Ecology 302: Lecture VI. Evolution of Life Histories

Size: px
Start display at page:

Download "Ecology 302: Lecture VI. Evolution of Life Histories"

Transcription

1 Ecology 302: Lecture VI. Evolution of Life Histories (Ricklefs, Chapter 7; Life Histories, pp.46-48; Knowledge Project.) Spawning sockeye salmon (Oncorhyncus nerka). The adaptive significance (if any) of semelparity in Pacific salmon is yet to be determined (Photo by A. Hendry.) 1

2 Key Points. Age specific rates of fertility and reproduction determined jointly by environment and genetics. o Tremendous variation among even closely related species. 1. Iteroparity (repeated reproduction) vs. semelparity (reproduce once, then die). 2. Early vs. delayed reproduction. 3. Etc. To what extent is such variation adaptive? Cole s Paradox why are there so many perennials? o One of the first examples of the application of evolutionary thinking to life history variation. o Resolution focuses attention on the importance of distinguishing effective fecundity,, from the number of young produced,. Principle of allocation necessitates trade-offs between current fecundity and subsequent fecundity and survival. 2

3 Reproductive effort (RE) the fraction,, of available resources allocated to reproduction by an year-old, o An optimal life history maximizes max max, all o Criterion of optimality is maximization of see Lecture 5. o Evolution of senescence can be viewed from similar perspective. o Satisfaction of (*) can result in a single global optimum,,, or multiple optima. o Details depend on the shapes of the fertility and survivorship curves i.e., on the way they vary with reproductive expenditure. 3

4 Results from models without age structure: o Increasing reproductive success (includes juvenile survival) favors increased reproductive expenditure. o Increasing adult survival favors reduced reproductive expenditure. o Optimal response to density depends on whether increased crowding principally affects reproductive success (includes juvenile survival) or adult survival. o Increasing year-to-year variability in reproductive success (includes juvenile survival) favors reduced reproductive expenditure. o Increasing year-to-year variability in adult survival favors increased reproductive expenditure. Optimal effort per offspring,, maximizes,. 4

5 I. Life Histories. A. Age specific schedules of reproduction and mortality determined jointly by genes and environment. B. Enormous variation even among closely related species: 1. Annuals vs. perennials. Figure 1. Life history traits are molded by environment and selection. 2. Iteroparity (repeated reproduction) vs. semelparity (reproduce once, then die). 3. Early vs. delayed reproduction. 4. Long vs. short life expectancy. 5. Fecundity increasing with age vs. not 6. Large per offspring parental investment vs. small. 7. Etc. C. To what extent can this variability be explained by appealing to natural selection as an optimizing agent? 5

6 II. Why are there so Many Perennials? A. Look at the plants on campus. 1. Most are perennials. 2. Lamont Cole (1954) argued that this makes no sense when viewed from the perspective of evolution. B. Cole s argument. 1. Perennial expend energy on the structures support structures, storage organs, etc. that permit them to survive from one year to the next. 2. Why not forego these structures and instead produce more seeds? 3. The annual rate, λ p, at which a population of perennials multiplies is (1) where B p is the number of seeds produced by an individual and p is the probability of surviving from one growing season to the next. 6

7 4. A population of annuals multiplies at rate (2) 5. Then (3) 6. The maximum value of is 1. So a mutant that abandons the perennial habit and uses the energy saved to produce one or more additional seeds should outcompete perennial conspecifics. 7. But the world is filled with perennials. 7

8 C. Resolution of Cole s paradox. 1. Per the previous lecture, the B s in Eq 3 are effective fecundities a. Not the numbers of seeds produced, but b. The number that germinate and survive to flower the following year. 2. If and are the number of seeds produced by annuals and perennials, and is the probability that a seed survives to reproduce,, and. Then (4a) 3. Generally speaking, c and / Perennials generally increase in size from one year to the next. If perennial fertility multiplies by a factor of 1 per year, it can be shown that, and Eq 4a becomes (4b) 8

9 D. Annual perennial contrast a special case of iteroparity vs. semelparity. Figure 2. Degree of iteroparity as measured by average number of breeding seasons vs. ratio of juvenile to adult mortality. From Stearns (1976). According to Eqs 4, increasing juvenile to adult mortality should select for increasing iteroparity. 9

10 III. Reproductive Effort (RE). A. Principle of Allocation (PoA): Resources that an organism can allocate to different functions finite necessitates trade-offs. B. Idea dates to the poet, Goethe (Metamorphosis of Plants). C. Reproductive Effort: Let be the proportion of available resources allocated to reproduction by an i year-old. PoA Figure 3. Experimental demonstration of the tradeoff between current reproductive expenditure and subsequent survival I 0; 0; 0 0 (5) 10

