Seeing!the!Light:!the!Origin!and!Evolution!of!Plant!Photoreceptors! by! Fay<Wei!Li! Department!of!Biology! Duke!University! Date:! Approved:!

Size: px
Start display at page:

Download "Seeing!the!Light:!the!Origin!and!Evolution!of!Plant!Photoreceptors! by! Fay<Wei!Li! Department!of!Biology! Duke!University! Date:! Approved:!"

Transcription

1 SeeingtheLight:theOriginandEvolutionofPlantPhotoreceptors by Fay<WeiLi DepartmentofBiology DukeUniversity Date: Approved: KathleenM.Pryer,Supervisor MengChen SönkeJohnsen CorbinJones SarahMathews Dissertationsubmittedinpartialfulfillmentof therequirementsforthedegreeofdoctorofphilosophyinthedepartmentof BiologyintheGraduateSchool ofdukeuniversity 2015

2 ABSTRACT SeeingtheLight:theOriginandEvolutionofPlantPhotoreceptors by Fay<WeiLi DepartmentofBiology DukeUniversity Date: Approved: KathleenM.Pryer,Supervisor MengChen SönkeJohnsen CorbinJones SarahMathews Anabstractofadissertationsubmittedinpartialfulfillmentof therequirementsforthedegreeofdoctorofphilosophyinthedepartmentof BiologyintheGraduateSchool ofdukeuniversity 2015

3 Copyrightby Fay<WeiLi 2015

4 Abstract Plantsuseanarrayofphotoreceptorstomeasurethequality,quantity,anddirectionof lightinordertorespondtoever<changinglightenvironments.photoreceptorsnotonlydetermine howandwhenindividualplantscompletetheirlifecycles,buttheyalsohaveaprofoundand long<termmacroevolutionaryinfluenceonspeciesdiversification.despitetheirsignificances, verylittleisknownaboutphotoreceptorsacrossplantsaswhole,andwelackacomprehensive viewofphotoreceptorevolution. Inmydissertation,Iinvestigatetheoriginandevolutionofthreeofthemostprominent photoreceptorgenefamiliesinplants:phytochromes,phototropinsandneochromes.using newlyavailabletranscriptomicandgenomicdata,icompletedthefirstin<depthsurveyofthese photoreceptorfamiliesacrosslandplants,greenalgae,redalgae,glaucophytes,cryptophytes, haptophytes,andstramenopiles. Phytochromesarered/far<redphotoreceptorsthatplayessentialrolesinseed germination,seedlingphotomorphogenesis,shade<avoidance,dormancy,circadianrhythm, phototropism,andflowering.here,ishowthatthecanonicalplantphytochromesoriginatedina commonancestorofstreptophytes(charophytegreenalgaepluslandplants),andiidentifythe mostlikelysequencewherebytheplantphytochromestructureevolvedfromitsancestral phytochrome.phytochromesincharophytealgaearestructurallydiverse,includingcanonical andnon<canonicalforms,whereasinlandplants,phytochromestructureishighlyconserved. Liverworts,hornworts,andSelaginellaapparentlypossessasinglephytochromegenecopy, whereasindependentgeneduplicationsoccurredwithinmosses,lycopods,ferns,andseed plants,leadingtodiversephytochromefamiliesintheseclades.mydetailedphylogeny iv

5 encompassesallofgreenplantsandenablesmetonotonlyuncovernewphytochromelineages, butalsotomakelinkstoourcurrentunderstandingofphytochromefunctioninarabidopsisand Physcomitrella5(themajormodelorganismoutsideoffloweringplants).Basedonthisrobust evolutionaryframework,iproposenewhypothesesanddiscussfuturedirectionstostudy phytochromemechanisms. Phototropinsareblue<lightphotoreceptorsthatregulatekeyadaptivephysiological responses,includingshoot<positivephototropism,root<negativephototropism,chloroplast accumulation/avoidance,stomatalopening,circadianrhythm,leafexpansion,andseedling elongationishowthatphototropinsoriginatedinthecommonancestorofviridiplantae(all greenalgae[charophytes,chlorophytes,prasinophytes]pluslandplants).phototropins repeatedlyunderwentindependentduplicationsinallmajorplantlineages(mosses,lycopods, fernsandseedplants),exceptforliverwortsandhornworts,wherephototropinisasingle<copy gene.followingeachmajorduplicationevent,phototropinssubsequentlydifferentiatedin parallel,resultingintwospecialized(yetpartiallyoverlapping)functionalformsthatprimarily mediateeitherlow<orhigh<lightresponses.mygenephylogenyfurthersuggeststhat phototropinshaveco<evolvedwithphytochromes,asisevidentfromtheirmolecularinteractions andstrikinglysimilargeneduplicationpatterns.ihypothesizethattheco<evolutionof phototropinswithphytochromes,togetherwiththeirsubsequentconvergentfunctional divergencesinphototropicresponses,contributedtothesuccessofplantsinadaptingtodiverse andheterogeneoushabitats. Neochromesarechimericphotoreceptorsthat,byfusingphytochromeandphototropin modulesintoasingleprotein,areabletousebothred/far<redandbluelighttomodulate v

6 phototropicresponses.neochromeswerefirstdiscoveredinferns,andtheevolutionof neochromeswasimplicatedasakeyinnovationthatfacilitatedferndiversificationunderthe low<lightangiospermcanopies.despiteitssignificancefromanevolutionarystandpoint,the originofneochromeshasremainedamystery.hereipresentthefirstevidenceforneochromein hornworts(abryophytelineage)anddemonstratethatfernsacquiredneochromefromhornworts viahorizontalgenetransfer(hgt).fernneochromesarenestedwithinhornwortneochromesin mylarge<scalephylogeneticreconstructionsofphototropinandphytochromegenefamilies. DivergencedateestimatesfurthersupporttheHGThypothesis,withfernandhornwort neochromesdiverging179mya,longafterthesplitbetweenthetwoplantlineages(atleast400 MYA).ByanalyzingthedraftgenomeoftheAnthocerospunctatushornwort,Ialsodiscovereda novelphototropingenethatlikelyrepresentstheancestrallineageoftheneochromephototropin module.thus,aneochromeoriginatinginhornwortswashorizontallytransferredtoferns,where itmayhaveplayedasignificantroleinthediversificationofmodernferns. Insummary,mystudiesidentifiedthemolecularoriginsofphytochromes,phototropins andneochromes,andreconstructedtheirrespectiveevolutionaryhistories.thisnewframework forphotoreceptorevolutionwillstimulatenewresearchlinkingecology,evolution,and photochemistrytounderstandhowplantsadapttovariablelightenvironments. vi

7 Tomyparentswhoshowedmethewonderofferns vii

8 Contents Abstract...iv ListofTables...xi ListofFigures...xii Acknowledgements...xiv Introduction Theoriginandevolutionofphytochromes Introduction Results Namesforphytochromegenelineages Stramenopilesandhaptophytes Redalgae Glaucophytes Cryptophytes Viridiplantae Neochromes Bryophytes Lycophytes Ferns Seedplants Discussions MaterialsandMethods Transcriptome<andgenome<miningforphytochrome...25 viii

9 1.4.2Sequencealignment Phylogeneticreconstruction Confirminggenecopynumberinhornwortsbytargetenrichment Theoriginandevolutionofphototropins Introduction Results Theoriginofphototropins Phototropinphylogeny Discussions MaterialsandMethods Miningphototropinsfromtranscriptomesandgenomes Sequencealignmentandphylogeneticreconstruction Targetenrichmentforconfirmingphototropincopynumberinhornworts Theoriginandevolutionofneochromes Introduction ResultsandDiscussions Algalneochrome Novelneochromeinhornworts NeochromeHGTfromhornwortstoferns Recurrentfern<to<fernHGT Evolutionaryandphysiologicalimplicationsofneochromeinhornworts Evolutionarysignificanceofplant<to<plantHGT MaterialsandMethods...57 ix

10 3.3.1Miningtranscriptomesandwholegenomesequencesforhomologsofneochrome, phototropinandphytochrome AssemblingandmininganAnthoceros5punctatusdraftgenomeforhomologsof neochrome,phototropinandphytochrome Cloningofneochrome,phototropinandphytochrome Genomewalkinginhornwortphototropinandneochrome Sequencealignmentforneochrome,phototropinandphytochrome Phylogeneticanalysesofphototropinandneochrome Phylogeneticanalysesofphytochrome Topologytest Phylogeneticanalysisofimidazoleglycerol<phosphatedehydratasegene(IGPD) Divergencetimeestimationofthephototropingenefamily InferringepisodicselectionandGCcontentvariationinneochromeevolution...65 AppendixA:SupplementaryFiguresforChapterOne...67 AppendixB:SupplementaryTablesforChapterOne...73 AppendixC:SupplementaryTablesforChapterTwo...78 AppendixD:SupplementaryFiguresforChapterThree...82 AppendixE:SupplementaryTablesforChapterThree...88 x

11 List of Tables Table1:ReclassificationofPhyscomitrella5patensphototropinsbasedongeneorthology...33 Table2:Listoftranscriptomesandgenomesscreenedforphytochromes...73 Table3:SourcesandGenBankaccessionnumbersofthephytochromesusedinphylogenetic analyses...75 Table4:Listoftranscriptomesandgenomesscreenedforphototropins...78 Table5:SourcesandGenBankaccessionnumbersofthephototropinsusedinphylogenetic analyses...80 Table6:Listoftranscriptomesandgenomesequencesscreenedforneochrome,phototropinand phytochromegenes...88 Table7: Thecalibrationsusedindatingthedivergenceofphototropingenefamily...89 Table8:TheprimersandPCRprotocolsusedinthisstudy...90 Table9:TheprimersequencesusedinPCR...91 xi

12 List of Figures Figure1:Plants see lightthroughphotoreceptors.domainstructuresofphytochromes, phototropinsandneochromesareshownontheright...2 Figure2: Theorganismallineagesscreenedforphytochromehomologs...6 Figure3:Phylogenyofphytochrome...8 Figure4:ThediversityandevolutionofphytochromeC<terminaloutputmodule...10 Figure5: Phylogeneticrelationshipofneochromesandphytochromes...13 Figure6: Phytochromephylogenyforbryophytes...16 Figure7: Phytochromephylogenyforfernsandlycophytes...19 Figure8:Organismallineagesscreenedforphototropinhomologs...30 Figure9:Phylogenyofseed<plantandfernphototropins...36 Figure10:Phylogenyoflycophyteandbryophytephototropins...38 Figure11:Phylogenyofalgalphototropins...39 Figure12:Theoriginoffernneochrome...47 Figure13:Phylogeneticrelationshipsoffernneochrome(NEO),hornwortneochromeand phototropin(phot)...51 Figure14: Phylogeneticincongruencebetweenfernneochromegenetreeandfernspeciestree..52 Figure15: Phylogeny,selectionprofileandGCcontentoffernneochromes...54 Figure16: Hornwortchloroplastscontractunderstronglight...56 Figure17:Thephylogenyofphytochromesreconstructedfrom423proteinsequences...67 Figure18:Phylogeneticrelationshipsoflandplantandalgalphototropin(PHOT)andthe correspondingdomainsfromhornwort,fern,andalgalneochrome(neo)...83 Figure19:Phylogeneticrelationshipsoflandplantandalgalphytochrome(PHY)andthe correspondingdomainsfromhornwortandfernneochrome(neo)...85 Figure20:Phylogenyoflandplantimidazoleglycerol<phosphatedehydratase(IGPD)...86 xii

13 Figure21:Chronogramoflandplantandalgalphototropin(PHOT)andthecorresponding domainsfromhornwort,fern,andalgalneochrome(neo)...87 xiii

