Chapter 13: Phenomena

Size: px
Start display at page:

Download "Chapter 13: Phenomena"

Transcription

1 Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together these are double or triple bonds and contain 4 and 6 electrons respectively. What patterns do you notice from the data? a) b) Cl c) H N H Cl C Cl H Cl Bond Angles: 107 d) O Bond Angles: 105 g) F B Bond Angles: 120 Bond Angles: e) Bond Angles: 120 h) O C O Bond Angle: 117 H O N H N H C C H O + Bond Angles: f) Bond Angles: 119 i) Bond Angles: 180 j) S H Bond Angles: 180

2 Chapter 13 Bonding: General Concepts Big Idea: Bonds are formed from the attraction between oppositely charged ions or by sharing electrons. Only the valence electrons participate in bonding. The shape of the molecules maximize the distance between areas of high electron density. o Types of Bonding o Electronegativity o Lewis Structures o Strength/Length of Covalent Bonds o Shapes of Molecules (VSEPR) o Polar Molecules 2

3 Types of Bonding Ionic Bonds: Formed when a lower energy can be achieved by the complete transfer of one or more electrons from the atoms of one element to those of another; the compound is then held together by electrostatic attraction between the ions. Covalent Bonds: Formed when the lowest energy structure can be achieved by sharing electrons. 3

4 Types of Bonding Ionic Bonds: Tend to be between a metal and a non metal. Metals: Usually lose their electrons. Nonmetals: Usually accept additional electrons. Note: In general, atoms gain or lose electrons until they have the same number of electrons as the nearest noble gas 4

5 Types of Bonding What ions do atoms form? Element S K I Electron Configuration (Atom) Gain/Lose Electrons Ion Formed Electron Configuration (Ion) 5

6 Types of Bonding Ionic Solids: Assembly of cations and anions stacked together in a regular array. Note: Ionic solids are example of crystalline arrays in which the overall charge on an ionic solid is neutral. Ionic Compounds are represented with formula units (lowest ratio of types of atoms in the compound). Ionic Compound + - CD - + 2CD - + 3CD Covalent Compound AB 2 2AB 2 3AB 2 6

7 Types of Bonding Steps to calculate the energy needed to form an ionic bond: Step 1: Standard states to gaseous single atom state Na(s) Na(g) ½F 2 (g) F(g) 97 kj mol 80. kj mol Step 2: Both atoms have to form ions Na(g) Na + (g) + e - (g) F(g) + e - (g) F - (g) 494 kj mol -323 kj mol (ionization energy) ((-)electron affinity) Step 3: The ions need to come together to form a crystal (Lattice Energy) Na + (g) + F - (g) NaF(s) -923 kj mol Total Reaction Na(s) + ½F 2 (g) NaF(s) 97 kj kj kj kj kj mol mol mol mol mol Note: When energy is released, the sign is negative because no work is needed to make the reaction happen. = 575 kj mol 7

8 Types of Bonding What is holding ionic solids together? Coulombic Potential Energy E P,12 = Z 1e Z2e 4πε r12 +Z Z e2 = = Z2 e 2 4πε d 4πε d Z 1 & Z 2 = charge of ions The total potential energy is the sum of all the potential energies E P = 1 4πε Z2 e 2 d +Z2 e 2 2d Z2 e 2 3d +Z2 e 2 4d = Z2 e 2 4πε d Note: ln 2 = E P = ln 2 Z2 e 2 4πε d Need to multiply by 2 to account for the other half of the line. E P = 2ln 2 Z2 e 2 4πε d 8

9 Types of Bonding Once neighboring ions come into contact they start to repel each other. E P e d Τ d d=0 e dτd = 1 d>1 e dτd = 1 max repulsion repulsion decreases Note: d* is a constant that is commonly taken to be 34.5 pm The potential energy of an ionic solid is a combination of the favorable Coulombic interaction of the ions and the unfavorable exponential increase which results when the atoms touch. The ideal bond length occurs at the minimum potential energy. Energy Minimum Occurs: E p,min = N A Z 1Z2 4πε d 1 d d A 9

10 Types of Bonding Covalent Bond: A pair of electrons shared between two atoms (occurs between two non metals) Note: In covalent bond formation, atoms go as far as possible toward completing their octets by sharing electron pairs. 10