11 D. In words: There is a tradeoff between current reproduction,, and subsequent survival,, and subsequent reproduction,. E. Let.. be the schedule of age-specific reproductive expenditures, and let,, be a schedule that maximizes. F. The following equivalences can be proved: max max, all max max, all (6) G. Because RV depends on all the s, one cannot simply step through the age classes and apply Eq 6 to each. 1. Instead, one computes and # corresponding to maxima and minima of. 2. Intersections are peaks, valleys and saddles of fitness in... space (Figure 4). 11

12 Figure 4. Adaptive topographies for a two stage (juvenile-adult) life history. The coordinate axes, and, are juvenile and adult reproductive effort. Reproductive effort (RE) pairs,,, are color coded by according to the visible spectrum with dark red denoting low fitness and dark violet, high. The thick white lines are curves of conditional optima, and. Effective fecundity and post-reproductive survival functions are decelerating functions of RE as in Figure 6b. Arrows indicate selection. 12

13 IV. Theory of Senescence. A. Differentiating the stable age equation (Lecture 5) with respect to yields l (7) where is the reproductive value of an year-old, and (8) is total reproductive value Figure 5. Ricklefs identifies the strength of selection with the probability of surviving to the age in question,. Eq 7 is a more accurate criterion. B. Conclusion: Fitness benefits consequent to delaying agerelated deterioration (senescence) vary inversely with reproductive value i.e., the young and the old are relatively expendable see Ricklefs p 144 ff. 13

14 V. Dependence of Fertility and Survivorship on RE. A. Imagine for all age classes 1. A single effort, E. 2. B(E) and p(e) the same functions. B. Then (9) C. Optimal expenditure depends on the shapes of and (Figure 6). 1. Accelerating curves 0 or Decelerating curves Sigmoidal curves two optima. D. With multiple age classes, potential for multiple optima increases (Figure 7). 14

15 Figure 6. Optimal reproductive expenditure depends on the functional dependence of fertility and survival on RE. Four cases are shown. a. fertility and survivorship accelerating functions of RE (positive second derivatives). b. Fertility and survivorship decelerating functions of RE (negative second derivatives). c. Fertility sigmoidal; survivorship linear. d. Fertility linear; survivorship a reverse sigmoid. The most biologically plausible shapes are fertility sigmoidal; survivorship a reverse sigmoid. 15

16 Figure 7. Figure 4. Adaptive topographies for a two stage (juvenileadult) life history corresponding to the four cases shown in Figure 6. See caption to Figure 4 for additional details. 16

17 VI. Is Semelparity Adaptive? A. Two well-known examples: 1. Salmon. 2. Yuccas and agaves. B. Both groups include iteroparous & semelparous species. C. In neither group is there good evidence for an adaptive explanation see Schaffer (pp ), Ricklefs (pp ). D. An alternative explanation in yuccas and agaves is that semelparity consequent to flower stalk development from apical vs. lateral meristems. E. Post-flowering rosette survival and post-flowering vegetative reproduction in Agave parviflora (Figure 8) consistent with the latter, non-adaptive explanation. Figure 8. A, parviflora rosette and developing flower stalk. After the stalk dies, the rosette will hang-on for years (post-flowering halflife 30 months) and reproduce vegetatively. PFHL is much shorter in other agaves, and vegetative reproduction, while common, generally precedes flowering. 17

18 VII. Response to Environmental Chamge. A. Imagine a change in environmental quality that changes fertility and / or survival per unit effort. B. Consequence to optimal expenditure depends on whether B(E) or p(e) principally affected (Figure 9). C. Optimal allocation varies in proportion to fitness returns. D. Since juvenile survival a component of B(E) = cb(e), optimal response to changing levels of exogneous mortality depends on age specificity of their effect. 18

19 Figure 9. Top. Reducing effective fecundity,, per unit effort reduces E *. Bottom. Reducing post-reproductive survival,,, per unit effort increases E *. 19

20 VIII. Response to Increasing Density. A. depends on N. B. depends on E. C. Regardless of the agespecificity of crowding effects, maximizes (Figure 10). D. So-called K-selected species typically characterized by 1. Reduced reproductive output; 2. increased expenditure per offspring, etc. Figure 10. Optimal response to increased density can entail increased or reduced reproductive output. E. Consequent to the fact that juveniles generally more sensitive to crowding than adults. 20

21 IX. Response to Fluctuating Environment. A. Imagine good years and bad where or, 1, 1. 1, 1 (12a) (12b) B. Assume good and bad years equally frequent. Then selection maximizes geometric mean (13) C. For the case of decelerating (negative second derivatives) and, setting 0, yields the following results 1 : 1. Increasing favors reduced in RE if principallly affected; 1 Optional reference: Schaffer, W. M Optimal reproductive effort in fluctuating environments. Amer. Natur. 108:

22 2. Increasing favors increased in RE if principally affeted. D. This is not bet hedging in the sense of minimizing risk. 22