14 Acknowledgements WhenIlookedbackthepastfiveyears,Irealizedhowmygraduatestudywouldbe impossiblewithoutthegeneroushelpfromsomanypeople.iwouldliketobeginbythanking CarlRothfels,whogotmeinvolvedintheOneThousandPlant(1KP)project,fromwhereIgot mostofmytranscriptomedatafor$freeby,literally,writingafewlinesofbatchdownloading scripts.iamindebtedtoallthe1kpcontributors,andofcoursetothevisionaryleaderganekai ShuWong.IalsowanttothankSteveKelly,EftychiosFrangedakisandJaneLangdaleforsharing theirhornwortgenomicdata,andtojoshderforsharinghispteridiumtranscriptome,bothof whichhavebeeninstrumentaltomystudy. JuanCarlosVillarealhasbeenmybest hornwortbuddy,whohassharedeverybitof hisincrediblehornwortknowledgewithme.daveswoffordtaughtmehowtomakephylogeny treesandthetheoriesbehindit,andsavedmyassmanytimeswhenwetaughtthephylogenetics course.tommitchellioldsintroducedmetotheworldofpython,alanguageicannotlive without.jonshawgavemeacrashcourseonbryophytephylogeny,sothaticanpretendiknow somethingwhendiscussinggeneduplicationsinmosses.paulmanosofferedmetheopportunity toorganizedukesystematicsdiscussiongroup(i.e.sdg),duringwhichigottoknowsome incredibleevolutionarybiologists.laynehuietisawalkingwikipediaofmolecularbiologyand givesthebesttipseverindoinglabexperiments.karlbatesisthewizardofscience communications,andmademefeellikea celebrityofferns foradayortwo. Iappreciatethepeople,professionalsocieties,andfundingagenciesthatbelievedinmy researchpotentialandgavemethefundingtopursue.theseinclude:americansocietyofplant Taxonomists,DukeBiology,NationalScienceFoundation(DEB andGRFP),SigmaXi, xiv

15 SocietyofSystematicBiologists,TorreyBotanicalSociety,andanangeldonorwhosenameIshall notreveal. Iamverygratefultomycommitteemembers.IenjoythediscussionswithMengChen aboutphytochromefunctionandsignaltransduction,andwithcorbinjonesaboutchimericgene evolutionandtheemerginggenomictools.sönkejohnsenpromptedmetothinkaboutplant visionfromanotherangleandofferedmemanyrealisticcareeradvices.mydissertationwork wouldbeawfullytawdrywithoutsarahmathew sguidanceandhercriticalthinking.ihave alwaysfeltenlightenedafterdiscussingphotoreceptorswithsarahoverskype. ThePryerlabisawesome.ErinSigel,AmandaGrusz,CarlRothfels,KathrynPicard,Tzu< TongKaoandLayneHuiethavebeenthegreatestcheerleadersandalwayssosupportive.They havealsobeentirelesslyteachingmenewenglishwords,andfeltembarrassed(orjoyful?)when Iusedthemindevastatinglyinappropriateways. KathleenPryerandMikeWindhamarethebestadvisorsever.Achapterofitsown wouldnotsufficemygratefulness.mikegavemean America101 courseduringatwo<month fieldtripacrosstheus;itwasnotjustonfernsandmustards,butalsoaboutthecultures,history, andpolitics perhapseverythingineededtoknowasa fresh<off<the<boat Taiwanese.Kathleen alwayshasthewildest,unconventionalideas,andienjoydeeplypursuingthecrazinesswithher. Forthesefiveyears,theygavemetheabsolutefreedomtodowhateverIfindinteresting,whichI amterriblygratefulfor Well,that snottrue,butallthestufftheyinflictedonmeturnedoutto beamazinglyawesome FinallyIwanttothankYu<Hsuan,mywifeandmybestfriend,for everything xv

16 Introduction Light5exerts5a5powerful5influence5on5most5vegetable5tissues,5and5there5can5be5no5doubt5that5it5 generally5tends5to5check5their5growth CharlesDarwin,1880 Lightistheultimatesourceofenergyformuchoflifeonearth,andinevitablygoverns thegrowthandphysiologyofphotosyntheticorganisms.plants see lightthrough photoreceptors(figure1).fivephotoreceptorgenefamiliesaregenerallypresentinplants: phytochromes,phototropins,cryptochromes,zeitlupes,anduvr8(möglichetal.,2010;heijde andulm,2012).amongthem,phytochromesandphototropinsareperhapsthemostprominent, giventheirprevalenceincontrollingalmosteveryaspectoftheplantlifecycle:fromthe dormancyandgerminationofseeds/spores,morphogenesisandgrowth,toflowering(franklin andquail,2010;christie,2007).ampleevidencehasshownthatthesetwophotoreceptorsexert anadaptivesignificanceonindividualfitness(galenetal.,2004),localadaptation(ikedaetal., 2009;IkedaandSetoguchi,2010),and/orlong<termmacroevolutionarysuccess(Mathewsetal., 2003).Furthermore,theirchimericderivativeneochrome/(partphytochromeandpart phototropin),wasalsoimplicatedasakeyinnovationthatfacilitatedfernradiationunderlow< lightenvironments(schneideretal.,2004;schuettpelzandpryer,2009;kawaietal.,2003). Tounderstandhowplantsadaptedto,andthrivedin,thediverseenvironmentsthey inhabit,therolesofphotoreceptorscannotbeignored.however,photoreceptorgenesequence datahavebeenscarceandmostlylimitedtoseedplants,thusimpedingdetailedreconstructions ofphotoreceptorevolutionaryhistories.themajorgoalofmydissertationresearchwasto leveragerecentgenomicandtranscriptomicdatatoinvestigatetheoriginandevolutionofthree photoreceptorfamilies:phytochromes(chapter1),phototropins(chapter2),andneochromes (Chapter3). 1

17 Chapter3onneochromeswaspublishedfirst(Lietal.,2014),alongwithpreliminary datafromchapters1and2.morecomprehensiveanalysesonphytochromes(chapter1)and phototropins(chapter2)arebeingpublishedinseparate,dedicatedpapers. UVR8 Cryptochrome Phototropin Zeitlupe LOV LOV PKC Neochrome PAS GAF PHY LOV LOV PKC Phytochrome PAS GAF PHY PAS PAS KD Figure/1:/Plants/ see /light/through/photoreceptors./domainstructuresofphytochromes, phototropinsandneochromesareshownontheright.neochromeisachimericphotoreceptorfusing phytochromeandphototropinmodules,andisabletorespondtobothblueandred/far<redlight.domain names:gaf(cgmpphosphodiesterase/adenylatecyclase/fhla);kd(histidine<kinase<related<domain);pas (Per/Arnt/Sim);PHY(Phytochrome);PKC(ProteinKinaseC). 2

18 1. The origin and evolution of phytochromes Li,F.<W.,M.Melkonian,C.J.Rothfels,J.C.Villarreal,D.W.Stevenson,S.W.Graham, G.K.S.Wong,K.M.Pryer,andS.Mathews.Novel/phytochrome/lineages/and/complex/ evolutionary/histories/revealed/across/extant/plant/diversity.naturecommunications, in5review 1.1 Introduction Phytochromesarered/far<redlightsensors,particularlyprominentfortheircontrolof seedgermination,seedlingphotomorphogenesis,shade<avoidance,dormancy,circadianrhythm, phototropism,andflowering(möglichetal.,2010;rockwelletal.,2006;franklinandquail, 2010).Becauseoftheirbiologicalsignificance,phytochromeshavebeenamajorfocusinplant research.phytochromephotochemistry,function,anditsassociatedsignaltransduction mechanismshavebeeninvestigatedextensively,mostlyusingthemodelfloweringplant Arabidopsis5thaliana5(Möglichetal.,2010;Rockwelletal.,2006;FranklinandQuail,2010;Chenand Chory,2011). CanonicalplantphytochromescompriseanN<terminalphotosensorycoremodule (PCM)andaC<terminalregulatorymodule(FranklinandQuail,2010;Rockwelletal.,2006).The PCMcontainsthreeconserveddomainsinthelinearsequencePAS,GAF,andPHY.Itisessential forlightreceptionandphotoconversionbetweenreversibleconformationsthatabsorbmaximally inthered(650<670nm)orfar<red(705<740nm)regionsofthespectrum,referredtoasprandpfr, respectively.thec<terminalmoduleconsistsofapas<pasrepeatfollowedbyahistidine<kinase< relateddomain(hkrd).thehkrdresemblesahistidinekinasedomainbutlackstheconserved histidinephosphorylationsite,exhibitingserine/threoninekinaseactivityinstead(yehand Lagarias,1998;Fankhauser,2000). 3

19 Plantphytochromesoccurasasmallnuclear<encodedgenefamily,andinseedplants theyfallintothreedistinctclades:phya,phyb/e,andphyc5(mathews,2010).thephylogenetic relationshipsamongthesecladesarewellresolved,allowingfortheformulationoffunctional hypothesesforseed<plantphytochromesbasedontheirorthologywitharabidopsisphytochromes (Mathews,2010).Phytochromediversityinnon<seedplants,however,isverypoorlyunderstood, withthelimitedavailabledatabeingderivedfromthephyscomitrella5(moss)andselaginella (lycophyte)genomeprojects(banksetal.,2011;rensingetal.,2008),andafewcloningstudies (Schneider<Poetschetal.,1994;Nozueetal.,1997;Okamotoetal.,1993;Pasentsisetal.,1998; Suzukietal.,2001).Thelackofacomprehensivephytochromeevolutionaryframeworkforall landplantsisanobstacletounderstandingtheevolutionofphytochromefunctionaldiversity, andmakesitdifficult,forexample,tointerpretcorrectlyresultsfromcomparisonsoffunctionin Arabidopsis5thalianaandPhyscomitrella5patens. Anespeciallyremarkableplantphytochromederivativeisneochrome,achimeric photoreceptorcombiningaphytochromepcmandabluelight<sensingphototropin(nozueet al.,1998).neochromeshavebeendetectedonlyinzygnemetaleanalgae,fernsandhornworts (Suetsuguetal.,2005;Lietal.,2014).Whileithasbeenshownthatthephototropincomponentof neochromeshastwoindependentorigins(oneinzygnemetaleanalgaeandtheotherin hornworts;seechapter3andlietal.,2014),theancestryofthephytochromeportionremains unclear. Inadditiontoplants,phytochromesarepresentinprokaryotes,fungi,andseveral protistanandalgallineages(ulijaszandvierstra,2011;rockwelletal.,2014).these phytochromessharewithcanonicalplantphytochromesthepcmdomainarchitectureatthen< terminal,buttheydifferintheirc<terminalregulatorymodules.prokaryoticandfungal phytochromes,forexample,lackthepas<pasrepeat,andhaveafunctionalhistidine<kinase 4

20 domainwiththeconservedhistidineresidue.recently,rockwelletal.(2014)andduanmuetal. (2014)examinedthephytochromesinseveralalgallineages(brownalgae,cryptophytes, glaucophytes,andprasinophytes),anddiscoveredthatsomeofthemnotonlyexhibitgreat spectraldiversity,butalsohavenoveldomaincombinationswithinthec<terminalmodule. Despitetheseimportantfindings,phytochromesremainunreportedfromthemajorityofalgal lineages.duanmuetal.(2014)proposedthatthecanonicalplantphytochromemayhave originatedamongcharophytealgae,buttheywereunabletoconfirmthis. Inthisstudy,Iinvestigatednewlyavailablegenomicandtranscriptomicresourcesto discoverphytochromehomologsoutsideofseedplants.iexaminedatotalof300genomesand transcriptomesfromferns,lycophytes,bryophytes,charophytes,chlorophytes,and prasinophytes(allinviridiplantae),andfromotherplastid<bearingalgallineages,the glaucophytes,cryptophytes,rhodophytes,haptophytes,andstramenopiles(figure2,table2).i usedthesedatatoreconstructthefirstdetailedphytochromephylogenyfortheeukaryotic branchesofthetreeoflife,andtomapallthemajorgeneduplicationeventsanddomain architecturetransitionsontothisevolutionarytree. 1.2 Results Idiscoveredatotalof350phytochromehomologsin148transcriptomeassembliesand 12whole<genomesequences(Table2,Table3)spanningextantplantandalgaldiversity.Inthe remaining140assembliesandgenomesequences,idetectednophytochromehomologs.i inferredaphytochromephylogenyfromanaminoacidmatrixthatincludedthesequencesi discovered,togetherwithpreviouslypublishedsequencesfromgenbank.toimproveour understandingofphytochromeandneochromeevolution,especiallywithinfernsand bryophytes,ialsoassembledthreenucleotidematrices.thefernandbryophytematrices 5

