* Author to whom correspondence should be addressed; Tel.:

Size: px
Start display at page:

Download "* Author to whom correspondence should be addressed; Tel.:"

Transcription

1 Supplementary Material OPEN ACCESS atmosphere ISSN - Inland Concentrations of Cl and ClNO in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity. Atmosphere 5,, -5, doi:./atmos Cameron B. Faxon, Jeffrey K. Bean and Lea Hildebrandt Ruiz * Center for Energy and Environmental Resources, The University of Texas at Austin, Austin, TX 5, USA; s: cfaxon@gmail.com (C.B.F.); jbean5@gmail.com (J.K.B.) * Author to whom correspondence should be addressed; lhr@che.utexas.edu; Tel.: Academic Editor: Armin Sorooshian S. Calibration of the HR-ToF-CIMS Calibrations were performed for each species and indicated a linear response across the concentrations observed during the campaign. Calibration curves were generated as linear least squares fits to the correlation between known measured concentrations and normalized analyte signals. Analyte signals were normalized by the sum of I and IHO ion signals. Instrument response to Cl was calibrated directly from sequential dilutions of standards of known concentration (Airgas). The resulting Cl calibration curve is shown in Figure S. Calibration of the ClNO signal response was performed by passing a known concentration of Cl over wet NaNO salt to generate ClNO by the reaction Cl + NaNO NaCl + ClNO, as cited by previous work [ 5]. The wet salt bed was placed in the inlet (.5 length.5 inner diameter) of a glass bulb, and the residence time for reaction of Cl was calculated to be approximately. s. The exact technique for this calibration in previous work has varied with some authors using NaNO salt [,] and others using a combination of NaCl and NaNO [,5]. Thaler et al. () suggest that a marginal increase in ClNO yield is obtained from the addition of NaCl. Furthermore, one study, [] citing previous work [,], estimates a ±5% uncertainty in the measured sensitivity of ClNO using this calibration method, which appears much larger than differences in the yield using pure NaNO and a mixture of NaNO and NaCl. We therefore estimate the yield of ClNO from the heterogeneous reaction of Cl with NaNO salt is % with an uncertainty of 5%. Similarly, NO5 was calibrated for by passing NO5 over a wetted NaCl bed to produce ClNO. The decrease in NO5 from the reaction with

2 Atmosphere 5, S NaCl was assumed to be equal to the concentration of ClNO produced (i.e., a % yield) [,]. The calibration curves for ClNO and NO5 are shown in Figures S and S, respectively. x - Normalized Cl I - Signal 5 r =. [Cl ] (ppt) Figure S. Calibration Curve for Cl as quantified by normalized ClI signal in the HR- ToF-CIMS. Reagent ion signal during the calibration was approximately. ions s. x - Normalized ClNO I - Signal r =. 5 [ClNO ] (ppt) Figure S. Calibration Curve for ClNO as quantified by normalized ClNOI signal in the HR-ToF-CIMS. The reagent signal during calibration was approximately. ions s.

3 Atmosphere 5, S x - Normalized N O 5 I - Signal 5 r = [N O 5 ] (ppt) Figure S. Calibration Curve for NO5 as quantified by normalized NO5I signal in the HR- ToF-CIMS. Reagent ion signal during the calibration was approximately ions s. Detection limits were determined for each species using the formula shown in Equation (S) []. / = / + (S) In this equation, Cf (Hz ppt ) is the calibration coefficient for the species and B (Hz) is the underlying background count rate. S/N is the signal to noise ratio, which was set to to be consistent with the statistical definition of a detection limit. The detection limit of the measured species, [X], is determined for an integration period, t (s). For Cl, ClNO and NO5, the calculated detection limits were.,. and. pptv over a sampling period of s. S. Modified Version of the Carbon Bond Photochemical Mechanism The Carbon Bond mechanism was modified to include basic gas phase chlorine reactions, as well as ClNO photolysis. The full list of reactions that were added is shown in Table S.