23 X. Effort per Offsping. A. Clutch size problem. 1. Juvenile survival increases with parental expnditure, e, per offspring. 2. Let be the number of eggs laid. 3. Problem is to choose (E,e) (equivalenetly, (E,n) to maximize Figure 12. Experimental demonstration of optimal clutch size. Average unmanipulated clutch was seven., (15) B. Number chicks fledged /. Then optimal expenditure per offspring, e *, is the value of e at which c(e) is tangent to the line, of greatest k (Figure 14a). (16) 23

24 Figure 13. Fledgling survival in great tits increases with body weight. From Blakey and Perrins (1999). All else being equal, fledgling weight, and hence survival, varies inversely with clutch size. Hence, there is a trade-off between clutch size and recruitment. Fledgling survival also depends on environmental conditions. Higher survival rates at the right reflect the fact that 1995 was a beech mast year. 24

25 C. Since e* maximizes B(E,e), E*(e) maximal at e=e* (Figure 14b). D. Parent-offspring conflict (Ricklefs, p. 192) a complicating factor is Figure 14. Optimizing effort per offspring, e, and total effort, E. 25

Chapter 6 Lecture. Life History Strategies. Spring 2013

Chapter 6 Lecture. Life History Strategies. Spring 2013 Chapter 6 Lecture Life History Strategies Spring 2013 6.1 Introduction: Diversity of Life History Strategies Variation in breeding strategies, fecundity, and probability of survival at different stages

More information

Life history evolution

Life history evolution Life history evolution Key concepts ˆ Cole s paradox ˆ Tradeoffs ad the evolution of iteroparity ˆ Bet hedging in random environments Life history theory The life history of a species consists of its life

More information

Life History Evolution

Life History Evolution Life history evolution References Stearns (1992) The Evolution of Life Histories Roff (2002) Review Partridge & Harvey (1988) Science 241: 1449-1455 1 Overview Life history traits Life history : how individuals

More information

LIFE HISTORY STRATEGIES

LIFE HISTORY STRATEGIES LIFE HISTORY STRATEGIES LIFE HISTORY STRATEGIES What characteristics help a population survive and grow? What are the dominant species in an ecosystem? Why doesn't a dominant species (of plant or animal)

More information

BIOS 3010: Ecology Lecture 14: Life Histories: 2. Components of life histories: Growth, fecundity and survivorship. 3. Components of life histories:

BIOS 3010: Ecology Lecture 14: Life Histories: 2. Components of life histories: Growth, fecundity and survivorship. 3. Components of life histories: BIOS 3010: Ecology Lecture 14: Life Histories: Lecture summary: Components of life histories: Growth. Fecundity. Survivorship. Reproductive value. Trade-offs. r- and K-selection. Habitat templates. Clutch

More information

Evolutionary Ecology. Evolutionary Ecology. Perspective on evolution. Individuals and their environment 8/31/15

Evolutionary Ecology. Evolutionary Ecology. Perspective on evolution. Individuals and their environment 8/31/15 Evolutionary Ecology In what ways do plants adapt to their environment? Evolutionary Ecology Natural selection is a constant Individuals are continuously challenged by their environment Populations are

More information

Principles of Ecology BL / ENVS 402 Exam II Name:

Principles of Ecology BL / ENVS 402 Exam II Name: Principles of Ecology BL / ENVS 402 Exam II 10-26-2011 Name: There are three parts to this exam. Use your time wisely as you only have 50 minutes. Part One: Circle the BEST answer. Each question is worth

More information

Lacey, E. P. (1986) Onset of reproduction in plants: size-versus age-dependency. Trends in Ecology and Evolution 1(3):

Lacey, E. P. (1986) Onset of reproduction in plants: size-versus age-dependency. Trends in Ecology and Evolution 1(3): Onset of Reproduction in Plants: Size- versus Age-dependency By: Elizabeth P. Lacey Lacey, E. P. (1986) Onset of reproduction in plants: size-versus age-dependency. Trends in Ecology and Evolution 1(3):

More information

IB 153 Fall 2006 Life histories and population regulation 9/21/2006. Life history classification schemes. r/k selection (MacArthur and Wilson 1967)

IB 153 Fall 2006 Life histories and population regulation 9/21/2006. Life history classification schemes. r/k selection (MacArthur and Wilson 1967) IB 153 Fall 26 Life histories and 9/21/26 Today's lecture: 1. Finish discussion on life histories 2. Review exponential and logistic growth equations 3. Effects of density on vital rates and consequences

More information

Evolution of Population Characteristics - Life History

Evolution of Population Characteristics - Life History Population Biology Although most trees and perennial tropical plants reproduce about once a year, the "Suicide Tree", Tachygalia versicolor is a long-lived canopy species that reproduces only once and

More information

Chapter 4 Lecture. Populations with Age and Stage structures. Spring 2013

Chapter 4 Lecture. Populations with Age and Stage structures. Spring 2013 Chapter 4 Lecture Populations with Age and Stage structures Spring 2013 4.1 Introduction Life Table- approach to quantify age specific fecundity and survivorship data Age (or Size Class) structured populations