21 included113and97phytochromesequences,respectively.theneochromematrixincluded16 neochromesand95phytochromesfromselectedbryophytesandcharophytes. Seed plants Ferns Archaeplastida* Viridiplantae Streptophytes Lycophytes Mosses Liverworts Hornworts Desmidiales Zygnematales Coleochaetales Charales Klebsormidiales Mesostigmatales Trebouxiphyceae Ulvophyceae Chlorophyceae Pedinophyceae Prasinophytes Rhodophytes Glaucophytes Cryptophytes Stramenopiles Chlorophytes Charophytes Land plants Haptophytes Figure/2: The/organismal/lineages/screened/for/phytochrome/homologs./Thephylogenetic relationshipswerederivedfromwickettetal.(2014)andmarin(2012).lineagesthatlackphytochromeare ingrey.*traditionalarchaeplastidadoesnotincludecryptophytes. Thetopologiesofthephytochromegenetreescorrespondwellwithpublished organismalrelationships(wickettetal.,2014;kuoetal.,2011;coxetal.,2010;gontcharovand Melkonian,2010;Cavalier<Smithetal.,2014;Burkietal.,2012;GrantandKatz,2014;Marin,2012; VillarrealandRenner,2012;Forrestetal.,2006),allowingmetopinpointthephylogenetic positionsofgeneduplicationeventsanddelineatenovelphytochromeclades.belowireport resultsonphytochromediversity,phylogeneticstructure,anddomainarchitectureinthe stramenopiles,cryptophytesandarchaeplastida(or Plantae :redalgae+glaucophytes+ Viridiplantae;Adletal.,2005). 6

22 1.2.1 Names for phytochrome gene lineages ThehighdiversityofphytochromesIdiscoveredincharophytes,mossesandferns resultingfrommultiple,independentgeneduplications(figure2) demandedasensiblesystem fornamingthegenelineages.withineachmajororganismalgroupofarchaeplastida(except seedplants,whereasystemfornamingphyhasalreadybeenwellestablished),iusednumerical labelsforthephytochromecladesthatresultedfrommajorgeneduplicationevents(e.g.,fern PHY1E4andcharophytePHY1E2).Subcladesresultingfrommorelocalduplicationswerethen namedalphabeticallywithinclades(e.g.,polypodialesphy4aebanddesmidialesphy2aec).it shouldbestressedthatthisalphanumericsystemdoesnotimplyorthologyacrossorganismal groups;forexamplefernphy1sharesalowerdegreeofrelatednesstocharophytephy15thanto fernphy2.charophytephyx1andphyx2weresonamedherebecausetheyarenotcanonical plantphytochromeslikecharophytephy1e2,andtheirevolutionaryoriginislessclear.forthe cryptophytephytochromeswithc<terminalserine/threoninekinase,ifollowedduanmuetal. (2014)andcalledthemphytochromeeukaryotickinasehybrids(PEK) Stramenopiles and haptophytes Stramenopilesarealargeeukaryoticcladethatincludesbrownalgae(suchaskelps), goldenalgae,anddiatoms,thelatterbeinganimportantcomponentofplankton.withinthis group,phytochromesareknownsofaronlyfrombrownalgae,someoftheirviruses,and diatoms.theirsequencesformacladethatissistertofungalphytochromes(figure3,appendix Figure17).Interestingly,thephytochromefromthebrownalgalvirusEsV<1(Delaroqueetal., 2001)doesnotgroupwithbrownalgae5phytochromes,butinsteadismorecloselyrelatedto thoseofdiatoms.thisrelationshipwasnotsupportedinabootstrappinganalysis(appendix Figure17);itwas,however,alsoobtainedbyDuanmuetal.(2014)(butwithoutsupport). 7

23 Summary of phytochrome gene phylogeny Domain architecture Archaeplastida* Inferred gene duplication Origin of canonical plant phytochrome Viridiplantae Streptophytes A Land plants 2/4 H 1 2_4/5 D 1_3 4 I 2 4A J 4B 1 G 2 5A F 5 5B E 2_4 C C B B Angiosperm Gymnosperm Angiosperm Gymnosperm Angiosperm Angiosperm Gymnosperm Polypodiales Polypodiales Cyatheales Salviniales Schizaeales Polypodiales Cyatheales Salviniales Schizaeales Gleicheniales Osmundales Marattiales Ophioglossales Psilotales Ophioglossales Equisetales Polypodiales Cyatheales Salviniales Gleicheniales Osmundales Equisetales Marattiales Lycopodiales Lycopodiales Isoetales Selaginellales Bryopsida Bryopsida Polytrichopsida Bryopsida Polytrichopsida Andreaeopsida Sphagnopsida Takakiopsida Bryopsida Andreaeopsida Jurgemanniopsida Marchantiopsida Notothyladales Dendrocerotales Anthocerotales Hornworts+Ferns Hornworts Zygnematales Desmidales C Desmidales B Desmidales A Zygnematales Coleochaetales Klebsormidiales Desmidiales Klebsormidiales Mesostigmatales Zygnematales Coleochaetales Zygnematales Coleochaetales Prasinophyte Cryptophyte Cryptophyte Glaucophyte Cyanobacteria Diatom Brown algae Fungi Cyanobacteria Bacteria Bacteria PHYA PHYN PHYC PHYO PHYB PHYE PHYP Fern PHY4 Fern PHY2 Fern PHY2/4 Fern PHY1 Lycophyte PHY Moss PHY5 Moss PHY2_4 Moss PHY2_4/5 Moss PHY1_3 Liverwort PHY Hornwort PHY Neochrome Charophyte PHY2 Charophyte PHY1 Charophyte PHY1/2 Charophyte PHYX2 Charophyte PHYX1 Prasinophyte PHY Cryptophyte PHY Cryptophyte PEK Glaucophyte PHY Cyano PAS-less Stramenopile PHY Fungi PHY Bacteria PHY PAS GAF PHY PAS GAF PHY PAS GAF PHY PAS GAF PHY PAS PAS LOV LOV PKC PAS PAS PAS PAS GAF PHY PAS PAS H PKC RING KD KD KD PAS GAF PHY PAS PAS H KD REC PAS GAF PHY PAS H KD REC GAF PHY GAF H KD Phototropin portion PAS GAF PHY H KD REC Figure/3:/Phylogeny/of/phytochrome./Terminalcladesarecollapsedintohighertaxonomicalunits (usuallyordersorclasses)fordisplaypurposes;thedetailedtreeisshowninsupplementaryfig.1.orange circlesindicateinferredgeneduplications.italicizedletterswithineachcirclecorrespondstotheduplication eventmentionedinthetext,andthenumbers/lettersadjacenttoeachorangecirclearethenamesofthegene duplicates.canonicalplantphytochromesoriginatedinthecommonancestorofstreptophyta(greenstar), andsomecharophytesretainnon<canonicalphytochromes(phyx1,phyx2).domainarchitecturesare shownontheright.domainsthatarenotalwayspresentareindicatedbydashedoutlines.domainnames: 8

24 GAF,cGMPphosphodiesterase/adenylatecyclase/FhlA;H/KD,histidinephosphorylationsite(H)inthe histidinekinasedomain(kd);pas,per/arnt/sim;phy,phytochrome;pkc,proteinkinasec;rec, ResponseRegulator;andRING,ReallyInterestingNewGene.*TraditionalArchaeplastidadoesnotinclude cryptophytes(adletal.,2005). Additionalphytochromedatafromstramenopileswillbenecessarytoclarifytheoriginofthese viralphytochromes.ialsoexaminedhaptophytes,apredominantlymarinelineageof phytoplankton(theirrelationshipswithstramenopilesandotherprotistsareunclear(grantand Katz,2014;Burkietal.,2012).Nophytochromecouldbefoundinthehaptophytetranscriptomes Red algae Redalgaearemostlymulticellular,marinespeciesthatincludesmanycorallinereef< buildingalgae.nophytochromeswerefoundinthe28redalgaltranscriptomesiexamined,nor inthepublishedgenomesofporphyridium5purpureum,chondrus5crispus,cyanidioschyzon5merolae, Galdieria5sulphuraria,andPyropia5yezoensis5(AppendixTable2).Thisresult,basedondatafromall Rhodophytaclasses(Yoonetal.,2006),providescompellingevidencefortheabsenceof phytochromesfromredalgae(figure2) Glaucophytes Glaucophytesareasmallcladeoffreshwater,unicellularalgaewithunusualplastids referredtoascyanelles,which,unlikeplastidsinrhodophytesandgreenplants,retaina peptidoglycanlayer(keeling,2004).phytochromesarepresentinglaucophytes,andwhenthe treeisrootedonthebranchtoprokaryote/fungus/stramenopilephytochromes,glaucophyte phytochromesareresolvedassistertocryptophyte+viridiplantaephytochromes(figure3, AppendixFigure17).Glaucophytephytochromes,incontrastwithcanonicalplantphytochromes, haveasinglepasdomaininthec<terminalmodule,andtheconservedhistidineresidueis presentinthekinasedomain,suggestingitretainshistidinekinaseactivity(duanmuetal.,2014). 9

25 Organismal phylogeny Land plants C-terminal output module PAS Canonical plant PHY PAS KD Desmidiales PAS PAS KD Archaeplastida* Viridiplantae Streptophytes Zygnematales Coleochaetales Charales Klebsormidales Mesostigmatales Prasinophytes PAS PAS H KD REC PAS PAS KD PAS PAS H KD REC PAS PAS KD PAS PAS KD PAS PAS KD PAS PAS KD PAS PAS H KD REC Glaucophytes PAS H KD REC Cryptophytes Stramenopiles H KD REC PAS PAS PAS PKC H RING KD REC Fungi H KD REC Cyanobacteria H KD REC Bacteria H KD REC Figure/4:/The/diversity/and/evolution/of/phytochrome/CCterminal/output/module./Thetree depictstherelationshipofallthephytochrome<containinglineages.foreachlineage,thedomain architectureofthec<terminalregulatorymoduleisshownontheright(connectedbydashedlines).then< terminalphotosensorymoduleisomitted.thesubstitutionofthehistidinephosphorylationsite(h)inthe histidinekinasedomain(kd)occurredsubsequenttothedivergenceofprasinophytes.thecanonicalplant phytochromeisrestrictedtostreptophytes(ingreybox),althoughzygnematalesandcoleochaetalesalso havenon<canonicalplantphytochromes.domainnames:pas,per/arnt/sim;pkc,proteinkinasec;rec, ResponseRegulator;andRING,ReallyInterestingNewGene.*TraditionalArchaeplastidadoesnotinclude cryptophytes32. FulllengthphytochromefromCharalesisnotavailableandthedomaincompositionwas inferred Cryptophytes Thephylogeneticpositionofcryptophytesremainscontroversial.Theywereonce thoughttoberelatedtostramenopilesandhaptophytes(belongingtothekingdom Chromalveolata),butsomerecentphylogenomicstudiesplacethemeitherasnestedwithin,or sisterto,archaeplastida(cavalier<smithetal.,2014;burkietal.,2012;grantandkatz,2014).in myanalyses,cryptophyte+viridiplantaephytochromesformacladethatissistertoglaucophyte phytochromes(figure3,appendixfigure17).also,phytochromesfromviridiplantaeandfrom somecryptophytessharethecharacteristicpas<pasrepeatinthec<terminus(figure4).these cryptophytephytochromesdifferfromthecanonicalphytochromesintheirretentionofthe 10

26 conservedhistidinephosphorylationsiteinthekinasedomain(figure3,figure4).some cryptophytephytochromesdonothavethepas<pasrepeatinthec<terminus,butinstead possessasinglepasfollowedbyaserine/threoninekinasedomain( PKC infigure3,figure4). DespitethisvariationintheC<terminus,theN<terminalphotosensorymodulesofallcryptophyte phytochromesaremonophyletic(figure3,appendixfigure17) Viridiplantae Viridiplantaecomprisetwolineages,ChlorophytaandStreptophyta.Chlorophyta includechlorophytes(trebouxiophyceae+ulvophyceae+chlorophyceae+pedinophyceae)and prasinophytes(figure2).chlorophytesappeartolackphytochromesentirely;ididnotfind homologsinanyofthechlorophytetranscriptomesexamined,including14trebouxiophyceae,21 Ulvophyceae,59Chlorophyceae,and2Pedinophyceae.Thisresultisconsistentwithavailable whole<genomesequencedata;thegenomesofchlamydomonas5reinhardtii,volvox5carteriand Chlorella5variabilis(Chlorophyceae)lackphytochromes.Prasinophytes,ontheotherhand,dohave phytochromes.mostofthesehaveapas<pasrepeat,ahistidinekinasedomain,andaresponse< regulatordomainatthec<terminus(duanmuetal.,2014).prasinophytephytochromesare monophyleticandarethesistergrouptostreptophytephytochromes(figure3,appendixfigure 17). Streptophyta(orstreptophytes)areanassemblageofthecharophytes(aparaphyletic gradeofalgae)andthelandplants(wickettetal.,2014)(figure2).ifoundphytochrome homologsinalllandplantclades,aswellasinallcharophytelineages:mesostigmatales (includingchlorokybales),klebsormidiales,coleochaetales,charales,zygnematales,and Desmidiales(Figure1,Figure2).TheCharalesphytochromeswerenotincludedinmyfinal phylogeneticanalysesbecausethetranscriptomecontigs(andalsothedatacurrentlyavailableon GenBank)aretooshorttobeinformativeabouttheirrelationships.Allstreptophyteshave 11