4 Atmosphere 5, S Table S. List of chlorine reactions added to the Carbon Bond (CBr) mechanism for the simulations discussed in this work. Species are written in terms of their CBr identities. Reaction # Reactants Products CL + hv CL HOCl + hv OH + CL CL + O CLO CLO + CLO. C +. CL 5 CLO + NO CL + NO CLO + HO HOCL CLO + NO NCL NCL + hv CLO + NO NCL + hv CL + NO CL + NCL CL + NO OH + HCL CL OH + FMCL CL + CO FMCL + hv CL + CO + HO CL + H HCL + HO 5 CL + CH HCL + MEO CL + PAR HCL +. XO +. XON +. HO +. ALD. PAR +. ROR +.5 ALDX CL + ETHA HCL +. ALD +. XO +. XON + HO CL + ETH FMCL + XO + HO + FORM CL + OLE. HCL +. FMCL +.5 ALD +. ALDX +. OLE +. FORM +. XO + HO - PAR CL + IOLE. HCL +. FMCL +. ALD +.5 ALDX +. OLE +. FORM +. PAR +. XO + HO CL + ISOP.5 HCL +.5 FMCL +. ISPD +. XO +. XON +. HO CL + TERP. HCL +. FMCL +.5 ALDX +. PAR +. XO +.5 XON +.5 HO CL + TOL HCL +. XO +. XON +. +HO CL + XYL HCL +. XO +. XON +. HO 5 CL + FORM HCL + HO + CO CL + ALD HCL + CO CL + ALDX HCL + CXO CL + MEOH HCL + HO + FORM CL + ETOH HCL + HO + ALD ClNO + hv CL + NO S. Derivation of the OH Production Rate Used in Box Modeling Simulations Equation in the main text was used to calculate the rate of OH production, and was derived from the rate equation for the reaction of primary reactions of the radical species, O( D) (Reaction (SR)), with HO, N and O (Reactions (SR) and (SR)). The rate of O( D) formation was calculated from the simulated rate of O photolysis. These three primary reactions of O( D) were combined in a rate expression to determine the concentration of O( D). Using Reaction (SR) as the primary source of OH

5 Atmosphere 5, S5 production, Equations (S) and (S) were combined to calculate the rate of OH production as shown in Equation (S). O + hv O( D) + O (SR) = O( D) + HO OH (SR) O( D) + M O + M (SR) / = (S) = / = (S) = / + + (S) References of Supplementary Material. Lopez-Hilfiker, F.D.; Constantin, K.; Kercher, J.P.; Thornton, J.A. Temperature dependent halogen activation by NO5 reactions on halide-doped ice surfaces. Atmos. Chem. Phys.,, Mielke, L.H.; Furgeson, A.; Osthoff, H.D. Observation of ClNO in a mid-continental urban environment. Environ. Sci. Technol., 5,.. Phillips, G.J.; Tang, M.J.; Thieser, J.; Brickwedde, B.; Schuster, G.; Bohn, B.; Lelieveld, J.; Crowley, J.N. Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophys. Res. Lett.,. doi:./gl5.. Riedel, T.P.; Bertram, T.H.; Crisp, T.A.; Williams, E.J.; Lerner, B.M.; Vlasenko, A.; Li, S.M.; Gilman, J.; de Gouw, J.; Bon, D.M.; et al. Nitryl chloride and molecular chlorine in the coastal marine boundary layer. Environ. Sci. Technol.,,. 5. Thaler, R.D.; Mielke, L.H.; Osthoff, H.D. Quantification of nitryl chloride at part per trillion mixing ratios by thermal dissociation cavity ring-down spectroscopy. Anal. Chem.,,.. Thornton, J.A.; Kercher, J.P.; Riedel, T.P.; Wagner, N.L.; Cozic, J.; Holloway, J.S.; Wolfe, G.M.; Quinn, P.K.; Middlebrook, A.M.; Alexander, B.; et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature,,.. Kercher, J.P.; Riedel, T.P.; Thornton, J.A. Chlorine activation by NO5: simultaneous, in situ detection of ClNO and NO5 by chemical ionization mass spectrometry. Atmos. Measu. Tech.,,.. Thornton, J.A.; Kercher, J.P.; Riedel, T.P.; Wagner, N.L.; Cozic, J.; Holloway, J.S.; Dubé, W.P.; Wolfe, G.M.; Quinn, P.K.; Middlebrook, A.M.; Alexander, B.; Brown, S.S. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature,,.. Behnke, W.; George, C.; Scheer, V.; Zetzsch, C. Production and decay of ClNO from the reaction of gaseous NO5 with NaCl solution: Bulk and aerosol experiments. J. Geophys. Res.,, 5. 5 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L10811, doi: /2012gl051912, 2012

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L10811, doi: /2012gl051912, 2012 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051912, 2012 Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride

More information

Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

Examining the impact of heterogeneous nitryl chloride production on air quality across the United States doi:10.5194/acp-12-6455-2012 Author(s) 2012. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Examining the impact of heterogeneous nitryl chloride production on air quality across the United

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION An MCM modeling study of nitryl chloride (ClNO 2 ) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow Theran P. Riedel 1,2, Glenn

More information

2005 UPDATES TO THE CARBON BOND MECHANISM: CB05

2005 UPDATES TO THE CARBON BOND MECHANISM: CB05 2005 UPDATES TO THE CARBON BOND MECHANISM: CB05 Gary Z. Whitten, Smog Reyes Greg Yarwood, ENVIRON smogreyes@yahoo.com International Conference on Chemical Mechanisms December 6, 2006 Ackowledgements EPA:

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical Ionization Mass Spectrometric Measurement of ClNO 2 Mixing ratios of ClNO 2 were measured with a chemical ionization mass spectrometer (CIMS), identical to that described