More information

Fish Conservation and Management

Fish Conservation and Management Fish Conservation and Management CONS 486 Life history: Reproduction Ross Chapter 3 Reproduction topics Reproduction Fecundity Life history strategies Reproductive Schedules Semelparity vs iteroparity

More information

Kontakt: (Verantwortlicher Dozent): Part 3 of Hauptvorlesung Evolutionsbiologie

Kontakt: (Verantwortlicher Dozent): Part 3 of Hauptvorlesung Evolutionsbiologie There is strong variation among species and taxonomic groups in life history traits. Why? There is also strong variation within clades in life history traits. 3 4 The evolution of life histories Outline:

More information

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS 1 BIOL2007 - EVOLUTION OF QUANTITATIVE CHARACTERS How do evolutionary biologists measure variation in a typical quantitative character? Let s use beak size in birds as a typical example. Phenotypic variation

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

Plant hormones: a. produced in many parts of the plant b. have many functions

Plant hormones: a. produced in many parts of the plant b. have many functions Plant hormones: a. produced in many parts of the plant b. have many functions Illustrated with 4 plant hormones: Gibberellins Auxin Cytokinins Ethylene Gibberellins Gibberellins illustrate how plant hormones

More information

Introduction to course: BSCI 462 of BIOL 708 R

Introduction to course: BSCI 462 of BIOL 708 R Introduction to course: BSCI 462 of BIOL 708 R Population Ecology: Fundamental concepts in plant and animal systems Spring 2013 Introduction The biology of a population = Population Ecology Issue of scale,

More information

5. Reproduction and Recruitment

5. Reproduction and Recruitment 5. Reproduction and Recruitment Sexual vs Asexual Reproduction Reproductive effort Developmental types Developmental trends What is recruitment Factors affecting recruitment Process of larval habitat selection

More information

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e)

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Population Ecology and the Distribution of Organisms Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Ecology The scientific study of the interactions between organisms and the environment

More information

Reproduction & Recovery - Energetics

Reproduction & Recovery - Energetics Reproduction & Recovery - Energetics Iteroparity & Semelparity Iteroparity- (perennial) reproduces more than once. Semelparity- (annual) reproduces only once. 1 Crespi, B.J. and R. Teo. 2002. Comparative

More information

What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation. Fig. 35.

What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation. Fig. 35. What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation Fig. 35.18 Copyright 2002 Pearson Education, Inc., publishing as Benjamin

More information

Selection on Correlated Characters (notes only)

Selection on Correlated Characters (notes only) Selection on Correlated Characters (notes only) The breeder s equation is best suited for plant and animal breeding where specific traits can be selected. In natural populations selection is rarely directed

More information

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

STUDY GUIDE SECTION 16-1 Genetic Equilibrium STUDY GUIDE SECTION 16-1 Genetic Equilibrium Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The smallest unit in which evolution occurs is a. an individual organism. c. a species

More information

Chapter 53 POPULATION ECOLOGY

Chapter 53 POPULATION ECOLOGY Ch. 53 Warm-Up 1. Sketch an exponential population growth curve and a logistic population growth curve. 2. What is an ecological footprint? 3. What are ways that you can reduce your ecological footprint?

More information

Adaptation. Biotic and Abiotic Environments. Eric R. Pianka

Adaptation. Biotic and Abiotic Environments. Eric R. Pianka Adaptation Eric R. Pianka To survive and reproduce, all living organisms must adjust to conditions imposed on them by their environments. An organism's environment includes everything impinging upon it,

More information

R2101 PLANT CLASSIFICATION, STRUCTURE & FUNCTION

R2101 PLANT CLASSIFICATION, STRUCTURE & FUNCTION Excluding Examiners comments R0 PLANT CLASSIFICATION, STRUCTURE & FUNCTION Level Monday February 09 09:0 0:50 Written Examination Candidate Number: Candidate Name: Centre Number/Name:.. IMPORTANT Please

More information

Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia

Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia Plant Ecology 174: 71 78, 2004. 2004 Kluwer Academic Publishers. Printed in the Netherlands. 71 Flower production in relation to individual plant age and leaf production among different patches of Corydalis

More information

9-1 The Work of Gregor

9-1 The Work of Gregor 9-1 The Work of Gregor 11-1 The Work of Gregor Mendel Mendel 1 of 32 11-1 The Work of Gregor Mendel Gregor Mendel s Peas Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel

More information

THE EVOLUTION OF INTERTEMPORAL PREFERENCES

THE EVOLUTION OF INTERTEMPORAL PREFERENCES THE EVOLUTION OF INTERTEMPORAL PREFERENCES Arthur J. Robson Department of Economics Simon Fraser University Larry Samuelson Department of Economics University of Wisconsin 8888 University Drive 80 Observatory

More information

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points P 1 Biology 217: Ecology Second Exam Fall 2004 There should be 7 ps in this exam - take a moment and count them now. Put your name on the first p of the exam, and on each of the ps with short answer questions.