27 canonicalplantphytochromes,includingmesostigmatales,theearliest<divergingcharophyte lineage(figure2,figure3,figure4).thisresultsuggeststhattheoriginofthecanonicalplant phytochrometookplaceintheancestorofextantstreptophytes. WithincharophytealgaeIidentifiedseveralgeneduplicationevents.Iinferone duplicationtohaveoccurredaftermesostigmatalesdiverged( A infigure3),resultingintwo clades:oneissmallandcharophyte<specific(charophytephy1),whereastheotherislargeand includescharophytephy2,andthelandplantphytochromes.membersofthecharophytephy1 cladearenotcommoninthealgaltranscriptomes,andwerefoundonlyindesmidialesandin Entransiaoftheearly<divergingKlebsormidiales(AppendixFigure17).Ontheotherhand,the charophytephy2homologisfoundconsistentlyacrossalgaltranscriptomes.itexperienced additionalduplications( B and C infigure3)thatresultedinthreephytochromesubclades withindesmidiales(desmidialesphy2aec).relationshipsrecoveredwithineachofthese phytochromesubcladescorrespondwelltospeciesphylogeniesfordesmidiales(gontcharovand Melkonian,2010). IfoundthatZygnematalesandColeochaetales(charophytes)alsohavetwonon< canonicalphytochromeclades(charophytephyx1andphyx2,figure3).somephyx1hasa responseregulatordomainatthec<terminus,similartoprasinophyte,cryptophyte,and glaucophytephytochromes(figure2,figure3).intriguingly,phyx1lacksalltheknown conservedcysteineresidues(cysa<d;rockwelletal.,2014)inthepas<gafregionofthen< terminusthatbindbilinchromophores,indicatingthateitherthisproteinmaynotbindabilin,or thatanon<conservedbindingsiteisused. 12

28 Lycophyte PHY Liverwort PHY Legend for support values: MLBS-nucGTR / PP-nucGTR / alrt-codon / MLBS-aaJTT / PP-aaJTT Moss PHY Hornwort HornPHY /1.0/97// 99/1.0/95/82/ 96/1.0/86/77/ * * * 76/1.0/94/-/.99 -/.99/-/-/- Dipteris conjugata Blechnum spicant Adiantum capillus veneris Hemidictyum marginatum Megaceros flagellaris Nothoceros aenigmaticus Phaeoceros carolinianus Paraphymatoceros hallii Anthoceros punctatus * 89/1.0/92/85/ /1.0/99// Fern NEO Hornwort NEO 99/1.0/99/97/ * Cylindrocystis sp Cylindrocystis brebissonii * Cylindrocystis brebissonii Cylindrocystis sp Zygnemopsis sp Mougeotia scalaris Mougeotia scalaris Zygnematales NEO Desmidiales CharoPHY2A-C Zygnematales PHY2 Coleochaetales PHY2 Klebsormidiales PHY2 0.3 substitution/site Figure/5: Phylogenetic/relationship/of/neochromes/and/phytochromes./Thesupportvaluesare shownfortheneochromebranchesonly,inthefollowingorder:maximumlikelihoodbootstrapsupport (MLBS)fromGTRnucleotidemodel/Bayesianposteriorprobabilities(PP)fromGTRnucleotidemodel/ alrtsupportfromcodonmodel/maximumlikelihoodbootstrapvaluesfromjttaminoacidmodel/ BayesianposteriorprobabilitiesfromJTTaminoacidmodel. * indicatesallthesupportvalues=or1.0. < denotesmlbs<70,alrt<70,orpp<0.95.branchesarethickenedwhenmlbs>70,alrt>70,andpp > Neochromes Mydatasuggestthatthephytochromemoduleofneochromehadasingleorigin(Figure 3,AppendixFigure17).Publisheddataindicatethatthephototropinmoduleofneochromes,in contrast,hadindependentoriginsinalgaeandhornworts(lietal.,2014;chapter3),implying twoseparatefusioneventsinvolvingphytochromesthatsharedacommonancestor.tofurther explorethisfinding,ianalyzedtheneochromenucleotidedataset(seeabove)usingseveral nucleotide,codonandaminoacidmodels,andperformedatopologytest.iconsistently recoveredthemonophylyofthephytochromemoduleofneochromes,andusuallywithhigh support,fromanalysesusingallmodels(figure5).althoughanthoceros(ahornwort)neochrome wasresolvedassistertoazygnematales(algal)neochrome,thisrelationshipwasnotsupported 13

29 (exceptinthemrbayesanalysisofthenucleotidedataset).ithenusedtheswofford<olsen< Waddell<Hillis(SOWH)testtocomparethetopologywithallneochromes(thephytochrome module)formingasingleclade,againstanalternativeinwhichneochromesofzygnematales wereforcedtonotgroupwithhornworts+ferns.thealternativehypothesiswasrejected(p< ),andthemonophylyofthephytochromemoduleofneochromeswasfavored Bryophytes Phytochromesfrommosses,liverworts,andhornwortseachformamonophyleticgroup (Figure6).Idetectedsinglephytochromehomologsinhornwortandliverworttranscriptomes. Thegenephylogeniesmatchthespeciesrelationships(VillarrealandRenner,2012;Forrestetal., 2006),consistentwiththepresenceofsingleorthologousgenesinthesetaxa.Indeed,asingle phytochromehasbeenidentifiedviacloningmethodsintheliverwort,marchantia5paleacea5var.5 diptera5(suzukietal.,2001).ialsosearchedthelow<coveragedraftgenomeofthehornwort Anthoceros5punctatus(20X;Lietal.,2014,Chapter3)andfoundonlyonephytochrome.Tofurther evaluategenecopynumber,ihybridizedtheanthoceros5punctatus5genomicdnawith phytochromernaprobes,andusedilluminamiseqtosequencethecaptureddnafragments. Thesamephytochromecontig(andonlythatcontig)wasrecovered,suggestingthatthis hornwortdoesnotharboradditional,divergentphytochromecopies. Incontrast,phytochromesinmossesarediverse,withatleastfourdistinctclades resultingfromthreegeneduplications(figure6).thephylogenyrevealsthosemoss phytochromesthatareorthologoustothepreviouslynamedphyscomitrella5patensphytochromes, PpPHY1E5.ThePhyscomitrellaphytochromesandtheirorthologsformthefollowingclades:moss PHY1_3(includingPpPHY1andPpPHY3),mossPHY2_4(includingPpPHY2andPpPHY4),and mossphy5(includingppphy5aec).anancientduplication( D infigure6)gaverisetomoss PHY1_3andmossPHY2_4+PHY5clades.Thetimingofthisduplicationisdependentonthe 14

30 phylogeneticpositionofthetakakiaphytochrome,whichwasresolvedhereassistertothemoss PHY2_4+PHY5cladebutwithoutsupport(Figure6).BecauseTakakia(Takakiopsida)represents theearliest<diverginglineageinthemossspeciesphylogeny(changandgraham,2011),thefirst phytochromeduplicationprobablypredatestheoriginofallextantmosses.inthemossphy2_4+ PHY5clade,anotherduplication( E infigure6)occurredfollowingthesplitofandreaea (Andreaeopsida)butbeforeAtrichum(Polytrichopsida)diverged,separatingmossPHY2_4and PHY5.ThemossPHY5cladehadanadditionalduplication( F infigure6),probablyafter Physcomitrelladiverged,thatresultedinmossPHY5DandPHY5Esubclades. MyresultsshowthatthephytochromecopiespreviouslyclonedfromCeratodon5 purpureus,whichwerenamedcpphy1e45(mittmannetal.,2009),havethefollowingrelationships withthemossphytochromes:cpphy15andcpphy2areeachothersclosestrelatives,andare membersofthemossphy1_3lineage;cpphy3andcpphy4aremembersofthemossphy5 lineage5(fig.4).theseresultssuggestthatthefourknownc.purpureus5phytochromes CpPHY1, CpPHY2, CpPHY3 and CpPHY4 (Figure6)shouldberenamedtoCpPHY1_3A, CpPHY1_3B,5CpPHY5DandCpPHY5E,respectively,andthatthenovelC.5purpureus5phytochrome discoveredhereshouldbedesignatedascpphy2_ Lycophytes Lycophytephytochromesareresolvedasmonophyleticandaresistertothefernplus seedplantphytochromes(figure7).selaginellaandisoetes(isoetopsida)eachhaveasingle phytochrome,withtheexceptionofs.5mollendorffii,wheretwonearlyidenticalphytochromesare apparentinthewhole<genomesequencedata.theirhighdegreeofsimilaritysuggeststhatthey mightbeproductsofaspecies<specificgeneduplication.incontrast,lycopodialeshavetwo distinctphytochromecladesthatinamelycopodialesphy1andlycopodialesphy2.becauseall thelycopodialeslineages(wikstrom,2001)arerepresentedineachphytochromeclade,iinfer 15

31 thattheduplicationoflycopodialesphy1/2( G infigure1)predatesthecommonancestorofall extantlycopodiales. Inferred gene duplication Projected attachment of vascular plant PHY. See Supplementary Fig. 1 99/1.0 Rhynchostegium serrulatum Anomodon rostratus Hypnum subimponens 99/1.0 Anomodon attenuatus PHY5 /.99 Neckera douglasii Rhytidiadelphus loreus E Schwetschkeopsis fabronia 85/.99 Leucodon sciuroides PHY2_4 94/1.0 Pseudotaxiphyllum elegans Aulacomnium heterostichum Bryum argenteum Bryopsida PHY2_4 Hedwigia ciliata Philonotis fontana 99/1.0 Ceratodon purpureus Leucobryum albidum Racomitrium varium Physcomitrella patens PHY4 99/1.0 96/1.0 Physcomitrella patens PHY2 81/1.0 Scouleria aquatica Atrichum angustatum Polytrichopsida PHY2_4 Andreaea rupestris Andreaeopsida PHY2_4/5 Sphagnum palustre Sphagnopsida PHY2_4/5 Takakia lepidozioides Takakiopsida PHY2_4/5 92/1.0 Rhynchostegium serrulatum 76/.92 Anomodon rostratus 94/1.0 Hypnum subimponens 98/1.0 Neckera douglasii 81/.99 Rhytidiadelphus loreus Pseudotaxiphyllum elegans Schwetschkeopsis fabronia 96/1.0 Leucodon sciuroides 74/1.0 Aulacomnium heterostichum Bryum argenteum Bryopsida PHY1_3 Hedwigia ciliata Philonotis fontana 99/1.0 Ceratodon purpureus PHY1 99/1.0 Ceratodon purpureus PHY2 Leucobryum albidum Racomitrium varium Physcomitrella patens PHY1 99/1.0 Physcomitrella patens PHY3 Andreaea rupestris Andreaeopsida PHY1_3 PHY2_4/5 D PHY1_3 92/1.0 85/1.0 /.63 78/.65 Scapania nemorosa Odontoschisma prostratum Bazzania trilobata Porella pinnata Schistochila sp Metzgeria crassipilis Pellia neesiana Riccia berychiana Conocephalum conicum Marchantia paleacea Lunularia cruciata Sphaerocarpos texanus 99/1.0 Rhynchostegium serrulatum Anomodon rostratus Rhytidiadelphus loreus 92/1.0 89/1.0 Neckera douglasii Anomodon attenuatus Pseudotaxiphyllum elegans Leucodon sciuroides Schwetschkeopsis fabronia Aulacomnium heterostichum 2 Aulacomnium heterostichum 1 Bryopsida PHY5E Hedwigia ciliata Philonotis fontana 80/1.0 Ceratodon purpureus PHY4 Leucobryum albidum Syntrichia princeps 78/.99 Racomitrium varium Scouleria aquatica 99/1.0 Anomodon rostratus Rhynchostegium serrulatum PHY5E 79/1.0 Anomodon attenuatus 90/.95 Rhytidiadelphus loreus F Pseudotaxiphyllum elegans PHY5D Leucodon sciuroides Aulacomnium heterostichum Bryum argenteum Bryopsida PHY5D Hedwigia ciliata Philonotis fontana 86/1.0 Ceratodon purpureus PHY3 75/.98 Syntrichia princeps Leucobryum albidum Racomitrium varium Scouleria aquatica Physcomitrella patens PHY5C Physcomitrella patens PHY5B Bryopsida PHY5A-C Physcomitrella patens PHY5A Atrichum angustatum 5 Polytrichopsida PHY5 Jurgemanniopsida Marchantiopsida Moss Liverwort 94/.99 Nothoceros aenigmaticus Megaceros tosanus Phaeomegaceros coriaceus Paraphymatoceros hallii Phaeoceros carolinianus 82/1.0 Anthoceros punctatus Leiosporoceros dussii 0.08 substitutions/site Dendrocerotales Notothyladales Anthocerotales Leiosporocerotales Hornwort Figure/6: Phytochrome/phylogeny/for/bryophytes./Phytochromespreviouslyidentifiedarein bold.supportvaluesassociatedwithbranchesaremaximumlikelihoodbootstrapvalues(bs)/bayesian posteriorprobabilities(pp);theseareonlydisplayed(alongwiththickenedbranches)ifbs>70andpp> 16