11 Electronegativity Electronegativity (χ): The ability of an atom to attract electrons to itself when it is part of a compound Note: The atom with higher electronegativity has a stronger attractive power on electrons and pulls the electrons away from the atom with the lower electronegativity. 11

12 Electronegativity Difference in Electronegativity Type of Bond > 1.8 Mostly Ionic Polar Covalent < 0.4 Mostly Covalent 0 Non-polar Covalent The dividing line between ionic and covalent bonds is hazy. 12 NaCl MgCl 2 AlCl 3 SiCl 4 PCl 3 S 2 Cl 2 Cl 2 ionic polar-covalent covalent

13 Electronegativity What makes covalent bonds partly ionic? Electric Dipole: A positive charge next to an equal but opposite negative charge. Electric Dipole Moment (μ): The magnitude of the electric dipole [units debye (D)]. Note: The dipole moment associated with H-Cl is about 1.1 D. Polar Covalent Bond: A covalent bond between atoms that have partial electric charges. 13

14 Electronegativity What makes ionic bonds partly covalent? Polarizability (α): The ease with which the electron cloud of a molecule can be distorted. As the cation s positive charge pulls on the anion s negative electrons, the spherical electron cloud of the anion becomes distorted in the direction of the cation. This causes the bond to have covalent bond properties. Note: The larger the anion the easier it is to distort the electron cloud. 14

15 Lewis Structures Lewis Symbols: The chemical symbol of an element, with a dot for each valence electron. Step 1: Determine the number of valence e - from electron configuration. Step 2: Place 1 dot around the element for each valence electron. 15

16 Lewis Structures Drawing Ionic Lewis Structures Step 1: Determine the electron configuration of the elements in the compound. Step 2: Determine the electron configuration of the ions that the elements form. Step 3: Draw the Lewis symbols for the ions. Do not forget to include charge. The cations should have no electrons around them and the anions should have 8 electrons around them. Step 4: Organize the Lewis symbols such that cations are next to anions. 16

17 Lewis Structures General Rules (Covalent Lewis Structures) All valence electrons of the atoms in the Lewis structures must be shown. Generally, electrons are paired. Except for odd electron molecules such as NO and NO 2. Generally, each atom has 8 electrons in its valence shell with the exception of H which only needs 2 valance electrons. Multiple bonds (double and triple bonds) can be formed. Show atoms by their chemical symbols (ex. H) Show covalent bonds by lines (ex. F F) Show lone pairs of electrons by pairs of dots (ex. :) 17

18 Lewis Structures 18 Drawing Covalent Lewis Structures (for structures that obey octet rule) Step 1: Count the number of valence electrons on each atom; for ions adjust the number of electrons to account for the charge. Step 2: Calculate the number of electrons that are needed to fill each atom s octet (or duplet, in the case of H). Step 3: Calculate the number of bonds: # Bonds = Wanted e Step 2 Valence e Step 1. 2 Step 4: Calculate the number of electrons left over: # e = Valence e 2 # Bonds. Step 5: Place bonds/electrons around elements so that octets/duplet are satisfied.

19 Lewis Structures Tips When Drawing Lewis Structures How to pick central atom: Choose the central atom to be the atom with the lowest ionization energy (atom closest to the lowest left hand corner of the periodic table) Arrange the atoms symmetrically around the central atom Examples: SO 2 would be arranged OSO not SOO Note: In simple formulas the central atom is often written first, followed by the atoms attached to it. Note: Acids are an exception to the rule because H is written first in acids. 19

20 Lewis Structures What is the Lewis Structure for SCN -? 1(S) 1(C) 1(N) 1(e - ) Total Valence e - 1(6) 1(4) 1(5) 1 16 Wanted e - 1(8) 1(8) 1(8) 24 # bonds = wanted e valence e 2 = = 4 # e = valence e 2 # bonds = = 8 Which structure is most likely? _ 20

21 Lewis Structures Formal Charge: The electric charge of an atom in a molecule assigned on the assumption that the bonding is nonpolar covalent. Formal Charge = Valence e - e - Surrounding Atom Note: The formal charge on neutral molecules must add up to zero. Note: The formal charge on ions must add up to the charge on the ion. Generally, compounds with the lowest formal charges possible (charges closest to 0) are favored. 21