More information

Bee Colony Activities Throughout The Year

Bee Colony Activities Throughout The Year Bee Colony Activities Throughout The Year Written by Khalil Hamdan Apeldoorn The Netherlands A honeybee gathering nectar from a flower. Photo source: forestwander.com Bee collecting pollen. Photo source:

More information

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel 11-1 The Work of Gregor Mendel The Work of Gregor Mendel Gregor Mendel s Peas! Gregor Mendel s Peas Genetics is the scientific study of heredity. " Gregor Mendel was an Austrian monk. His work was important

More information

5. Reproduction and Recruitment

5. Reproduction and Recruitment 5. Reproduction and Recruitment Sexual vs Asexual Reproduction Reproductive effort Developmental types Trends in reproductive ecology What is recruitment? Factors affecting recruitment Process of larval

More information

Chapter 13- Reproduction, Meiosis, and Life Cycles. Many plants and other organisms depend on sexual reproduction.

Chapter 13- Reproduction, Meiosis, and Life Cycles. Many plants and other organisms depend on sexual reproduction. Chapter 13- Reproduction, Meiosis, and Life Cycles Many plants and other organisms depend on sexual reproduction. Flowers are the sexual reproductive organ systems of angiosperms. Sexual reproduction gametes

More information

Competition-induced starvation drives large-scale population cycles in Antarctic krill

Competition-induced starvation drives large-scale population cycles in Antarctic krill In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION VOLUME: 1 ARTICLE NUMBER: 0177 Competition-induced starvation drives large-scale population cycles in Antarctic krill Alexey

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

Jeopardy. Final Jeopardy. Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400

Jeopardy. Final Jeopardy. Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400 Jeopardy Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 Final Jeopardy 1 - $100 n Although

More information

SENSITIVITY AND ELASTICITY ANALYSES

SENSITIVITY AND ELASTICITY ANALYSES 1 SENSITIVITY AND ELASTICITY ANALYSES Objectives Using the stage-based matrix model for a sea turtle population, conduct a sensitivity analysis of model parameters to determine the absolute contribution

More information

1. Natural selection can only occur if there is variation among members of the same species. WHY?

1. Natural selection can only occur if there is variation among members of the same species. WHY? 1. Natural selection can only occur if there is variation among members of the same species. WHY? Variation in a population results from mutation and the recombination of alleles during meiosis and fertilization.

More information

Thursday, March 21, 13. Evolution

Thursday, March 21, 13. Evolution Evolution What is Evolution? Evolution involves inheritable changes in a population of organisms through time Fundamental to biology and paleontology Paleontology is the study of life history as revealed

More information

Lecture 8 Insect ecology and balance of life

Lecture 8 Insect ecology and balance of life Lecture 8 Insect ecology and balance of life Ecology: The term ecology is derived from the Greek term oikos meaning house combined with logy meaning the science of or the study of. Thus literally ecology

More information

Plant responses to climate change in the Negev

Plant responses to climate change in the Negev Ben-Gurion University of the Negev Plant responses to climate change in the Negev 300 200 150? Dr. Bertrand Boeken Dry Rangeland Ecology and Management Lab The Wyler Dept. of Dryland Agriculture Jacob

More information

BIOL 305L Spring 2018 Laboratory Seven

BIOL 305L Spring 2018 Laboratory Seven Please print Full name clearly: BIOL 305L Spring 2018 Laboratory Seven Flowering and reproduction Introduction Flowers are not simple structures, and the diversity of flower shape, color, and fragrance

More information

Exam 2. Principles of Ecology. March 10, Name

Exam 2. Principles of Ecology. March 10, Name Exam 2. Principles of Ecology. March 10, 2008. Name N t = N o λ t N t = N o e rt N t+1 = N t + r o N t (1-N t /K) N t = K/(1 + [(K N o )/N o ] * e rt ) dn/dt = rn(1-n/k) N captured and marked initially

More information

2/25/14 PARENTAL CARE AMONG ANURANS AND URODELES OBJECTIVE: LECTURE OVERVIEW:

2/25/14 PARENTAL CARE AMONG ANURANS AND URODELES OBJECTIVE: LECTURE OVERVIEW: PARENTAL CARE AMONG ANURANS AND URODELES Danny Satterfield Amphibian Ecology/Conservation University of Tennessee, Knoxville 2014 OBJECTIVE: Introduce the various methods that Amphibians have adapted to

More information

Assisted colonization of native forbs the use of climate-adjusted provenances. Sue McIntyre

Assisted colonization of native forbs the use of climate-adjusted provenances. Sue McIntyre Assisted colonization of native forbs the use of climate-adjusted provenances Sue McIntyre Why move grassland forbs? Grassland forbs need help populations are depleted and fragmented. Climate change likely

More information

1 Mendel and His Peas

1 Mendel and His Peas CHAPTER 6 1 Mendel and His Peas SECTION Heredity 7.2.d California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: What is heredity? Who was