32 0.95.Thickenedbrancheswithoutnumbersare/1.0.Thepositionoforangecirclesestimatestheoriginof inferredgeneduplications.italicletterswithineachcirclecorrespondtotheduplicationeventmentionedin thetext,andthenumbers/lettersadjacenttoeachcircleindicatethenamesofthegeneduplicates Ferns Fernphytochromesformacladethatissistertotheseed<plantphytochromes(Figure3, Figure7,AppendixFigure17).WithinfernsIuncoveredfourphytochromecladesthatIdesignate fernphy1,phy2,phy4a,andphy4b.thenamephy3wasusedpreviouslytodenotethe chimericphotoreceptorthatisnowrecognizedasneochrome(suetsuguetal.,2005;lietal., 2014).ThedeepevolutionarysplitbetweenthefernPHY1andPHY2/4cladespredatesthemost recentancestorofextantferns( H infigure7).fernphy2andphy4probablyseparatedafter Gleichenialesdiverged( I infigure7),andtheearliest<divergingfernlineages(i.e., Gleicheniales,Osmundales,Psilotales,Ophioglossales,Marattiales,andEquisetales)havethe pre<duplicatedphy2/45copy.itshouldbenotedthatmybroad<scaleaminoaciddatasetresolved aslightlydifferenttopology,placinggleichenialesphy2/4closertophy4(appendixfigure17). However,theaminoaciddatasetincludedfewersequencesfromferns,whichcouldreduce phylogeneticaccuracy(hillis,1998).itislikelythatthatthephylogeny(figure7)inferredfrom rigorousanalysesofnucleotidedatamoreaccuratelyreflectsgenerelationships. IfoundthatOphioglossalesandOsmundaleseachhavetwoPHY2/4copies,whichlikely arosefromindependentgeneduplications(figure7).theduplicationofophioglossalesphy2/4a andphy2/4boccurredeitherattheancestorofophioglossalesorofophioglossales+psilotales, butthehistoryofphy2/4inosmundalesisunclear.theosmundalesphy2/4aandphy2/4b werenotresolvedasmonophyletic,andthephylogeneticpositionofosmundalesphy2/4bis incongruentwithpublishedfernspeciesrelationships(kuoetal.,2011). AfterthesplitoffernPHY25andPHY4,PHY4duplicatedagain,givingrisetofernPHY4A andphy4b( J infigure7),andbotharefoundinpolypodiales.icannotpreciselydeterminethe 17

33 timingofthisduplicationeventbecausetherelationshipsamongpolypodialesphy4aeb, CyathealesPHY4andSalvinialesPHY4areresolvedwithoutsupport.Interestingly,PHY4Awas previouslyknownonlyfromadiantum5capilluseveneris5(asacphy4).itsfirstintronincorporated aninsertedty3/gypsyretrotransposonandthedownstreamexonsequencewasunknown (Nozueetal.,1997).Ifoundfull<lengthPHY4AtranscriptsinawiderangeofPolypodiales, suggestingthatphy4alikelyisfunctionalinmostotherspecies,ifnotina.5capilluseveneris. PHY4Bisanovelphytochromecladethathasnotbeendocumentedbefore;itisnotcommonin theferntranscriptomesiexamined Seed plants Seed<plantphytochromesclusterintothreeclades(AppendixFigure17)correspondingto PHYA,PHYB/E,andPHYC,inaccordancewithpreviousstudies(Mathews,2010).Organismal relationshipswithinthegenesubcladeslargelyareconsistentwiththoseinferredinphylogenetic studiesofangiosperms(bremeretal.,2009).notably,however,supportforthemonophylyof gymnospermswaslow.ifoundtwodivergenttranscriptsofphyeinranunculales,represented byaquilegia(ranunculaceae;fromwholegenomedata)andcapnoides(papaveraceae;from transcriptomedata)(figure17inappendixa),suggestingthatageneduplicationeventoccurred deepinranunculales;however,moreextensivesamplinginranunculalesisneededtoresolve thetimingofthisduplication. 18

34 81/1.0 Inferred gene duplication Projected attachment of seed plant PHY. See Supplementary Fig. 1 97/1.0 H 98/1.0 PHY2/4 PHY1 G PHY1 PHY2 98/ /1.0 84/1.0 Woodsia ilvensis Woodsia scopulina 96/1.0 Blechnum spicant Athyrium filix-femina Diplazium wichurae 97/1.0 Deparia lobato-crenata 82/1.0 Gymnocarpium dryopteris Cystopteris fragilis Homalosorus pycnocarpos Asplenium platyneuron Polypodium hesperium 92/1.0 Polystichum acrostichoides 89/1.0 Leucostegia immersa Pteridium aquilinum 98/1.0 Gaga arizonica Notholaena montieliae 74/1.0 Myriopteris rufa 90/1.0 Argyrochosma nivea Vittaria appalachiana Adiantum capillus-veneris Cryptogramma acrostichoides Pteris ensigormis 88/1.0 Pityrogramma trifoliata 78/1.0 Ceratopteris thalictroides Lindsaea microphylla Lonchitis hirsuta Culcita macrocarpa Plagiogyria japonica Thyrsopteris elegans Pilularia globulifera Anemia tomentosa 1 Anemia tomentosa 2 Polypodiales PHY2 Cyatheales PHY2 Salviniales PHY2 Schizaeales PHY2 Vittaria appalachiana 80/.99 98/1.0 Adiantum capillus-veneris Adiantum tenerum 97/1.0 Argyrochosma nivea Myriopteris rufa Gaga arizonica Ceratopteris thalictroides PHY2 Pteris ensigormis Cryptogramma acrostichoides Polypodium hesperium Polypodiales PHY4A 96/1.0 I Polystichum acrostichoides 89/1.0 Leucostegia immersa 99/1.0 Asplenium platyneuron PHY4 Blechnum spicant Cystopteris fragilis Lonchitis hirsuta Lindsaea microphylla 82/1.0 Azolla caroliniana Salviniales PHY4 Pilularia globulifera PHY4A /.99 Athyrium filix-femina Diplazium wichurae J 76/1.0 Woodsia ilvensis 92/1.0 Gymnocarpium dryopteris PHY4B Cystopteris fragilis Polypodiales PHY4B Blechnum spicant Polystichum acrostichoides Pteridium aquilinum Thyrsopteris elegans Cyathea spinulosa Plagiogyria japonica Cyatheales PHY4 77/1.0 Lygodium japonicum Anemia tomentosa Schizaeales PHY4 Dipteris conjugata Osmunda javanica Gleicheniales PHY2/4 Osmunda sp Osmundastrum cinnamomeum Osmundales PHY2/4A Osmunda javanica Osmundastrum cinnamomeum Osmundales PHY2/4B Psilotum nudum Psilotales PHY2/4 Sceptridium dissectum Botrypus virginianus Ophioglossales PHY2/4B Botrypus virginianus Sceptridium dissectum Ophioglossales PHY2/4A Marattia attenuata Danaea nodosa Marattiales PHY2/4 Equisetum diffusum Equisetum diffusum Equisetales PHY2/4 Blechnum spicant 96/1.0 Deparia lobato-crenata Woodsia scopulina Polypodium glycyrrhiza Cystopteris protrusa Asplenium platyneuron Adiantum capillus-veneris Polypodiales PHY1 Vittaria appalachiana Ceratopteris thalictroides Pteridium aquilinum Lonchitis hirsuta Thyrsopteris elegans Plagiogyria japonica Cyatheales PHY1 Cyathea spinulosa 86/1.0 70/1.0 Azolla filiculoides 96/1.0 Pilularia globulifera Salviniales PHY1 Dipteris conjugata Gleicheniales PHY1 Osmunda sp Osmundales PHY1 Danaea nodosa Marattia howeana Marattiales PHY1 Equisetum diffusum Equisetales PHY1 Selaginella lepidophylla 94/1.0 Selaginella apoda Selaginella moellendorffii Selaginella willdenowii Selaginellales Selaginella kraussiana Selaginella wallacei Isoetes tegetiformans Isoetales 98/1.0 Dendrolycopodium obscurum Pseudolycopodiella caroliniana Lycopodiales PHY1 Huperzia lucidula 92/1.0 Dendrolycopodium obscurum Pseudolycopodiella caroliniana Lycopodiales PHY2 Huperzia selago 0.1 substitutions/site Figure/7: Phytochrome/phylogeny/for/ferns/and/lycophytes./Phytochromesthatwerepreviously reportedareshowninbold.supportvaluesassociatedwithbranchesaremaximumlikelihoodbootstrap values(bs)/bayesianposteriorprobabilities(pp);theseareonlydisplayed(alongwiththickenedbranches) ifbs>70andpp>0.95.thickenedbrancheswithoutnumbersare/1.0.thepositionoforangecircles estimatestheoriginofinferredgeneduplications.italicletterswithineachcirclecorrespondtothe duplicationeventmentionedinthetext,andthenumbers/lettersadjacenttoeachcircleindicatethenames ofthegeneduplicates. 19

35 1.3 Discussions Myphylogeneticresultsrefuteprevioushypothesessuggestingthatplantsacquired phytochromefromcyanobacteriaviaendosymbioticgenetransfer(karnioletal.,2005;herdman etal.,2000),becausestreptophyteandcyanobacterialphytochromesarenotclosestrelativesin myphytochrometrees(figure3,appendixfigure17),aresultalsorecentlyobtainedbyduanmu etal.5(2014).instead,plantphytochromesevolvedfromaprecursorsharedwithother Archaeplastida.Iclearlyplacedtheoriginofcanonicalplantphytochromesinacommonancestor ofextantstreptophytes(figure3,figure4).mydata,moreover,showthattheoriginofthis structurerequiredmultiplesteps.thegainoftheinternalpas<pasrepeattookplacefirst,inthe ancestorofviridiplantae,orofviridplantae+cryptophytes(figure4).asnotedabove,the positionofcryptophytesisuncertain,anditsinclusioninarchaeplastidaisnotstrongly supportedinpublishedstudies(burkietal.,2012;grantandkatz,2014;cavalier<smithetal., 2014).Thetopologyofmyphytochrometreesisconsistentwithasister<grouprelationship betweenviridiplantaeandcryptophytes,butthetopologyalsocouldresultfromendosymbiotic orhorizontalgenetransfer(egtorhgt).thelossofthehistidinephosphorylationsiteinthe histidinekinasedomain hencetheattainmentofthecanonicalform occurredlater,inthe ancestorofstreptophytes,andseemstohavebeenaccompaniedbyapermanentdissociation withtheresponseregulatoratthec<terminalend(figure4).somestreptophyteshaveadditional, non<canonicalphytochromes.charophytephyx1andphyx2,bothfoundinzygnematalesand Coleochaetales,havetheconservedhistidineresidue,andsomePHYX1alsohavearesponse regulatordomain(figure3,figure4).thefactthatcharophytephy1,phyx1,andphyx2arenot foundinallstreptophytesimpliesthatduplicationsearlyinthehistoryofstreptophyteswere followedbymultiplelossesofcharophytephy1andthenon<canonicalcharophytephy. 20