22 Lewis Structures Formal charge and oxidation numbers both give us information about the number of electrons around an atom in a compound. Formal Charge Exaggerates Covalent Character Assumes that the electrons are shared equally by all atoms Oxidation Number Exaggerates Ionic Character Assumes that octets are complete filled and all electrons must only belong to one atom O C 2- O

23 Lewis Structures Resonance: A blend of Lewis structures into a single composite hybrid structure. Resonance Hybrid: The composite structure that results from a resonance. Delocalized Electrons: Electrons that are spread over several atoms in a molecule. 23

24 Lewis Structures What is the Lewis Structure for PO 4 3-? 1(P) 4(O) 1(e - ) Total Valence e - 1(5) 4(6) 1(3) 32 Wanted e - 1(8) 4(8) 40 # bonds = wanted e valence e 2 = = 4 # e = valence e 2 # bonds = =

25 Lewis Structures When the central atom in a molecule has empty d-orbitals, it may be able to accommodate 10, 12, or even more electrons, this is referred to as an expanded valence shell. Note: This only applies to nonmetal atoms in Period 3 and later Size also plays a role in how many atoms can fit around a given molecule. Examples: PCl 5 Known to exist NCl 5 Not known to exist (N is too small for the to fit 5 Cl atoms around it) Note: On homework problems only expand octets if there is no other way to accommodate electrons or if the problem tells you to minimize the formal charge. 25

26 Strength/Length of Covalent Bonds Enthalpy Change ( H): The amount of heat evolved or absorbed in a reaction carried out at constant pressure Dissociation Energy (D): The energy required to separate bonded atoms kj Avg. Bond Energies mol H-H 432 O-H 467 H-F 565 O-O 146 H-Cl 427 F-F C-H 413 Cl-Cl 239 C-C 347 O=O 495 C-N 305 C=O* 745 C-O 358 N N 941 N-H 391 C C 839 N-N 160 C N 891 *C=O (CO 2 ) = 799

27 Strength/Length of Covalent Bonds Double bonds are not twice as strong as a single bonds. Triple bonds are not three times as strong as a single bond. 27

28 Strength/Length of Covalent Bonds Student Question Which of the following has the longest carbon-oxygen bond? Hint: You must draw the Lewis structures. a) CO b) CO 3 2- c) CO 2 d) CH 3 OH 28

29 Shapes of Molecules (VSEPR) VSEPR (Valence-Shell Electron-Pair Repulsion Model): Extends Lewis s theory of bonding to account for molecular shapes by adding rules that account for bond angle. Rule 1: Regions of high electron concentration (bonds and lone pairs on the central atom) repel one another and to minimize their repulsion, these regions move as far apart as possible while maintaining the same distance from the central atom. Rule 2: There is no distinction between single and multiple bonds: a multiple bond is treated as a single region of high electron concentration. 29

30 Shapes of Molecules (VSEPR) Rule 3: All regions of high electron density, lone pairs and bonds, are included in a description of the electronic arrangement, but only the positions of atoms are considered when reporting the shape of a molecule (molecular shape). Rule 4: The strengths of repulsion are in the order lone pair lone pair > lone pair atom > atom atom. 30

31 Shapes of Molecules (VSEPR) Assigning Shape and Bond Angles of Molecules Step 1: Draw the Lewis structure. Step 2: Assign the electronic arrangement around the central atom (linear, trigonal planer, tetrahedral) Note: Electronic arrangement includes all areas of electron density (lone pairs and bonds). Step 3: Identify the molecular shape (linear, bent, trigonal planer, trigonal pyramidal, tetrahedral) Note: Molecular shape includes only bonds. Step 4: Figure out the bond angle (allow for distortion) 31

32 Shapes of Molecules (VSEPR) Possible Electronic Arrangements 32

33 Shapes of Molecules (VSEPR) Possible Molecular Arrangements The names of the shapes of simple molecules and their bond angles. Lone pairs of electrons are not shown. 33