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following levels of ecological organization is arranged in the correct sequence

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

Population Ecology NRM

Population Ecology NRM Population Ecology NRM What do we need? MAKING DECISIONS Consensus working through views until agreement among all CONSENSUS Informed analyze options through respectful discussion INFORMED DECISION Majority

More information

EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13

EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13 AP BIOLOGY EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13 NAME DATE PERIOD SPECIATION SPECIATION Origin of new species SPECIES BIOLOGICAL CONCEPT Population or groups of populations whose members have

More information

A population subjected to only density-independent factors can not persist over a long period of time eventually go to extinction

A population subjected to only density-independent factors can not persist over a long period of time eventually go to extinction A population subjected to only density-independent factors can not persist over a long period of time eventually go to extinction K is constant over time does not vary year to year etc. dn / Ndt declines

More information

Two Views of Adaptation

Two Views of Adaptation Mar 22: Adaptation--definitions Two Views of Adaptation Adaptation as a process The process by which an organism becomes better fitted to its environment, and stays that way Reflects role of natural selection

More information

3. What are the advantages and disadvantages of selective breeding?

3. What are the advantages and disadvantages of selective breeding? UNIT VI - PLANT TECHNOLOGIES Lesson 1: Traditional Plant Breeding Competency/Objective: Describe traditional plant breeding processes. Study Questions References: 1. What is natural crossbreeding? 2. What

More information

Gregor Mendel and Heredity (Lexile 1010L)

Gregor Mendel and Heredity (Lexile 1010L) Gregor Mendel and Heredity (Lexile 1010L) 1 Traits are the part of our genetic code that makes us who we are. You may have brown or blond hair, dark or light skin, or a blood type of,,, or O. These are

More information

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV is the process of evolution by which new species arise. The key factor causing speciation is the appearance of genetic differences between two populations, which result from evolution by natural selection.

More information

Quantitative characters III: response to selection in nature

Quantitative characters III: response to selection in nature Quantitative characters III: response to selection in nature Selection occurs whenever there is a nonrandom relationship between phenotypes (performances) and fitnesses. But evolution occurs only when

More information

Anthro 101: Human Biological Evolution. Lecture 4 : Evolution by Natural Selection. Prof. Kenneth Feldmeier

Anthro 101: Human Biological Evolution. Lecture 4 : Evolution by Natural Selection. Prof. Kenneth Feldmeier Anthro 101: Human Biological Evolution Lecture 4 : Evolution by Natural Selection Prof. Kenneth Feldmeier Darwin and the history of evolutionary thinking Historical Context Darwin s theory of evolution

More information

May 11, Aims: Agenda

May 11, Aims: Agenda May 11, 2017 Aims: SWBAT explain how survival of the fittest and natural selection have contributed to the continuation, extinction, and adaptation of species. Agenda 1. Do Now 2. Class Notes 3. Guided

More information

Evolution. Part 1: Historical Perspective on the Theory of Natural Selection

Evolution. Part 1: Historical Perspective on the Theory of Natural Selection Evolution Part 1: Historical Perspective on the Theory of Natural Selection 1. In the 1860 s, what types of evidence were available to indicate that evolution had occurred on Earth? 2. How did knowledge

More information

Chapter 24-Flowering Plant and Animal Coevolution

Chapter 24-Flowering Plant and Animal Coevolution Chapter 24-Flowering Plant and Animal Coevolution coevolutionary plant-animal associations alliances that have influenced the evoluton of both partners. These examples show that plants have acquired traits

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Transition matrix model for the persistence of monocarpic plant population under periodically occurred ecological disturbance Hiromi Seno* & Hisao Nakajima^ Department ofinformation and Computer Sciences,

More information

Population Ecology Density dependence, regulation and the Allee effect

Population Ecology Density dependence, regulation and the Allee effect 2/22/15 Population Ecology Density dependence, regulation and the Allee effect ESRM 450 Wildlife Ecology and Conservation Wildlife Populations Groups of animals, all of the same species, that live together

More information

Eichhornia crassipes (water hyacinth) Tristylous, clonal

Eichhornia crassipes (water hyacinth) Tristylous, clonal Plant of the Day Eichhornia crassipes (water hyacinth) Native to South America Tristylous, clonal Invasive in Asia, Africa, North America, Australia Clogs waterways, blocks sunlight and reduces oxygen

More information

ENVE203 Environmental Engineering Ecology (Nov 05, 2012)

ENVE203 Environmental Engineering Ecology (Nov 05, 2012) ENVE203 Environmental Engineering Ecology (Nov 05, 2012) Elif Soyer Ecosystems and Living Organisms Population Density How Do Populations Change in Size? Maximum Population Growth Environmental Resistance

More information

Darwin, Mendel, and Genetics

Darwin, Mendel, and Genetics Darwin, Mendel, and Genetics The age old questions Who am I? In particular, what traits define me? How (and why) did I get to be who I am, that is, how were these traits passed on to me? Pre-Science (and

More information

Ecology and Evolutionary Biology 2245/2245W Exam 3 April 5, 2012

Ecology and Evolutionary Biology 2245/2245W Exam 3 April 5, 2012 Name p. 1 Ecology and Evolutionary Biology 2245/2245W Exam 3 April 5, 2012 Print your complete name clearly at the top of each page. This exam should have 6 pages count the pages in your copy to make sure.