36 MyfindingshighlightthedifferentevolutionaryhistoriesofthephytochromeN<andC< terminalmodules.then<terminalphotosensorymoduleisdeeplyconservedacrosseukaryotes andprokaryotes,andthelineardomainsequenceofpas<gaf<phyisfoundinthemajorityof knownphytochromes(figure3).incontrast,theevolutionofthec<terminalregulatorymodule hasbeenmuchmoredynamic(figure4).forexample,thec<terminalpasmaybeabsent,may occursingly,ormayoccurasatandemrepeat(figure4).serine/threoninekinaseortyrosine kinasedomainshavealsobeenindependentlyrecruitedintotheregulatorymoduleinthe cryptophyteandceratodon5purpureus(moss)phytochromes(thümmleretal.,1992)(figure3).the successfullinkageofthephytochromephotosensorymodulewithavarietyofc<terminal moduleshaspromotedphytochromefunctionaldiversity.certainlythemostcompelling exampleisthatoftheneochromes.itcombinesphytochromeandphototropinmodulesintoa singleproteintoprocessblueandred/far<redlightsignalsinthecontrolofphototropism (Kanegaeetal.,2006).Neochromewasfirstdiscoveredinferns(Nozueetal.,1998)and postulatedtobeadriverofthemodernfernradiationunderlow<light,angiosperm<dominated forestcanopies(kawaietal.,2003;schneideretal.,2004;schuettpelzandpryer,2009).suetsugu etal.(2005)laterdiscoveredasimilarphytochrome<phototropinchimerainmougeotia5scalaris (zygnemataleanalga),andproposedthatneochromehadindependentlyevolvedtwice.arecent studyidentifiedyetanotherneochromefromhornworts,anddemonstratedthatfernsacquired theirneochromesfromhornwortsviahorizontalgenetransfer(lietal.,2014;chapter3).by placingthephototropinportionofneochromeintoabroadphylogenyofphototropins,lietal. (2014)alsoshowedthatphototropinmodulesofneochromeshadtwoseparateorigins,oncein hornwortsandonceinzygnemataleanalgae.incontrast,thephytochromeportionofneochrome hashadadifferentevolutionaryhistory,withzygnematales,hornworts,andfernsforminga singlemonophyleticgroup(figure5).thisresultisrobust,andissupportedbymostofthe 21

37 analysesandbyatopologytest.myresultsthussuggestthatneochromesoriginatedviatwo separatefusionevents,involvingtwodistinctsourcesofphototropinbutthesamephytochrome progenitor.thisisafascinatingextensionofthecapacityandpropensityofthephytochrome photosensorymoduletobelinkedwithfunctionallydistinctdownstreamdomains./ Themajorcladesoflandplantsdiffermarkedlywithrespecttophytochromegene diversity.itappearsthatphytochromesaresingle<copyinmostliverworts,hornwortsand Isoetopsida(IsoetaceaeandSelaginellaceae),whereastheyhaveindependentlydiversifiedin Lycopodiales,mosses,fernsandseedplants(Figure3).Inferns,apatternofearlygene duplicationfollowedbygenelossescouldexplainthephylogeneticpositionsoftwoosmundales PHY2/4,whichareincongruentwithknownspeciesrelationshipsinferns(Figure7).Interestingly, Iobservedarelationshipbetweenphytochromecopynumberandspeciesrichness.Forinstance, thepolypodferns(polypodiales),whichaccountfor90%ofextantferndiversity(schuettpelzand Pryer,2009),havefourphytochromecopies,whereasotherspecies<poorfernlineageshaveonly twoorthree(figure7).likewise,mossspeciesbelongingtothehyper<diversebryopsida containing95%ofextantmossdiversity haveexperiencedthehighestnumberofphytochrome duplicationscomparedtootherbryophytelineages(figure6).itispossiblethattheevolutionof phytochromestructuralandfunctionaldiversityenhancedtheabilityofpolypodfernsand Bryopsidamossestoadapttodiverselightenvironments.Indeed,seedplants,ferns,andmosses eachhaveatleastonephytochromeduplicatethatconvergentlyevolvedorretainedtheroleof mediatinghigh<irradianceresponses(cookeetal.,1993;possartandhiltbrunner,2013;mathews, 2006;MathewsandTremonte,2012),atraitlikelytobeimportantforsurvivingunderdeep canopyshade(yanovskyetal.,1995)(seebelow).this phytochrome<drivenspecies diversification hypothesis,however,needsrigoroustestingbyphylogeneticcomparative 22

38 methodsandfunctionalstudiesinnon<seedplantsthatidentifythegeneticbasesofphytochrome functions. Theindependentphytochromediversificationeventsinseedplants,ferns,mossesand Lycopodialeshavesignificantimplicationsforphytochromefunctionalstudies.Moss phytochromes,forexample,aremorecloselyrelatedtoeachotherthantoanyoftheseed<plant phytochromes(andthesameistrue,ofcourse,forphytochromesfromferns,andthosefrom Lycopodiales).Seed<plantphytochromeshaveundergonesignificantdifferentiationintotwo majortypes.oneisrepresentedbyphyaofarabidopsis5thaliana,whichistheprimarymediatorof red<lightresponsesindeepshadeandbeneaththesoilsurface.itdegradesrapidlyinlight, mediatesvery<low<fluenceandhigh<irradianceresponses,anddependsonproteinpartners FHY1(FAR<REDELONGATEDHYPOCOYTL1)andFHL(FHY1LIKE)fornuclear translocation.theotherisrepresentedbyphyb<eofa.5thaliana,whicharetheprimarymediators ofred<lightresponsesinopenhabitats.theyarelight<stable,mediatelow<fluenceresponses;and inthecaseofphyb,dependonaninternalnuclearlocalizationsignalfornucleartranslocation (FranklinandQuail,2010;ChenandChory,2011).Asimilarpartitioningoffunctionhasbeen documentedinsomefernandmossphytochromeduplicates(sineshchekovetal.,2013;possart andhiltbrunner,2013;possartetal.,2014),demonstratingacaseofconvergentdifferentiation followingindependentgeneduplications.infuturestudies,itwouldbeofparticularinterestto infertheancestralpropertiesoflandplantphytochrome:wasitlight<labileorstable?whatkinds ofphysiologicalresponsesdiditmediate?howwasnucleartranslocationexecuted?studiesof liverwort,hornwortandselaginellaphytochromes,whichexistasasingle<copygene,couldserve as baselinemodels forunderstandingthegeneticbasisofphytochromefunctional diversification. 23

39 Recentfunctionalstudiesonasmallbutvariedsetofalgalphytochromesrevealeda surprisingdegreeofspectraldiversity,whichmightreflectadaptationstoarangeofmarineand aquaticenvironments(rockwelletal.,2014;duanmuetal.,2014).forexample,photoreversible phytochromesinprasinophytealgaeincludeorange/far<redreceptorsaswellasred/far<red receptors,andinalgaeoutsideofviridiplantae,therealsoareblue/far<redandred/bluereceptors (Duanmuetal.,2014).Thissharplycontrastswiththeverylimitedspectraldiversityincanonical plantphytochromes,allofwhicharered/far<redreceptors.itappearsthen,thatthetransitionof plantsfrommarineoraquatictoterrestrialenvironmentsinvolvedacenteringofphytochrome evolutiononalimitedmodel.thenovelalgalphytochromecladesiuncoveredherearea potentialtreasuretrovefordiscoveringthestepsduringthistransition,andforcharacterization ofnewbiochemicalvariants,someofwhichmayhaveimplicationsforunderstandingtheroleof phytochromeevolutioninrecolonizationofmarineandaquaticenvironmentsbyterrestrial plants. Insummary,mystudyhasrevealedthatthediversityofViridiplantaephytochromesis fargreaterthanwasrealized,andpointstoexcitingopportunitiestolinkthisstructuraldiversity withfunctionandecology. 24

40 1.4 Materials and Methods Transcriptome- and genome-mining for phytochrome ThetranscriptomesandgenomessampledinthisstudyarelistedinAppendixTable2.I usedthepythonpipelinebluedevilfollowinglietal.(2014)tominetranscriptomes.tosearch thewhole<genomedata,iusedblastpimplementedinphytozome(goodsteinetal.,2012)or individualgenomeprojectportals(appendixtable2).theproteindomaincompositionforeach ofthephytochromesequencewasdeterminedbyqueryingthencbiconserveddomain Database(Marchler<Baueretal.,2011) Sequence alignment Inadditiontothephytochromehomologsminedfromtranscriptomesandgenomes,I alsogatheredselectedgenbankaccessionsandasequenceclonedfrommarattia5howeana (voucher:s.w.graham&s.mathews15,depositedinnsw;primers:110f 5 GTNACNGCNTAYYTNCARCGNATG3,788r 5 GTMACATCTTGRSCMACAAARCAYAC3 ). Iassembledfoursequencedatasets,onewastranslatedintoanaminoacidalignmentand theotherswereanalyzedasnucleotidematrices.theaminoaciddatasetincludedthemajorityof thesequencesihave(423sequencesintotal;appendixfigure17).thesequenceswereinitially alignedusingmuscle(edgar,2004),andimanuallycuratedthealignmentbasedonknown domainboundariesandproteinstructures.theunalignableregionswereexcludedandthefinal alignmentincluded1,106aminoacidsites.thenucleotidedatasetswereassembledtoprovide higherphylogeneticresolutionwithinfern+lycophytephytochromes(113sequences;figure7), bryophytephytochromes(97sequences;figure6),andneochromes(111sequences;figure5). 25

41 Sequenceswerealignedasaminoacidsandthenback<translatedtonucleotides,andthe alignmentwasrefinedbymanualediting.thefern+lycophyte,andbryophytephytochrome alignmentscontained3,366and3,429nucleotidesites,respectively.theneochromealignment includedonlythen<terminalphotosenorymodule(pas<gaf<phydomains;1,920nucleotide sites).allalignmentsareavailablefromdryad( Phylogenetic reconstruction Forthebroad<scaleaminoacidalignment,JTT+I+Gwasselectedasthebest<fitting empiricalmodelbyprotestunderakaikeinformationcriterion(darribaetal.,2011).iused Garliv2.0(Zwickl,2006)tofindthemaximumlikelihoodtree,withtenindependentrunsand genthreshfortopotermsetto,000.thestartingtreeforgarlicamefromaraxml(stamatakis, 2006)run.Toobtainbootstrapbranchsupports,RAxMLwasranrunwith1,000replicatesusing JTT+G. Forthenucleotidealignments,IusedPartitionFinder(Lanfearetal.,2012)toinferthe bestcodonpositionpartitionschemesandsubstitutionmodels,underakaikeinformation Criterion.Maximumlikelihoodtreesearchingandbootstrapping(1,000replicates)weredonein RAxML.BayesianinferencewascarriedoutinMrBayes(Ronquistetal.,2012),withtwo independentmarkovchainmontecarlo(mcmc)runsandfourchainseach.iunlinkedthe substitutionparametersandsettheratepriortovaryamongpartitions.themcmcoutputwas inspectedusingtracer(rambautanddrummond,2013)toensureconvergenceandmixing (effectivesamplesizesall>200);25%ofthetotalgenerationswerediscardedasburn<inbefore analyzingtheposteriordistribution. 26

42 Additionalanalyseswereappliedtotheneochromedataset.First,IusedCodonPhyML (Giletal.,2013)toinferthetreetopologyandtoassesssupport(SH<likeaLRTbranchsupport), usingacodonsubstitutionmodel.fourcategoriesofnon<synonymous/synonymoussubstitution rateratiosweredrawnfromadiscretegammadistribution,andcodonfrequencieswere estimatedfromthenucleotidefrequenciesateachcodonposition(f3 4).Second,Itranslatedthe nucleotidesintoaminoacids,andcarriedoutmaximumlikelihoodtreesearchingand bootstrapping(inraxml),aswellasbayesianinference(inmrbayes)underthejtt+i+g model.finally,iusedtheswofford Olsen Waddell Hillis(SOWH)test,implementedin SOWHAT(Churchetal.2015),toinvestigatewhethertheinferredtreetopology(phytochrome portionofneochromeformingaclade)issignificantlybetterthanthealternativetopology (neochromenotmonophyletic).insowhat,iusedthedefaultstoppingcriterionandapplieda topologicalconstraintforcinglandplantandzygnemataleanneochrometobenon<monophyletic Confirming gene copy number in hornworts by target enrichment Iusedatargetenrichmentstrategytotestwhetherhornwortshaveasinglephytochrome locus.inthisapproach,specificrnaprobesarehybridizedtogenomicdnatoenrichthe representationofparticulargenefragments.targetenrichmenthasseveraladvantagesoverthe traditionalsouthernblottingapproach.inparticular,itusesthousandsofdifferenthybridization probes(ratherthanjustafew),andtheendproductsarenotdnabands,butactualsequence data. Idesignedatotalof7,502120<merRNAprobestotargetphytochrome,phototropinand neochromegenes,withaspecialfocusonthoseofhornwortsandferns(probesequences availablefromdryadhttp://dx.doi.org/ /dryad.[nnnnn]).theprobesoverlapevery60bp 27