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Bannan, T. J., Bacak, A., Le Breton, M., Ouyang, B., Flynn, M., McLeod, M.,... Percival, C. J. (217). Ground and Airborne U.K. Measurements of Nitryl Chloride, an investigation of the role of Cl atom oxidation

More information

Chlorine activation by N 2 O 5 : simultaneous, in situ detection of ClNO 2 and N 2 O 5 by chemical ionization mass spectrometry

Chlorine activation by N 2 O 5 : simultaneous, in situ detection of ClNO 2 and N 2 O 5 by chemical ionization mass spectrometry Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Measurement Techniques Chlorine activation by N 2 O 5 : simultaneous, in situ detection of ClNO

More information

1. Introduction. JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, , doi: /jgrd.50637, 2013

1. Introduction. JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, , doi: /jgrd.50637, 2013 JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 8702 8715, doi:10.1002/jgrd.50637, 2013 Chlorine activation within urban or power plant plumes: Vertically resolved ClNO 2 and Cl 2 measurements

More information

Electronic supplementary information to Heterogeneous OH oxidation. of biomass burning organic aerosol surrogate compounds: Assessment

Electronic supplementary information to Heterogeneous OH oxidation. of biomass burning organic aerosol surrogate compounds: Assessment Electronic supplementary information to Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: Assessment of volatilisation products and the role of OH concentration on the

More information

Transition from high- to low-no x control of night-time oxidation in the southeastern US

Transition from high- to low-no x control of night-time oxidation in the southeastern US In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2976 Transition from high- to low-no x control of night-time oxidation in the southeastern US P. M. Edwards,

More information

FINAL REPORT An Assessment of Nitryl Chloride Formation Chemistry and its Importance in Ozone Non-attainment areas in Texas. AQRP Project

FINAL REPORT An Assessment of Nitryl Chloride Formation Chemistry and its Importance in Ozone Non-attainment areas in Texas. AQRP Project and its Importance in Ozone Non-attainment areas in Texas AQRP Project 10-015 Prepared for: Dr. Elena C. McDonald-Buller Texas Air Quality Research Program The University of Texas at Austin 10100 Burnet

More information

Reduced Atmospheric Chemistry Models by Sensitivity Matrix Approach

Reduced Atmospheric Chemistry Models by Sensitivity Matrix Approach Reduced Atmospheric Chemistry Models by Sensitivity Matrix Approach Short Communication Adrian Sandu Department of Computer Science, Michigan Technological University, Houghton, MI 49931. E-mail: asandu@mtu.edu.

More information

High levels of molecular chlorine in the Arctic atmosphere

High levels of molecular chlorine in the Arctic atmosphere High levels of molecular chlorine in the Arctic atmosphere Jin Liao 1,2,3, L. Gregory Huey 1,*, Zhen Liu 1,4, David J. Tanner 1, Chris A. Cantrell 5, John J. Orlando 5, Frank M. Flocke 5, Paul B. Shepson

More information

Applications of cavity enhanced spectroscopy techniques in atmospheric chemistry. Andrew J. Orr-Ewing

Applications of cavity enhanced spectroscopy techniques in atmospheric chemistry. Andrew J. Orr-Ewing Applications of cavity enhanced spectroscopy techniques in atmospheric chemistry Andrew J. Orr-Ewing School of Chemistry www.chm.bris.ac.uk/pt/laser/ Outline Quantitative measurement of trace atmospheric

More information

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic.

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic. ATM 507 Lecture 8 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Note: next week class as usual Tuesday, no class on Thursday Today s topics Mid-latitude Stratosphere Lower Stratosphere 1 Let s

More information

Appendix B: Aqueous chemistry and gas-phase halogen chemistry

Appendix B: Aqueous chemistry and gas-phase halogen chemistry 1 Appendix B: Aqueous chemistry and gasphase halogen chemistry SANFORD SILLMAN, FRANK MARSIK, KHALID I. ALWALI, GERALD J. KEELER AND MATTHEW S. LANDIS* Department of Atmospheric, Oceanic and Space Sciences

More information

Airborne observations of ammonia emissions from agricultural sources and their implications for ammonium nitrate formation in California

Airborne observations of ammonia emissions from agricultural sources and their implications for ammonium nitrate formation in California Airborne observations of ammonia emissions from agricultural sources and their implications for ammonium nitrate formation in California CalNex 2010 P-3 Observations South Coast Air Basin (SoCAB) Dairy

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Aircraft Observations of the Lower Atmosphere and Surface Exchange Processes. Jennifer Murphy Department of Chemistry, University of Toronto

Aircraft Observations of the Lower Atmosphere and Surface Exchange Processes. Jennifer Murphy Department of Chemistry, University of Toronto Aircraft Observations of the Lower Atmosphere and Surface Exchange Processes Jennifer Murphy Department of Chemistry, University of Toronto Outline Results from BAe 146 during AMMA Aircraft observations