34 Shapes of Molecules (VSEPR) 2 Areas of Electron Density 3 Areas of Electron Density No Lone Pairs Linear No Lone Pairs Trigonal Planar 1 Lone Pair Bent 4 Areas of Electron Density No Lone Pairs Tetrahedral 1 Lone Pair Trigonal Pyramidal 2 Lone Pairs Bent 34

35 Shapes of Molecules (VSEPR) 5 Areas of Electron Density No Lone Pairs Trigonal Bipyramidal 1 Lone Pair Seesaw 2 Lone Pairs T-Shaped 3 Lone Pair Linear 35

36 Shapes of Molecules (VSEPR) 6 Areas of Electron Density No Lone Pairs Octahedral 1 Lone Pair Square Pyramidal 2 Lone Pairs Square Planer 3 Lone Pairs T-Shaped 4 Lone Pair Linear 36

37 Shapes of Molecules (VSEPR) Step 1: Draw Lewis Structure CH 4 1(C) 4(H) Total Valence e - Wanted e - Determine number of bonds # bonds = wanted valence 2 Determine number of electrons # e = valence 2 bonds Step 2: Determine Electronic Shape Step 3: Determine Molecular Shape Step 4: Determine Angle 37

38 Shapes of Molecules (VSEPR) Step 1: Draw Lewis Structure (Obeys Octet Rule) SO 3 2-1(S) 3(O) 2(e - ) Total Valence e - Wanted e - Determine number of bonds # bonds = wanted valence 2 Determine number of electrons # e = valence 2 bonds Step 2: Determine Electronic Shape Step 3: Determine Molecular Shape Step 4: Determine Angle 38

39 Shapes of Molecules (VSEPR) Student Question What is the most likely shape of ICl 4-? Helpful Hint: Make sure that your formal charges are minimized. a) Octahedral b) Trigonal Planar c) Seesaw d) Tetrahedral e) None of the Above 39

40 Polar Molecules Student Question Is PCl 4- polar or nonpolar? Helpful Hint: Make sure that your formal charges are minimized. a) Polar b) Nonpolar 40

41 Take Away From Chapter 13 Big Idea: Bonds are formed from the attraction between oppositely charged ions or by sharing electrons. Only the valence electrons participate in bonding. The shape of the molecules maximize the distance between areas of high electron density. Types of Bonding Ionic Bonds (metal/non metal) Be able to write electron configuration of ions. (30,31,32, 33,34) Be able to predict size of ions.(27, 28, 29) Be able to predict formula unit ionic compound.(37) Covalent Bonds (non metal/non metal) 41 Numbers correspond to end of chapter questions.

42 42 Take Away From Chapter 13 Electronegativity Know the general electronegativity trend. (17) Know that covalent bonds can have ionic because of dipole moments Be able to identify the most polar bond. (18,22,23) Know that ionic bonds can have covalent character because of polarizablity Lewis Structures Be able to draw Lewis symbols (atoms). Be able to draw Lewis structures of ionic compounds. Be able to draw Lewis structures of covalent compounds. (63,64) Know how to calculate formal charges.(85) Identification of most likely Lewis structure. Know when multiple resonance structures are possible for a compound. (66,67,71) Know when atoms can expand their octets (group 3 and greater). (86) Numbers correspond to end of chapter questions.

43 Take Away From Chapter 13 Strength/Length of Covalent Bonds Know how to calculate ΔH from bond dissociation energies. H = σ D broken σ D formed (47,49,52) Know how to estimate the length of bonds. Triple < Double < Single (79,80,84) Shape of Molecules (VSEPR) (96,99,100) Know how to determine electronic shape. Linear, trigonal planar, tetrahedral, trigonal bipyramidal, or octahedral. Know how to determine molecular shape. Linear, angular, trigonal planar, trigonal pyramidal, T- shaped, tetrahedral, seesaw, square planar, trigonal bipyramidal, square pyramidal, or octahedral. Know how to determine bond angles. 43 Numbers correspond to end of chapter questions.

44 Take Away From Chapter 13 Polar Molecules Be able to determine if a molecule is polar or non polar. (101,102) 44 Numbers correspond to end of chapter questions.