43 (a2xtilingstrategy),andweresynthesizedandbiotin<labeledbymycroarray.genomicdnaof thehornwortanthoceros5punctatuswasextractedusingamodifiedctabprotocol,andsheared bycovariswithfragmentspeakat300bp.librarypreparationforilluminasequencingwasdone usingakapabiosystemkit,incombinationwithnebnextmultiplexoligos.toenrichfor potentiallydivergenthomologs,iusedthetouchdownprocedureoflietal.(2013),inwhichthe genomicdnalibraryandtheprobeswerehybridizedat65 Cfor11hoursfollowedby60 C(11 hours),55 C(11hours)and50 C(11hours).ThehybridizedDNAfragmentswerecapturedby streptavidinbeadsandwashedfollowingtheprotocolofmycroarray.thefinalproductwas pooledwithnineotherlibrariesinequimolarandsequencedonilluminamiseq(250bppaired< end).toprocessthereads,iusedcutadapt(martin,2011)toremovetheadaptorsequences,and usedsickle(joshiandfass,2011)totrimlow<qualitybases.theresultingreadswerethen assembledbysoapdenovo2(luoetal.,2012),andthephytochromecontigwasidentifiedby tblastn(camachoetal.,2009).therawreadsweredepositedinncbisra(srp055877). 28

44 2. The origin and evolution of phototropins Li,F.<W.,C.J.Rothfels,M.Melkonian,J.C.Villarreal,D.W.Stevenson,S.W.Graham, G.K.S.Wong,S.Mathews,andK.M.Pryer.On/the/origin/and/evolution/of/phototropins. inreview. 2.1 Introduction Despitetheirsedentarynature,plantsarenotstaticandarecapableofasurprisingrange ofmotion(darwinanddarwin,1880).plantshaveevolvedsophisticatedphototropic responses involvingmovementofshootsand/orchloroplasts tooptimizetheirexposureto light.charlesdarwinpioneeredmodernphototropismresearchbydemonstratingthattheshoot tipisthepointoflightperceptionfromwhere fluence istransducedtoinitiatetropic movements(darwinanddarwin,1880).subsequentstudiessoonledtothediscoveryoftheplant hormoneauxin(darwin s fluence ),andlatertheidentificationoftheblue<light photoreceptors phototropins(liscumetal.,2014). Phototropinsregulatekeyadaptivephysiologicalresponsesthatareunderlightcontrol, includingshoot<positivephototropism,root<negativephototropism,chloroplast accumulation/avoidance,stomatalopening,circadianrhythm,leafexpansion,andseedling elongation(christie,2007).ourcurrentunderstandingofthefunctionandbiochemistryof phototropinsoriginatesfrombasicresearchonarabidopsis5thaliana(afloweringplant),andtoa muchlesserextentonadiantum5capilluseveneris(afern)andphyscomitrella5patens(amoss).despite thephylogeneticspanencompassedbythesemodelorganisms,theorthologyofphototropin geneshasbeenambiguous,confoundingnotonlyfunctionalhomologyassignments,butalsoour 29

45 understandingoftheirroleinallowingplantstoadapttoheterogeneouslightenvironments throughtime. a Origin of PHOT PHOT duplication PHY duplication Viridiplantae Seed plants Ferns Lycophytes Mosses Liverworts Hornworts Desmidiales Zygnematales Coleochaetales Charales Klebsormidiales Mesostigmatales Chlorophytes Prasinophytes Rhodophytes Glaucophytes Cryptophytes Stramenopiles Land plants Charophytes Seed plant D b Ferns + lycophytes c Leptosporangiate ferns Mosses B E C F G Polypodiales incl. A. capillus-veneris Cyatheales Salviniales Schizaeales Gleicheniales Hymenophyllales Osmundales Marattiales Ophioglossales Psilotales Equisetales Selaginella Isoetes Lycopodiales Bryidae Dicranidae Funariidae incl. P. patens Timmiidae Diphysciidae Buxbaumiidae Tetraphidopsida Polytrichopsida Oedipodiopsida* Andreaeopsida Sphagnopsida Takakiopsida Ferns Lycophytes Bryopsida Figure/8:/Organismal/lineages/screened/for/phototropin/homologs./(A)Viridiplantaeandalgae.Lineages thatlackphototropinaredepictedingrey.topologyderivedfromwickettetal.(2014)andburkietal. (2012).Phototropinandphytochromeduplicationsareonlyshownonlandplantbranches(withingrey box).(b)fernsandlycophytes;topologyderivedfromwickettetal.(2014)andkuoetal.(2011)(c)mosses; topologyderivedfromcoxetal.(2010).capitallettersabovebluesquaresdenotephototropinduplication eventsmentionedinthetextandinfig.2. indicatesthattheexactphylogeneticpositionofthegene duplicationeventisambiguous. 2.2 Results The origin of phototropins Topinpointtheoriginofphototropinsandreconstructtheirevolutionaryhistory,I examined215transcriptomesandgenomesspanningallextantplantandalgallineages (AppendixTable4,Table5).Ishowherethatphototropinsarepresentinallmajorlandplant 30

46 lineages(seedplants,ferns,lycophytes,mosses,liverworts,andhornworts),aswellasingreen algae(charophytes,chlorophytes,andprasinophytes;figure8).incontrast,ididnotrecover phototropinsfromglaucophytes,redalgae,cryptophytes,haptophytesandstramenopiles, indicatingthattheoriginofphototropinmostlikelytookplaceinanancestorofviridiplantae (greenalgae+landplants;figure8).becausethechlorophytealgachlamydomonas5reinhardtiiis knowntousephototropinstomodulateitssexualprocesses(huangandbeck,2003),itispossible thatthefunctionofearlyphototropinsmaynothaveinvolvedphototropicresponses. Unfortunately,solittleisknownaboutphototropinfunctioningreenalgallineagesthatwe cannotdeterminewhenphototropinswererecruitedtodirecttrophicresponses Phototropin phylogeny Seed<plantphototropinsformamonophyleticgroupthatissistertofernphototropins (Figure9).HereIinferasinglegeneduplicationeventinseedplants,oneleadingtoArabidopsis PHOT1andtheothertoArabidopsisPHOT25(Christie,2007).BecausethePHOT1andPHOT2 cladeseachincludeangiospermsandgymnosperms,theduplicationeventthatgaverisetothese twohomologspredatesthedivergenceofallextantseedplants( A infigure9).ialsofindstrong evidenceforthemonophylyoffernphototropins( B infigure9).leptosporangiatefernshave twophototropinhomologsthatwedesignatephot1andphot2,inreferencetoadiantum5 capillusevenerisphot1andphot25(kagawaetal.,2004),respectively.theearliest<divergingfern lineages,equisetales,psilotalesandophioglossales,eachhaveonephototropingene, representingthepre<duplicatedversionoffernphot1andphot2.theexactphylogenetic positionastowherefernphot1andphot2divergedisambiguousduetoalackofbranch support,althoughitprobablywaspriortoleptosporangiatefernsdivergingfrommarattiales 31

47 ( B infigure9). Aswithseedplantsandleptosporangiateferns,Iinferasingleduplicationeventinthe lycophyteselaginella,correspondingtophot1andphot2basedonthegenomeannotationofs.5 moellendorffii5(banksetal.,2011).thephylogeneticpositionofthisduplicationisalsounclear( C infigure10),butitmustpredatethecommonancestorofextantselaginellabecausethephot1 cladecontainsallknownmajorselaginellalineages(korallandkenrick,2002).forisoetalesand Lycopodiales,wefoundonlyonephototropinhomolog,butwhetherornotitisindeedasingle< copygeneintheselineageswillrequirefurtherconfirmation. Allliverworttranscriptomesweexaminedcontainedonlyonephototropin(Figure10),a resultconsistentwiththerecentdemonstrationthatphototropininmarchantia5polymorphaisa single<copygene(komatsuetal.,2014).hornwortphototropinsalsoappeartobesingle<copy, basedonourscreeningofhornworttranscriptomesandalow<coveragegenomedraftof Anthoceros5(Lietal.,2014;Chapter3).Tofurtherconfirmthegenecopynumberinhornworts,we usedatargetenrichmentstrategytosequenceallphototropin<likegenomicfragmentsin Anthoceros5punctatus,andfoundnoadditionaldivergentcopies. Mossphototropins,ontheotherhand,haveasignificantlymorecomplexevolutionary history.ideterminedthatthephototropinannotationsfromthemossphyscomitrella5patens genome(ppphota1e4,ppphotb1e3)donotreflectgeneorthology.because PHOTAs and PHOTBs areintermingled,ireclassifiedthemossphototropinsbasedontheirphylogenetic relationshipsshownhere(table1,figure10).priortothedivergenceofallextantmosses,agene duplicationevent( D infigure10)tookplace,givingrisetomossphot1andphot2.in PHOT1,asecondduplicationoccurredinthecommonancestorofBryopsidaandPolytrichopsida 32

48 ( E infigure10)thatsplitphot1intophot1aandphot1b.inphot2,twoadditional duplicationstookplace( F and G infigure10)subsequenttothedivergenceofbuxbaumiidae (Bryopsida),resultinginPHOT2AEC.PHOT2AandPHOT2BarebothpresentinDicranidaeand Bryidae,whereasPHOT2CisonlyknowninPhyscomitrella5patens(Funariidae).Physcomitrella5 patensmayalsohavelostthephot2a5homolog.ingreenalgae,mostofthetranscriptomesand genomesrevealedasinglephototropingene(figure11).thesingularexceptioniszygnematales, wheretwophototropinhomologsarepresent(photaandphotb). Table/1:Reclassification/of/Physcomitrella.patens/phototropins/based/on/gene/ orthology./ Proposed(new(name Previous(annotation Genbank(No. PpPHOT1A(1 PpPHOTA1 XM_ PpPHOT1A(2 PpPHOTA2 XM_ PpPHOT1A(3 PpPHOTB3 XM_ PpPHOT1B PpPHOTA3 XM_ PpPHOT2B PpPHOTB2 XM_ PpPHOT2C(1 PpPHOTB1 XM_ PpPHOT2C(2 PpPHOTA4 XM_ Neochrome(NEO,Figure10,Figure11)isauniquephototropinvariantthatpossesses supplementaryred/far<red<sensingdomainsfromphytochromes(nozueetal.,1998).recent studieshaverevealedtwoindependentoriginsofneochromes,oneinzygnemataleanalgaeand theotherinhornworts(suetsuguetal.,2005;lietal.,2014;chapter3),andthattheneochromes foundinfernswerederivedfromhornwortsviahorizontalgenetransfer(lietal.,2014;chapter 3).Neochromeperceivesbothblueandred/far<redlighttomediatephototropismandchloroplast movement(kanegaeetal.,2006;kawaietal.,2003)inferns,anditappearstohaveplayeda significantroleintheirdiversification(schneideretal.,2004;schuettpelzandpryer,2009). Neochromefunctioninzygnemataleanalgae,however,isstillunclear.Becausezygnematalean 33

49 algaehaveplate<likechloroplaststhatrotateinresponsetobothblueandred/far<redlight irradiation(hauptandscheuerlein,1990),itwashypothesizedthatalgalneochrome,originally discoveredinmougeotia5scalaris,isthegenecandidateresponsible(suetsuguetal.,2005). However,neochromeinM.5scalarisrespondsonlytored/far<redlightandnottobluelight (Suetsuguetal.,2005).ToexplorewhetherM.5scalarismightbeanoutlieramongzygnematalean algaeinperhapshavinga defective neochrome,ifurtherinvestigatedallthealgalneochromes thatimined.idiscoveredthatnoneofthemhastheconservedcysteineresidueinthelov2 domain,thatisessentialforflavinmononucleotidechromophoreadductformationandbluelight signaltransduction(christie,2007).therefore,itislikelythatallzygnemataleanalgaeuse neochromeonlyforsensingred/far<redlight,anduseotherblue<lightphotoreceptors (phototropinsorcryptochromes)tomaneuverchloroplastrotations. 34