More information

Arctic Halogen Chemistry Part II

Arctic Halogen Chemistry Part II Arctic Halogen Chemistry Part II Kerri A. Pratt Department of Chemistry Dept. of Earth & Environmental Sciences University of Michigan 2017 Connaught Summer Institute on Arctic Science Ozone Reminders

More information

The role of chlorine in tropospheric chemistry

The role of chlorine in tropospheric chemistry The role of chlorine in tropospheric chemistry 1 Xuan Wang 1, Daniel J. Jacob 1,2, Sebastian D. Eastham 3, Melissa P. Sulprizio 1, Lei Zhu 1, Qianjie Chen 4, Becky Alexander, Tomás Sherwen 6,7, Mathew

More information

Hydroperoxyl radical (HO 2

Hydroperoxyl radical (HO 2 GEOPHYSICAL RESEARCH LETTERS, VOL 30, NO 24, 2297, doi:101029/2003gl018572, 2003 Hydroperoxyl radical (HO 2 ) oxidizes dibromide radical anion ( 2 )to bromine (Br 2 ) in aqueous solution: Implications

More information

Vacuum-Ultraviolet-Excited and CH 2 Cl 2 /H 2 O-Amplified Ionization- Coupled Mass Spectrometry for Oxygenated Organics Analysis

Vacuum-Ultraviolet-Excited and CH 2 Cl 2 /H 2 O-Amplified Ionization- Coupled Mass Spectrometry for Oxygenated Organics Analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Supporting Information for Vacuum-Ultraviolet-Excited and CH 2 Cl 2 /H 2 O-Amplified Ionization- Coupled Mass Spectrometry

More information

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 1 Ozone Hole Theories 1. Solar activity: During periods of high solar activity, energetic particles are deposited high in the atmosphere, creating NOx. Perhaps

More information

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer Some perspective The British Antarctic Survey The Ozone Hole International Regulations Rowland (1974): The work is going very well, but it may mean the

More information

Electrochemistry: Oxidation numbers. EIT Review F2006 Dr. J.A. Mack. Electrochemistry: Oxidation numbers

Electrochemistry: Oxidation numbers. EIT Review F2006 Dr. J.A. Mack.  Electrochemistry: Oxidation numbers EIT Review F2006 Dr. J.A. Mack Electrochemistry: Oxidation numbers In the compound potassium bromate (KBrO 3 ), the oxidation number of bromine (Br) is? www.csus.edu/indiv/m/mackj/ Part 2 38 39 +1 +2 Oxidation

More information

ICSE Board Class IX Chemistry Paper 3 Solution

ICSE Board Class IX Chemistry Paper 3 Solution ICSE Board Class IX Chemistry Paper 3 Solution SECTION I Answer 1 i. The number of electrons, that atom can lose, gain or share during a chemical reaction is called its valency. ii. Solute: A solute is

More information

Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine

Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine, Sarah Oldfield, Charles B. Mullins, David T. Allen In this communication, we present experimental results from

More information

Reference M atm -1 H / R,

Reference M atm -1 H / R, Table 1a: Henry's Law Constants of halogen containing compounds Species K H 298, M atm 1 H / R, K 1 BrO 48 K H 1 =K H 4 2 ClO 926 K H 2 =K H 5 3 HBr 0.72 6077 Sander and Crutzen, 1996 4 HOBr 48 Sander

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

AS CHEMISTRY 7404/2. Paper 2: Organic and Physical Chemistry

AS CHEMISTRY 7404/2. Paper 2: Organic and Physical Chemistry Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature AS CHEMISTRY Paper 2: Organic and Physical Chemistry Specimen materials (set 2) 1 hour 30

More information

Using GOME and SCIAMACHY NO 2 measurements to constrain emission inventories potential and limitations

Using GOME and SCIAMACHY NO 2 measurements to constrain emission inventories potential and limitations Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Department 1 Physics/Electrical Engineering TP-HTAP WMO Geneva, 25 January 2007 Using GOME and SCIAMACHY NO 2 measurements to constrain

More information

Experimental Techniques for Studying Surface Chemistry in Smog Chambers

Experimental Techniques for Studying Surface Chemistry in Smog Chambers Experimental Techniques for Studying Surface Chemistry in Smog Chambers Laura T. Iraci, Jeffrey C. Johnston and David M. Golden SRI International, Menlo Park, CA Chemical reactions occurring on the walls

More information

Reactive iodine species in a semi-polluted environment

Reactive iodine species in a semi-polluted environment GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L16803, doi:10.1029/2009gl038018, 2009 Reactive iodine species in a semi-polluted environment Anoop S. Mahajan, 1 Hilke Oetjen, 1 Alfonso Saiz-Lopez, 2 James D. Lee,

More information

The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol

The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol Atmos. Chem. Phys. Discuss., 14, 13 166, 14 www.atmos-chem-phys-discuss.net/14/13/14/ doi:.194/acpd-14-13-14 Author(s) 14. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Discussions This

More information

PCCP PAPER. Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCl/Cl on aqueous films.

