Anal., Japan: 42, pp. 115-123 (2011) H. Nagai, Y. Nakajima, S. Kunimura, J. Kawai Improvement in Sensitivity and Quantification by Using a Portable Total Reflection X-Ray

More information

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy EXPERIMENT 7 Determination of Sodium by Flame Atomic-Emission Spectroscopy USE ONLY DEIONIZED WATER (NOT DISTILLED WATER!) THROUGHOUT THE ENTIRE EXPERIMENT Distilled water actually has too much sodium

More information

Sources of Errors in Trace Element and Speciation Analysis

Sources of Errors in Trace Element and Speciation Analysis Sources of Errors in Trace Element and Speciation Analysis Zoltan Mester, National Research Council of Canada, Institute for National Measurement Standards Outline Definitions Sources of errors in the

More information

Test Method: CPSC-CH-E

Test Method: CPSC-CH-E UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 10901 DARNESTOWN RD GAITHERSBURG, MD 20878 Test Method: CPSC-CH-E1001-08 Standard Operating Procedure

More information

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer is powerful simultaneous full

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 1 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Ultra trace measurement of potassium and other elements in ultrapure water using the Agilent 8800 ICP-QQQ in cool plasma reaction cell mode

Ultra trace measurement of potassium and other elements in ultrapure water using the Agilent 8800 ICP-QQQ in cool plasma reaction cell mode Ultra trace measurement of potassium and other elements in ultrapure water using the Agilent 8800 ICP-QQQ in cool plasma reaction cell mode Application note Semiconductor Author Katsuo Mizobuchi Masakazu

More information

M M e M M H M M H. Ion Sources

M M e M M H M M H. Ion Sources Ion Sources Overview of Various Ion Sources After introducing samples into a mass spectrometer, the next important step is the conversion of neutral molecules or compounds to gas phase ions. The ions could

More information

Thermo Scientific Neptune XT MC-ICP-MS

Thermo Scientific Neptune XT MC-ICP-MS Thermo Scientific Neptune XT MC-ICP-MS Neptune XT MC-ICP-MS A new edition of the market leading Thermo Scientific Neptune Series MC-ICP-MS, capturing the best of technology for high-precision isotope ratio

More information

Accurate analysis of neptunium 237 in a uranium matrix, using ICP-QQQ with MS/MS

Accurate analysis of neptunium 237 in a uranium matrix, using ICP-QQQ with MS/MS Accurate analysis of neptunium in a uranium matrix, using ICP-QQQ with MS/MS Application note Nuclear, environmental Authors Garry Duckworth, Springfields Fuels Ltd, K, Glenn Woods, Agilent Technologies,

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 3 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

AIR-O-CELL CSI. Bioaerosol Sampling Cassette For the collection of viable and non-viable airborne particles. Laboratory & User Manual

AIR-O-CELL CSI. Bioaerosol Sampling Cassette For the collection of viable and non-viable airborne particles. Laboratory & User Manual AIR-O-CELL CSI Bioaerosol Sampling Cassette For the collection of viable and non-viable airborne particles Laboratory & User Manual Air-O-Cell CSI Sampling Cassette The Air-O-Cell Collector for SEM Identification

More information

Atomic Spectroscopy AA/ICP/ICPMS:

Atomic Spectroscopy AA/ICP/ICPMS: Atomic Spectroscopy AA/ICP/ICPMS: A Comparison of Techniques VA AWWA/VWEA Lab Practices Conference July 25, 2016 Dan Davis Shimadzu Scientific Instruments AA/ICP/ICPMS: A Comparison of Techniques Topics

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Optical Atomic Spectroscopy

Optical Atomic Spectroscopy Optical Atomic Spectroscopy Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity! Two main optical methodologies- -Atomic Absorption--need ground state

More information

Protocol Particle size distribution by centrifugal sedimentation (CPS)

Protocol Particle size distribution by centrifugal sedimentation (CPS) Protocol Particle size distribution by centrifugal sedimentation (CPS) 1. Method The CPS Disc Centrifuge separates particles by size using centrifugal sedimentation in a liquid medium. The sedimentation

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

Basic Digestion Principles

Basic Digestion Principles Basic Digestion Principles 1 From Samples to Solutions Direct Analytical Method Solid Sample Problems: Mech. Sample Preparation (Grinding, Sieving, Weighing, Pressing, Polishing,...) Solid Sample Autosampler

More information

OPTIMIZING METALS SAMPLE PREP

OPTIMIZING METALS SAMPLE PREP APPLICATION NOTE OPTIMIZING METALS SAMPLE PREP Utlilizing Single Reaction Chamber (SRC)Technology for Trace Metals Analysis for contract laboratories. Contract analytical laboratories use a variety of

More information

Use of ICP-MS in analysing radioisotopes. Per Roos Risø National Laboratory for Sustainable Energy, Technicial University of Denmark

Use of ICP-MS in analysing radioisotopes. Per Roos Risø National Laboratory for Sustainable Energy, Technicial University of Denmark Use of ICP-MS in analysing radioisotopes Per Roos Risø National Laboratory for Sustainable Energy, Technicial University of Denmark Inductively Coupled Plasma Mass Spectrometry (ICP-MS) History ICP-AES

More information