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Big Idea: Ionic Bonds: Ionic Bonds: Metals: Nonmetals: Covalent Bonds: Ionic Solids: What ions do atoms form? Electron Electron

Big Idea: Ionic Bonds: Ionic Bonds: Metals: Nonmetals: Covalent Bonds: Ionic Solids: What ions do atoms form? Electron Electron Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

CHEMISTRY XL-14A CHEMICAL BONDS

CHEMISTRY XL-14A CHEMICAL BONDS CHEMISTRY XL-14A CHEMICAL BONDS July 16, 2011 Robert Iafe Office Hours 2 July 18-July 22 Monday: 2:00pm in Room MS-B 3114 Tuesday-Thursday: 3:00pm in Room MS-B 3114 Chapter 2 Overview 3 Ionic Bonds Covalent

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

What is a Bond? Chapter 8. Ionic Bonding. Coulomb's Law. What about covalent compounds?

What is a Bond? Chapter 8. Ionic Bonding. Coulomb's Law. What about covalent compounds? Chapter 8 What is a Bond? A force that holds atoms together. Why? We will look at it in terms of energy. Bond energy- the energy required to break a bond. Why are compounds formed? Because it gives the

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation Lecture Presentation Chapter 9 Chemical Bonding I: The Lewis Model HIV-Protease HIV-protease is a protein synthesized by the human immunodeficiency virus (HIV). This particular protein is crucial to the

More information

Chapter Nine. Chemical Bonding I

Chapter Nine. Chemical Bonding I Chapter Nine Chemical Bonding I 1 The Ionic Bond and Lattice Energies 2 Lewis Dot Symbols Consists of atomic symbol surrounded by 1 dot for each valence electron in the atom Only used for main group elements

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding.

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS 1 CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS PERIODIC TRENDS: See pages 214-216, 221 Table 11.3, and 227 + 228 of text. Lewis Structures of Atoms: The Lewis Dot Diagram

More information

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15 Unit 7: Basic Concepts of Chemical Bonding Topics Covered Chemical bonds Ionic bonds Covalent bonds Bond polarity and electronegativity Lewis structures Exceptions to the octet rule Strength of covalent

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Types of Chemical Bonds Information about the strength of a bonding interaction is obtained by measuring the bond energy, which is the energy

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Bonding. Each type of bonding gives rise to distinctive physical properties for the substances formed.

Bonding. Each type of bonding gives rise to distinctive physical properties for the substances formed. Bonding History: In 55 BC, the Roman poet and philosopher Lucretius stated that a force of some kind holds atoms together. He wrote that certain atoms when they collide, do not recoil far, being driven

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative Helpful Hints Lewis Structures Octet Rule Lewis structures are a basic representation of how atoms are arranged in compounds based on bond formation by the valence electrons. A Lewis dot symbol of an atom

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed. CHEMICAL BONDS Atoms or ions are held together in molecules or compounds by chemical bonds. The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Chapter 7: Chemical Bonding and Molecular Structure

Chapter 7: Chemical Bonding and Molecular Structure Chapter 7: Chemical Bonding and Molecular Structure Ionic Bond Covalent Bond Electronegativity and Bond Polarity Lewis Structures Orbital Overlap Hybrid Orbitals The Shapes of Molecules (VSEPR Model) Molecular

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles CHEMICAL BONDS Chemical Bonds: Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles Lewis Theory of Bonding: Electrons play a fundamental role

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.2 Electronegativity 8.3 Bond Polarity and Dipole Moments 8.4 Ions: Electron Configurations and Sizes 8.5 Energy

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Name: Hr: 8 Basic Concepts of Chemical Bonding

Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1-8.2 8.3-8.5 8.5-8.7 8.8 Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule State the type of bond (ionic, covalent, or metallic) formed between any

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed Ch. 8 Chemical Bonding: General Concepts Brady & Senese, 5th Ed Index 8.1. Electron transfer leads to the formation of ionic compounds 8.2. Lewis symbols help keep track of valence electrons 8.3. Covalent

More information

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed Ch. 8 Chemical Bonding: General Concepts Brady & Senese, 5th Ed Index 8.1. Electron transfer leads to the formation of ionic compounds 8.2. Lewis symbols help keep track of valence electrons 8.3. Covalent

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Chapter 6. The Chemical Bond

Chapter 6. The Chemical Bond Chapter 6 The Chemical Bond Some questions Why do noble gases rarely bond to other elements? How does this relate to why the atoms of other elements do form bonds? Why do certain elements combine to form

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.3 Bond Polarity and Dipole Moments 8.5 Energy Effects in Binary Ionic Compounds 8.6 Partial Ionic Character

More information

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure STD-XI-Science-Chemistry Chemical Bonding & Molecular structure Chemical Bonding Question 1 What is meant by the term chemical bond? How does Kessel-Lewis approach of bonding differ from the modern views?