PCCP PAPER. Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCl/Cl on aqueous films. PAPER View Article Online View Journal View Issue Cite this: Phys. Chem. Chem. Phys., 2015, 17, 19360 Received 8th May 2015, Accepted 22nd June 2015 DOI: 10.1039/c5cp02664d www.rsc.org/pccp Introduction

More information

AQRP Project Implementation and evaluation of new HONO mechanisms in a 3-D Chemical Transport Model for Spring 2009 in Houston

AQRP Project Implementation and evaluation of new HONO mechanisms in a 3-D Chemical Transport Model for Spring 2009 in Houston AQRP Project 12-028 Implementation and evaluation of new HONO mechanisms in a 3-D Chemical Transport Model for Spring 2009 in Houston Barry Lefer 1, Prakash Karamchandani 2, Chris Emery 2, Jochen Stutz

More information

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang

Jianfei Peng et al. Correspondence to: Jianfei Peng Min Hu and Renyi Zhang Supplement of Atmos. Chem. Phys., 17, 10333 10348, 2017 https://doi.org/10.5194/acp-17-10333-2017-supplement Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

More information

Lavinia Onel, Alexander Brennan, Freja F. Østerstrøm, Michele Gianella, Lisa Whalley, Gus Hancock, Paul Seakins, Grant Ritchie and Dwayne Heard

Lavinia Onel, Alexander Brennan, Freja F. Østerstrøm, Michele Gianella, Lisa Whalley, Gus Hancock, Paul Seakins, Grant Ritchie and Dwayne Heard An intercomparison of methods for HO 2 and CH 3 O 2 detection and kinetic study of the HO 2 + CH 3 O 2 cross-reaction in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) Lavinia Onel,

More information

(Global) CAMS system current and upcoming (and past) versions modelling aspects

(Global) CAMS system current and upcoming (and past) versions modelling aspects (Global) CAMS system current and upcoming (and past) versions modelling aspects Johannes Flemming, Zak Kipling, Vincent Huijnen, Samuel Remy, Anna Agusti- Panareda, CAMS development section at ECMWF, CAMS

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed CHEMICAL OXIDATION The use of oxidizing agents without the need of microorganisms for the reactions to proceed oxidizing agents : O 3, H 2 O 2, Cl 2 or HOCl or O 2 etc catalysts : ph, transition metals,

More information

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. CHEMISTRY 2600 Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. Susan Findlay Mass Spectrometry: How Does It Work? In CHEM 1000, you saw that mass

More information

Supplement of Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

Supplement of Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014 Supplement of Atmos. Chem. Phys., 16, 2139 2153, 2016 http://www.atmos-chem-phys.net/16/2139/2016/ doi:10.5194/acp-16-2139-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Secondary

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Homework Assignment 2 ATM 507 Fall 2014

Homework Assignment 2 ATM 507 Fall 2014 Due Tuesday, September 30th Homework Assignment ATM 507 Fall 014 1. Calculate H for the following reactions. Express your answer in kj/mole and kcal/mole: i) NO NO + O( 3 P) ii) NO + O 3 NO + O iii) H

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States

Supplement of Organic nitrate aerosol formation via NO 3 + biogenic volatile organic compounds in the southeastern United States Supplement of Atmos. Chem. Phys., 1, 177 19, 1 http://www.atmos-chem-phys.net/1/177/1/ doi:1.19/acp-1-177-1-supplement Author(s) 1. CC Attribution. License. Supplement of Organic nitrate aerosol formation

More information

Reactive halogens and their measurements in the troposphere

Reactive halogens and their measurements in the troposphere Indian Journal of Geo-Marine Sciences Vol.43(9),September 2014,pp. 1615-1622 General Article Reactive halogens and their measurements in the troposphere Lokesh Kumar Sahu Space and Atmospheric Sciences

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

Interactive comment on The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol by S. Bleicher et al.

Interactive comment on The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol by S. Bleicher et al. Atmos. Chem. Phys. Discuss., 14, C6381 C6409, 2014 www.atmos-chem-phys-discuss.net/14/c6381/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M15/4/CHEMI/SPM/ENG/TZ1/XX Chemistry Standard level Paper 1 Thursday 14 May 2015 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry Chem 110 General Principles of Chemistry Chapter 3 (Page 88) Aqueous Reactions and Solution Stoichiometry In this chapter you will study chemical reactions that take place between substances that are dissolved

More information

CHEM 101 Fall 08 Exam II(a)

CHEM 101 Fall 08 Exam II(a) CHEM 101 Fall 08 Exam II(a) On the answer sheet (scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

A New Mechanism for Regional Atmospheric Chemistry Modelling. A contribution to subproject CMD. W.R. Stockwell', F Kirchner^ M. Kuhn' and S.