More information

Changing Planet: Changing Mosquito Genes

Changing Planet: Changing Mosquito Genes Changing Planet: Changing Mosquito Genes Name Background As the climate changes around the globe, organisms will need to adapt in order to survive. But what does it mean to adapt? When you put on a sweater

More information

Ecology and evolution. Limnology Lecture 2

Ecology and evolution. Limnology Lecture 2 Ecology and evolution Limnology Lecture 2 Outline Lab notebooks Quick and dirty ecology and evolution review The Scientific Method 1. Develop hypothesis (general models) Null hypothesis Alternative hypothesis

More information

Speciation and Patterns of Evolution

Speciation and Patterns of Evolution Speciation and Patterns of Evolution What is a species? Biologically, a species is defined as members of a population that can interbreed under natural conditions Different species are considered reproductively

More information

Chapter 4 Ecosystems and Living Organisms

Chapter 4 Ecosystems and Living Organisms Chapter 4 Ecosystems and Living Organisms I. Evolution A. The cumulative genetic changes that occur in a population of organisms over time 1. Current theories proposed by Charles Darwin, a 19 th century

More information

4. is the rate at which a population of a given species will increase when no limits are placed on its rate of growth.

4. is the rate at which a population of a given species will increase when no limits are placed on its rate of growth. Population Ecology 1. Populations of mammals that live in colder climates tend to have shorter ears and limbs than populations of the same species in warm climates (coyotes are a good example of this).

More information

Chapter 11 INTRODUCTION TO GENETICS

Chapter 11 INTRODUCTION TO GENETICS Chapter 11 INTRODUCTION TO GENETICS 11-1 The Work of Gregor Mendel I. Gregor Mendel A. Studied pea plants 1. Reproduce sexually (have two sex cells = gametes) 2. Uniting of male and female gametes = Fertilization

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 3: Intraspecific Competition. Lecture summary: Definition. Characteristics. Scramble & contest. Density dependence k-values

More information

Biology Unit Overview and Pacing Guide

Biology Unit Overview and Pacing Guide This document provides teachers with an overview of each unit in the Biology curriculum. The Curriculum Engine provides additional information including knowledge and performance learning targets, key

More information

A MODEL OF SIMULTANEOUS EVOLUTION OF COMPETITIVE ABILITY AND HERBIVORE RESISTANCE IN A PERENNIAL PLANT

A MODEL OF SIMULTANEOUS EVOLUTION OF COMPETITIVE ABILITY AND HERBIVORE RESISTANCE IN A PERENNIAL PLANT Ecology, 83(10), 2002, pp. 2649 2663 2002 by the Ecological Society of America A MODEL OF SIMULTANEOUS EVOLUTION OF COMPETITIVE ABILITY AND HERBIVORE RESISTANCE IN A PERENNIAL PLANT MARÍA URIARTE, 1,2,3

More information

NGSS Example Bundles. Page 1 of 13

NGSS Example Bundles. Page 1 of 13 High School Modified Domains Model Course III Life Sciences Bundle 4: Life Diversifies Over Time This is the fourth bundle of the High School Domains Model Course III Life Sciences. Each bundle has connections

More information

Apomixis in Plants. Authors. Sven E. Asker, Ph.D. Department of Genetics University of Lund Lund, Sweden

Apomixis in Plants. Authors. Sven E. Asker, Ph.D. Department of Genetics University of Lund Lund, Sweden Apomixis in Plants I (0 ') r,\ q f Authors Sven E. Asker, Ph.D. Department of Genetics University of Lund Lund, Sweden Lenn Jerling, Ph.D. Botany Department University of Stockholm Stockholm, Sweden CRC

More information

Evolution of life-histories in stochastic environments: Cole s paradox revisited

Evolution of life-histories in stochastic environments: Cole s paradox revisited Evolution of life-histories in stochastic environments: Cole s paradox revisited David Tesar Department of Ecology and Systematics Division of Population Biology University of Helsinki Finland Academic

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

Conceptually, we define species as evolutionary units :

Conceptually, we define species as evolutionary units : Bio 1M: Speciation 1 How are species defined? S24.1 (2ndEd S26.1) Conceptually, we define species as evolutionary units : Individuals within a species are evolving together Individuals of different species

More information

NOTES Ch 17: Genes and. Variation

NOTES Ch 17: Genes and. Variation NOTES Ch 17: Genes and Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Variation 17.1 Genes & Variation Darwin developed