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 12 Chemical Bonding Structure

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Bonding Chapter 7. Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration.

Bonding Chapter 7. Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. Bonding Chapter 7 Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. Ionic bonds attraction between oppositely charged atoms/molecules

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

Chemistry Chapter 6 Test Review

Chemistry Chapter 6 Test Review Chemistry Chapter 6 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mutual electrical attraction between the nuclei and valence electrons

More information

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4 Expanded valence shells (extended octets) more than 8e - around a central atom Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

AP Chemistry. Unit #7. Chemical Bonding & Molecular Shape. Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING. Discrete molecules formed

AP Chemistry. Unit #7. Chemical Bonding & Molecular Shape. Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING. Discrete molecules formed AP Chemistry Unit #7 Chemical Bonding & Molecular Shape Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING INTRA (Within (inside) compounds) STRONG INTER (Interactions between the molecules of a compound)

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

More Chemical Bonding

More Chemical Bonding More Chemical Bonding Reading: Ch 10: section 1-8 Ch 9: section 4, 6, 10 Homework: Chapter 10:.31, 33, 35*, 39*, 43, 47, 49* Chapter 9: 43, 45, 55*, 57, 75*, 77, 79 * = important homework question Molecular

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

CHEM 110: CHAPTER 8 Basic Concepts of Chem Bonding. Lewis Structures of Atoms: The Lewis Dot Diagram

CHEM 110: CHAPTER 8 Basic Concepts of Chem Bonding. Lewis Structures of Atoms: The Lewis Dot Diagram 1 CHEM 110: CHAPTER 8 Basic Concepts of Chem Bonding Lewis Structures of Atoms: The Lewis Dot Diagram Lewis Dot Diagrams (developed by chemist Gilbert Lewis) are used to indicate the number of valence

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Chapter 8 The Concept of the Chemical Bond

Chapter 8 The Concept of the Chemical Bond Chapter 8 The Concept of the Chemical Bond Three basic types of bonds: Ionic - Electrostatic attraction between ions (NaCl) Metallic - Metal atoms bonded to each other Covalent - Sharing of electrons Ionic

More information

AP Chemistry Chapter 7: Bonding

AP Chemistry Chapter 7: Bonding AP Chemistry Chapter 7: Bonding Types of Bonding I. holds everything together! I All bonding occurs because of! Electronegativity difference and bond character A. A difference in electronegativity between

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between.

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between. CHEMISTRY NOTES 6.1 COVALENT BONDS Objectives Explain the role and location of electrons in a covalent bond. Describe the change in energy and stability that takes place as a covalent bond forms. Distinguish

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Lewis Symbols and the Octet Rule When atoms or ions are strongly attracted to one another, we say that there is a chemical bond between them. In chemical

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

Properties of substances are largely dependent on the bonds holding the material together.

Properties of substances are largely dependent on the bonds holding the material together. Basics of Chemical Bonding AP Chemistry Lecture Outline Properties of substances are largely dependent on the bonds holding the material together. Basics of Bonding A chemical bond occurs when atoms or

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds: CHEMICAL BONDS Chemical Bonds: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds (EU 2.C). Reflect a balance in the attractive and repulsive forces

More information

Chemical Bonding. 5. _c Atoms with a strong attraction for electrons they share with another atom exhibit

Chemical Bonding. 5. _c Atoms with a strong attraction for electrons they share with another atom exhibit CHAPTER 6 REVIEW Chemical Bonding SHORT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence electrons and of

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Big Ideas in Unit 6 How do atoms form chemical bonds? How does the type of a chemical bond influence a compounds physical and

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information