A New Mechanism for Regional Atmospheric Chemistry Modelling. A contribution to subproject CMD. W.R. Stockwell', F Kirchner^ M. Kuhn' and S. A New Mechanism for Regional Atmospheric Chemistry Modelling A contribution to subproject CMD W.R. Stockwell', F Kirchner^ M. Kuhn' and S. Seefeld* *Fraunhofer Institute for Atmospheric Environmental Research

More information

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece Maria Kanakidou Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece mariak@chemistry.uoc.gr Why ocean should care for atmospheric chemistry? Impact

More information

Lab 4 Major Anions In Atmospheric Aerosol Particles

Lab 4 Major Anions In Atmospheric Aerosol Particles Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641 Spring 2008 Lab 4 Major Anions In Atmospheric Aerosol Particles Purpose of Lab 4: This experiment will involve determining

More information

Primary photochemical transitions. Absorption cross-section data. Wavelength range/nm Reference Comments

Primary photochemical transitions. Absorption cross-section data. Wavelength range/nm Reference Comments IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation Data Sheet P7 Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or

More information

Figure S1. Configuration of the CIMS inlet during the KORUS-AQ 2016.

Figure S1. Configuration of the CIMS inlet during the KORUS-AQ 2016. Supplement Material for Integration of Airborne and Ground Observations of Nitryl Chloride in the Seoul Metropolitan Area and the Implications on Regional Oxidation Capacity During KORUS-AQ 216 Daun Jeong

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Peer Review File Description: g e (RH) (bulk)

More information

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases Chem 105 Tuesday March 8, 2011 Chapter 17. Acids and Bases 1) Define Brønsted Acid and Brønsted Base 2) Proton (H + ) transfer reactions: conjugate acid-base pairs 3) Water and other amphiprotic substances

More information

Chem 1A Dr. White Fall Handout 4

Chem 1A Dr. White Fall Handout 4 Chem 1A Dr. White Fall 2014 1 Handout 4 4.4 Types of Chemical Reactions (Overview) A. Non-Redox Rxns B. Oxidation-Reduction (Redox) reactions 4.6. Describing Chemical Reactions in Solution A. Molecular

More information

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example.

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example. Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Solutions, Ions & Acids, Bases (Chapters 3-4)

Solutions, Ions & Acids, Bases (Chapters 3-4) Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized Chemistry 12 Acid- Base Equilibrium V Name: Date: Block: 1. Buffers 2. Hydrolysis Buffers An acid- base buffer is a solution that resists changes in ph following the addition of relatively small amounts

More information

Chapter 5 Chemical Reactions

Chapter 5 Chemical Reactions Chapter 5 1 Chapter 5 Chemical Reactions Solutions to In-Chapter Problems 5.1 The process is a chemical reaction because the reactants contain two gray spheres joined (indicating H 2 ) and two red spheres

More information

Gas, Cloudwater, and Rain Hydrogen Peroxide and Methylhydroperoxide Measurements in RICO

Gas, Cloudwater, and Rain Hydrogen Peroxide and Methylhydroperoxide Measurements in RICO Gas, Cloudwater, and Rain Hydrogen Peroxide and Methylhydroperoxide Measurements in RICO Brian G. Heikes, Center for Atmospheric Chemical Studies, Graduate School of Oceanography, University of Rhode Island

More information

TOPIC 11 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 PHYSICAL PROPERTIES OF THE HALOGENS

TOPIC 11 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 PHYSICAL PROPERTIES OF THE HALOGENS QUESTIONSHEET 1 PHYSICAL PROPERTIES OF THE HALOGENS a) (i) F 2 gas (½) yellow (½) Cl 2 gas (½) green / yellow-green (½) Br 2 liquid (½) dark red / brown (½) I 2 solid (½) violet-black / black (½) (ii)

More information

Cassandra J. Gaston Assistant Professor Department of Atmospheric Sciences Rosenstiel School of Marine and Atmospheric Science University of Miami

Cassandra J. Gaston Assistant Professor Department of Atmospheric Sciences Rosenstiel School of Marine and Atmospheric Science University of Miami Contact: Cassandra J. Gaston Assistant Professor Department of Atmospheric Sciences Rosenstiel School of Marine and Atmospheric Science University of Miami Address: UM/RSMAS, 4600 Rickenbacker Causeway,

More information

A.M. THURSDAY, 19 June hour 40 minutes

A.M. THURSDAY, 19 June hour 40 minutes Candidate Name Centre Number 2 Candidate Number GCE A level 335/01 CHEMISTRY CH5 A.M. THURSDAY, 19 June 2008 1 hour 40 minutes JD*(S08-335-01) 4 B 5 ADDITIONAL MATERIALS TOTAL MARK In addition to this