More information

Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations

Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations INVESTIGATION Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations David L. Remington,*,1 Päivi H. Leinonen, Johanna Leppälä,,2

More information

Pelecanus erythrorhynchos

Pelecanus erythrorhynchos Published on Climate Change Sensitivity Database (http://climatechangesensitivity.org) Pelecanus erythrorhynchos This species is complete. March 17, 2010 by Jorge Tomasevic Author(s) Expertise: Print species

More information

Approximate Pacing for First Grade Insects and Plants Unit

Approximate Pacing for First Grade Insects and Plants Unit Approximate Pacing for First Grade Insects and Plants Unit p.1 = Part 1 p.2 = Part 2 p.3 = Part 3 The schedule for this unit is almost COMPLETELY dependent on what the living organisms are doing and where

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live B. Etymology study of the origin and development of a word 1. Earliest - Haeckel (1869)

More information

Temperature. (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species

Temperature. (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species Temperature (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species (2) controls concentrations (3) is relatively predictable over and can provide a basis for species.

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Name Date Period Handout A: Characteristics of Life

Name Date Period Handout A: Characteristics of Life Name Date Period Handout A: Characteristics of Life Directions: 1. Read and highlight the main ideas in each passage. 2. Circle Key vocabulary 3. Answer the questions below each passage. Most people feel

More information

The Ecological Impacts Of Nitrogen Deposition: Insights From The Carnivorous Pitcher Plant Sarracenia purpurea

The Ecological Impacts Of Nitrogen Deposition: Insights From The Carnivorous Pitcher Plant Sarracenia purpurea The Ecological Impacts Of Nitrogen Deposition: Insights From The Carnivorous Pitcher Plant Sarracenia purpurea Nicholas J. Gotelli Department of Biology University of Vermont Burlington, VT 05405 U.S.A.

More information

Exam I. Principles of Ecology. September 19, Name. Multiple guess. Circle the letter of the best answer. [4 points each, 40 pts total]

Exam I. Principles of Ecology. September 19, Name. Multiple guess. Circle the letter of the best answer. [4 points each, 40 pts total] Exam I. Principles of Ecology. September 19, 2008. Name Multiple guess. Circle the letter of the best answer. [4 points each, 40 pts total] 1. The two hosts most responsible for the spread of West Nile

More information

TOPIC 9.4 REPRODUCTION OF PLANTS

TOPIC 9.4 REPRODUCTION OF PLANTS TOPIC 9.4 REPRODUCTION OF PLANTS INTRO https://media1.britannica.com/eb-media/41/62941-004-e3f5377b.jpg IB BIO 9.4 2 Flowers are reproductive structures found in flowering plants. Their function is to

More information

Heredity.. An Introduction Unit 5: Seventh Grade

Heredity.. An Introduction Unit 5: Seventh Grade Heredity.. An Introduction Unit 5: Seventh Grade Why don t you look like a rhinoceros? The answer seems simple --- neither of your parents is a rhinoceros (I assume). But there is more to this answer than

More information

Oecologia. The Cost of Reproduction in Senecio keniodendron, a Giant Rosette Species of Mt. Kenya

Oecologia. The Cost of Reproduction in Senecio keniodendron, a Giant Rosette Species of Mt. Kenya Oecologia (Berl) (1982) 55:243-247 Oecologia 9 Springer-Verlag 1982 The Cost of Reproduction in Senecio keniodendron, a Giant Rosette Species of Mt. Kenya Alan P. Smith 1 and Truman P. Young 2 1 Smithsonian

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

Princeton University Press, all rights reserved. Chapter 10: Dynamics of Class-Structured Populations

Princeton University Press, all rights reserved. Chapter 10: Dynamics of Class-Structured Populations Supplementary material to: Princeton University Press, all rights reserved From: Chapter 10: Dynamics of Class-Structured Populations A Biologist s Guide to Mathematical Modeling in Ecology and Evolution

More information

Chapter 6 Meiosis and Mendel

Chapter 6 Meiosis and Mendel UNIT 3 GENETICS Chapter 6 Meiosis and Mendel 1 hairy ears (hypertrichosis)- due to holandric gene. (Y chromosome)-only occurs in males. Appears in all sons. 2 Polydactyly- having extra fingers Wendy the

More information

REPRODUCTION. 7 th Grade Science Mr. Banks

REPRODUCTION. 7 th Grade Science Mr. Banks REPRODUCTION 7 th Grade Science Mr. Banks All living things reproduce. But what is the purpose of reproduction? All living things reproduce. But what is the purpose of reproduction? To continue the species.

More information

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 2: how traits are passed from the parents

More information

Regents Biology REVIEW 6: EVOLUTION. 1. Define evolution:

Regents Biology REVIEW 6: EVOLUTION. 1. Define evolution: Period Date REVIEW 6: EVOLUTION 1. Define evolution: 2. Modern Theory of Evolution: a. Charles Darwin: Was not the first to think of evolution, but he did figure out how it works (mostly). However, Darwin

More information