More information

Emission gas from cooling tower. Cl* + Cl* Cl 2. 1 st : only a fraction of chlorine that is added to cooling tower can be emitted into the atmosphere

Emission gas from cooling tower. Cl* + Cl* Cl 2. 1 st : only a fraction of chlorine that is added to cooling tower can be emitted into the atmosphere D.G.Steyn and S.T. Rao (eds). Air pollution Modelling and Its Application XX, 237pp DOI 10,1007/978-90-481-3812-8, Springer Science + Business Media B.V.2010 Emission gas from cooling tower 1 st : only

More information

1. Glyoxal consists of 41.4% C, 3.5% H, and 55.1% O by mass. What is the empirical formula of glyoxal? (A) CHO (B) CH 2 O (C) CH 2 O 2 (D) C 12 HO 16

1. Glyoxal consists of 41.4% C, 3.5% H, and 55.1% O by mass. What is the empirical formula of glyoxal? (A) CHO (B) CH 2 O (C) CH 2 O 2 (D) C 12 HO 16 1 ACS Final Review **Questions are taken from actual past ACS USNCO exams. It is an overview of the topics that will be covered on the exam based on `materials covered. Please continue to study and review

More information

Supporting Information

Supporting Information Supporting Information Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products Zhi Li, Allison N. Schwier, Neha Sareen,

More information

Solution. Types of Solutions. Concentration and Solution Stoichiometry

Solution. Types of Solutions. Concentration and Solution Stoichiometry Concentration and Solution Stoichiometry Solution homogenous mixture of 2 or more pure substances only one perceptible phase species do not react chemically Types of Solutions solid liquid gas Solutions

More information

Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development

Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development Renyi Zhang and Jun Zhao Department of Atmospheric Sciences Texas A&M University College Station, TX 77843 Presented at the international

More information

b. Na. d. So. 1 A basketball has more mass than a golf ball because:

b. Na. d. So. 1 A basketball has more mass than a golf ball because: Chem I Semester Review All of the following are general characteristics of a substance in the liquid state except a. definite volume. c. not easily compressed. b. able to flow. d. definite shape. In the

More information

Supplement for Understanding primary and secondary sources of. ambient carbonyl compounds in Beijing using the PMF model

Supplement for Understanding primary and secondary sources of. ambient carbonyl compounds in Beijing using the PMF model 1 2 3 4 5 6 7 8 9 Supplement for Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model W. T. Chen 1, M. Shao 1, S. H. Lu 1, M. Wang 1, L. M. Zeng 1, B.

More information

School of Chemistry and Physics UNIVERSITY OF KWAZULU-NATAL, WESTVILLE NOVEMBER 2012 EXAMINATION CHEM199: FOUNDATION CHEMISTRY

School of Chemistry and Physics UNIVERSITY OF KWAZULU-NATAL, WESTVILLE NOVEMBER 2012 EXAMINATION CHEM199: FOUNDATION CHEMISTRY School of Chemistry and Physics UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CHEM199: FOUNDATION CHEMISTRY DURATION: 3 HOURS TOTAL MARKS: 100 Internal Examiner: External Moderator: Mrs R Moodley, Mrs R Oosthuizen,

More information

Reaction of Hydroxyl Radical with Acetone. 2. Products and Reaction Mechanism

Reaction of Hydroxyl Radical with Acetone. 2. Products and Reaction Mechanism J. Phys. Chem. A 2003, 107, 5021-5032 5021 Reaction of Hydroxyl Radical with Acetone. 2. Products and Reaction Mechanism Ranajit K. Talukdar, Tomasz Gierczak, David C. McCabe, and A. R. Ravishankara*,

More information

Long-Term Halogen Measurements at Cape Verde

Long-Term Halogen Measurements at Cape Verde Long-Term Halogen Measurements at Cape Verde Ulrich Platt, Udo Frieß, Jessica Balbo Institut for Environmental Physics, University of Heidelberg, Germany Reactive Halogen Species in the Troposphere Previous

More information

Content. Halogen vs. Halide. Halogen Family. 2 Cl - Cl e - l e - 2 l - p-block ELEMENTS. 9.1 The Halogens 9.2 Group IV Elements

Content. Halogen vs. Halide. Halogen Family. 2 Cl - Cl e - l e - 2 l - p-block ELEMENTS. 9.1 The Halogens 9.2 Group IV Elements Content p-block ELEMENTS 9.1 The Halogens 9.2 Group IV Elements Halogen Family Halogen vs. Halide The entire family consists of the Elements, X 2 Fluorine Chlorine Bromine CHLORINE Iodine their Compounds

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

Michael J. Lawler. Education. Post-PhD Research Experience. Scientific Accomplishments.

Michael J. Lawler. Education. Post-PhD Research Experience. Scientific Accomplishments. Michael J. Lawler Born: San Diego, CA, USA Citizenship: USA mlawler@uci.edu mlawler@ucar.edu Education University of California, Irvine (2005-2011) Ph.D. Earth System Science, Sept. 2011. Thesis: Measurements

More information

Arctic Oxidation Chemistry

Arctic Oxidation Chemistry 19 July 2016 Connaught Summer Institute 1 Arctic Oxidation Chemistry Connaught Summer Institute 2016 William (Bill) Simpson Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks

More information

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species?

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species? CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, 2001 M.A. Brook B.E. McCarry A. Perrott 1. (i) What is the conjugate base of each of the following species? (a) H 3 O + (b) NH 4 + (c) HCl

More information

Correspondence: Saewung Kim

Correspondence: Saewung Kim Atmos. Chem. Phys. Discuss., https://doi.org/1.519/acp-218-1216 Discussion started: 27 November 218 c Author(s) 218. CC BY. License. Integration of Airborne and Ground Observations of Nitryl Chloride in

More information

Assessment Schedule 2014 Scholarship Chemistry (93102) Evidence Statement

Assessment Schedule 2014 Scholarship Chemistry (93102) Evidence Statement Assessment Schedule 2014 Scholarship Chemistry (93102) Evidence Statement Scholarship Chemistry (93102) 2014 page 1 of 10 Question ONE (a)(i) Evidence Na(s) to Na(g) will require less energy than vaporisation

More information

OXIDATION AND REDUCTION

OXIDATION AND REDUCTION OXIDATION AND REDUCTION IMPORTANT FACTS: IMPORTANT DEFINATIONS Many chemical reactions involve the addition of oxygen or hydrogen to the reactants. The reaction in which oxygen is added is called oxidation

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2008 Chemistry Assessment Unit AS 1 assessing Module 1: General Chemistry ASC11 [ASC11] THURSDAY 17 JANUARY,

More information

Fall 2011 CHEM Test 4, Form A

Fall 2011 CHEM Test 4, Form A Fall 2011 CHEM 1110.40413 Test 4, Form A Part I. Multiple Choice: Clearly circle the best answer. (60 pts) Name: 1. The common constituent in all acid solutions is A) H 2 SO 4 B) H 2 C) H + D) OH 2. Which

More information

Chemical Reactions Part 1

Chemical Reactions Part 1 Chemical Reactions Part 1 Reading: Ch 6 sections 1-2 Homework: 5.3 questions 17, 18* 5.4 questions 20*,22* 6.1 questions 2, 4 6.2 questions 8, 10, 12*, 14, 16 * = important homework question Overview of

More information

CREATE Summer School. Tim Canty

CREATE Summer School. Tim Canty CREATE Summer School Tim Canty Understanding Halogens in the Arctic Today: Will focus on chlorine and bromine How lab studies affect our view of ozone loss Using observations and models to probe the atmosphere

More information

Chem 1515 Review Problem Set Fall 2001

Chem 1515 Review Problem Set Fall 2001 Chem 1515 Review Problem Set Fall 21 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due in lecture, at 2:30 p.m. on Friday, August 31, 21. RPS.1. Write the chemical formula(s)

More information

Supplement of Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO x

Supplement of Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO x Supplement of Atmos. Chem. Phys., 15, 11257 11272, 2015 http://www.atmos-chem-phys.net/15/11257/2015/ doi:10.5194/acp-15-11257-2015-supplement Author(s) 2015. CC Attribution 3.0 License. Supplement of

More information

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3 Experiment Three Lab one: Parts 1 and 2A Lab two: Parts 2B and 3 1 1A 1 H 1s 1 2 IIA 3 Li 2s 1 1 1 Na 3s 1 1 9 K 4s 1 3 7 Rb 5s 1 5 5 Cs 6s 1 8 7 Fr 7s 1 4 Be 2s 2 1 2 Mg 3s 2 3 IIIB 4 IVB 5 VB 6 VIB 7

More information

For the element X in the ionic compound MX, explain the meaning of the term oxidation state.

For the element X in the ionic compound MX, explain the meaning of the term oxidation state. 1. (a) By referring to electrons, explain the meaning of the term oxidising agent.... For the element X in the ionic compound MX, explain the meaning of the term oxidation state.... (c) Complete the table

More information

Ch 9 Practice Problems

Ch 9 Practice Problems Ch 9 Practice Problems 1. One mole of an ideal gas is expanded from a volume of 1.50 L to a volume of 10.18 L against a constant external pressure of 1.03 atm. Calculate the work. (1 L atm = 101.3 J) A)

More information

NOTE: This practice exam contains more than questions than the real final.

NOTE: This practice exam contains more than questions than the real final. NOTE: This practice exam contains more than questions than the real final. 1. The wavelength of light emitted from a green laser pointer is 5.32 10 2 nm. What is the wavelength in meters? 2. What is the

More information