50 Arabidopsis thaliana Solanum lycopersicum Fragaria vesca Fig. 2a 75/+ Medicago truncatula 78/+ Citrus clementina Vitis vinifera Aquilegia coerulea Austrobaileya scandens Illicium floridanum Amborella trichocarpa Angiosperm PHOT1 Magnolia grandiflora Fig. 2b Goodyera pubescens 99/+ Zea mays Smilax bona-nox 86/+ Cunninghamia lanceolata Thuja plicata Fig. 2c 83/+ 99/+ Cephalotaxus harringtonia Gymnosperm Podocarpus rubens Gnetum montanum PHOT1 Welwitschia mirabilis Stangeria eriopus Seed 77/+ Arabidopsis thaliana Citrus clementina Fragaria vesca plants PHOT1 Medicago truncatula A 88/+ Solanum lycopersicum Vitis vinifera PHOT2 Aquilegia coerulea Angiosperm Goodyera pubescens 94/+ Smilax bona-nox PHOT2 Zea mays Magnolia grandiflora Austrobaileya scandens Illicium floridanum Amborella trichocarpa 94/+ Thuja plicata Cunninghamia lanceolata Cephalotaxus harringtonia Gymnosperm Podocarpus rubens Welwitschia mirabilis PHOT2 Gnetum montanum Stangeria eriopus Polystichum acrostichoides 91/+ Polypodium hesperium 90/+ Leucostegia immersa Cystopteris reevesiana 86/+ Pteridium aquilinum Polypodiales 93/+ Adiantum capillus-veneris PHOT1 Gaga arizonica Ceratopteris thalictroides 95/+ Lonchitis hirsuta Salviniales Leptosporangiate ferns Pilularia globulifera Dipteris conjugata Gleicheniales PHOT1 PHOT1 Osmunda sp. 98/+ Osmundales PHOT1 Danaea nodosa Danaea nodosa Marattiales PHOT1 77/+ Danaea nodosa Onoclea sensibilis Blechnum spicant Athyrium filix-femina Woodsia scopulina 70/+ Homalosorus pycnocarpos Gymnocarpium dryopteris Cystopteris reevesiana Polypodium hesperium Davallia fejeensis To Fig. 2b Leucostegia immersa Polystichum acrostichoides Asplenium platyneuron PHOT1 Dennstaedtia davallioides Polypodiales Pteridium aquilinum B 82/.99 Adiantum capillus-veneris PHOT2 93/+ PHOT2 Adiantum aleuticum Vittaria lineata Gaga arizonica 74/.99 Pityrogramma trifoliata Pteris vittata 99/+ Pityrogramma trifoliata Cryptogramma acrostichoides Ceratopteris thalictroides 88/+ Lindsaea linearis Lonchitis hirsuta 98/+ Thyrsopteris elegans Plagiogyria japonica Salviniales PHOT2 Pilularia globulifera Leptosporangiate Azolla caroliniana Cyatheales PHOT2 Anemia tomentosa ferns Lygodium japonicum Schizaeales PHOT2 97/+ Dipteris conjugata Gleicheniales PHOT2 Ferns Osmunda sp. Osmundales PHOT2 Botrypus virginianus 99/+ Sceptridium dissectum Ophioglossum Psilotum nudum Tmesipteris parva Ophioglossales PHOT1/2 Psilotales PHOT1/2 Equisetum hyemale Equisetales PHOT1/2 0.1 substitution/site 35

51 Figure/9:/Phylogeny/of/seedCplant/and/fern/phototropins./Orangecirclesindicateinferred photropinduplicationevents.theitalicizedcapitalletterwithineachcirclecorrespondstotheduplication eventmentionedinthetext,andthenumbers/lettersadjacenttoeachorangecirclearethenamesofthegene duplicates.thevaluesassociatedwithbranchesaremaximumlikelihoodbootstrapvalues/bayesian posteriorprobabilities. indicatesthattheexactphylogeneticpositionofthegeneduplicationeventis ambiguous. 36

52 To Fig. 11 Fig. 9 Fig. 10 Fig. 11 Hornworts To Fig. 9 Selaginella moellendorffii 1-2 Selaginella moellendorffii 1-1 Selaginella willdenowii Selaginella 96/.98 Selaginella kraussiana Selaginella acanthonota PHOT1 Selaginella selaginoides Selaginella moellendorffii /+ Selaginella moellendorffii 2-2 Selaginella willdenowii Selaginella C Selaginella kraussiana PHOT2 Selaginella acanthonota Isoetes tegetiformans Isoetes PHOT 84/+ Dendrolycopodium obscurum 96/+ Lycopodium deuterodensum Diphasiastrum digitatum Lycopodiales Pseudolycopodiella caroliniana Huperzia lucidula PHOT Phylloglossum drummondii 81/+ Porella pinnata Radula lindenbergia Scapania nemorosa 85/+ Bazzania trilobata Schistochila sp Metzgeria crassipilis Liverwort Pellia neesiana PHOT 96/+ Marchantia polymorpha 72/+ 99/+ Conocephalum conicum Lunularia cruciata Sphaerocarpos texanus Liverworts 93/+ Rhynchostegium serrulatum Neckera douglasii 95/+ Loeskeobryum brevirostre Bryidae Leucodon brachypus Orthotrichum lyellii Bryum argenteum 91/+ Bryopsida Scouleria aquatica Ceratodon purpureus PHOT1A 98/+ Dicranidae Aulacomnium heterostichum 95/+ Physcomitrella patens PHOTA2 Physcomitrella patens PHOTB3 Funariidae 74/+ 82/+ Physcomitrella patens PHOTA1 Buxbaumiidae Buxbaumia aphylla Polytrichopsida Atrichum angustatum PHOT1A Neckera douglasii PHOT1A Rhynchostegium serrulatum 99/+ E 71/.98 Leucodon brachypus Loeskeobryum brevirostre PHOT1B Bryopsida Bryidae Aulacomnium heterostichum 99/+ Orthotrichum lyellii PHOT1B Bryum argenteum Funariidae Physcomitrella patens PHOTA3 Polytrichopsida 93/+ Atrichum angustatum PHOT1B Sphagnum lescurii Sphagnopsida PHOT1 Neckera douglasii 89/+ Loeskeobryum brevirostre Rhynchostegium serrulatum 81/+ Leucodon brachypus Aulacomnium heterostichum Bryopsida Bryidae Orthotrichum lyellii 99/+ PHOT2A Bryum argenteum PHOT1 98/+ Ceratodon purpureus 73/.98 Scouleria aquatica D Dicranidae PHOT2A 94/+ Leucodon brachypus PHOT2 71/+ G Bryidae Neckera douglasii PHOT2B Rhynchostegium serrulatum 87/+ Orthotrichum lyellii Bryopsida Dicranidae Scouleria aquatica F PHOT2B Fissidens adianthoides Funariidae 2C Physcomitrella patens PHOTB2 Funariidae Physcomitrella patens PHOTB1 Bryopsida Physcomitrella patens PHOTA4 PHOT2C Buxbaumiidae Buxbaumia aphylla Bryopsida PHOT2 Atrichum angustatum Polytrichopsida PHOT2 97/+ Andreaea rupestris Andreaeopsida PHOT2 Sphagnum lescurii Sphagnopsida PHOT2 Takakia lepidozioides Takakiopsida PHOT2 Dennstaedtia punctilobula 73/+ Plagiogyria distinctissima 97/+ Phegopteris hexag Diplazium wichurae 95/+ Fern NEO Allantodia dilatata Dipteris conjugata Adiantum capillus veneris 95/+ Hemidictyum marginatum 89/+ Adiantum tenerum Nothoceros aenigmaticus Megaceros flagellaris Phaeomegaceros coriaceus 87/.99 Phymatoceros phymatodes Hornwort NEO 99/+ Paraphymatoceros hallii 95/+ Phaeoceros carolinianus Anthoceros punctatus Anthoceros bhardwajii Anthoceros puncatatus 97/+ Megaceros tosanus 93/+ Megaceros aenigmaticus 99/+ Phaeomegaceros coriaceus Hornwort PHOT 99/+ Phymatoceros phymatodes Phaeoceros carolinianus 0.1 substitution/site Paraphymatoceros hallii Lycophytes Mosses Neochrome 99/+ 37

53 Figure/10:/Phylogeny/of/lycophyte/and/bryophyte/phototropins./Orangecirclesindicateinferred photropinduplicationevents.theitalicizedcapitalletterwithineachcirclecorrespondstotheduplication eventmentionedinthetext,andthenumbers/lettersadjacenttoeachorangecirclearethenamesofthegene duplicates.thevaluesassociatedwithbranchesaremaximumlikelihoodbootstrapvalues/bayesian posteriorprobabilities. indicatesthattheexactphylogeneticpositionofthegeneduplicationeventis ambiguous. 38

54 98/+ To Fig /+ Mesotaenium kramstei 75/+ Zygnemopsis sp Cylindrocystis cushleckae Fig. 9 Mesotaenium caldariorum 98/+ Mougeotia scalaris Zygnematales Cylindrocystis brebissonii 2 PHOTB PHOTB Cylindrocystis sp 2 98/+ Cylindrocystis brebissonii 1 F Cylindrocystis sp 1 Mesotaenium kramstei PHOTA 96/+ Fig. 10 Zygnemopsis sp Cylindrocystis cushleckae Zygnematales Mougeotia scalaris Mesotaenium caldariorum PHOTA Desmidium aptogonum 81/+ Cosmarium tinctum Fig /+ Staurodesmus convergens Penium exiguum Demidiales Phymatodocis nordstedtiana Planotaenium ohtanii PHOT Gonatozygon kinahanii Roya obtusa 89/+ Mesotaenium endlicherianum Mesotaenium braunii Zygnematales PHOT Mougeotia scalaris 91/+ Mougeotia scalaris NEO1 NEO2 Mesotaenium caldariorum 99/+ Cylindrocystis cushleckae Zygnemopsis sp Cylindrocystis brebissonii 2 Cylindrocystis sp 2 Cylindrocystis brebissonii 1 Cylindrocystis sp 1 79/+ Mesotaenium braunii Mesotaenium braunii Mesotaenium endlicherianum Coleochaete irregularis Coleochaete scutata Chaetosphaeridium globosum Coleochaetales PHOT Interfilum paradoxum Klebsormidium subtile Entransia fimbriata Klebsormidioales PHOT Spirotaenia minuta Chlorokybus atmophyticus Mesostigma viride Mesostigmatales PHOT 97/+ Pediastrum duplex Scenedesmus dimorphus Cylindrocapsa geminella 93/+ Volvox carteri Chlamydomonas reinhardtii Chloromonas tughillensi 74/+ Oogamochlamys gigantea Heterochlamydomonas inaequalis Brachiomonas submarina Carteria obtusa Chlorophyceae PHOT Hafniomonas reticulata 99/+ 99/+ Aphanochaete repens Hormidiella sp Fritschiella tuberosa Oedogonium foveolatum Oedogonium cardiacu 99/+ Trebouxia arboricola 99/+ Prasiola crispa Coccomyxa pringsheimii Trebouxiophyceae PHOT Botryococcus terribilis Scherffelia dubia Tetraselmis cordiformis Prasinophyte PHOT 88/+ Persursaria percursa Entocladia endozoica Bolbocoleon piliferum Ulvophyceae PHOT Helicodictyon planctonicum Pyramimonas parkeae Scourfieldia sp Nephroselmis olivace Dolichomastix tenuilepi Ostreococcus lucimarinus Prasinophyte PHOT Ostreococcus tauri Micromonas pusilla Pycnococcus provasolii 0.1 substitution/site Streptophytes 97/+ Zygnematales NEO Figure/11:/Phylogeny/of/algal/phototropins./Orangecirclesindicateinferredphotropinduplication events.theitalicizedcapitalletterwithineachcirclecorrespondstotheduplicationeventmentionedinthe text,andthenumbers/lettersadjacenttoeachorangecirclearethenamesofthegeneduplicates.thevalues associatedwithbranchesaremaximumlikelihoodbootstrapvalues/bayesianposteriorprobabilities. indicatesthattheexactphylogeneticpositionofthegeneduplicationeventisambiguous. 39

55 2.3 Discussions Myphototropinphylogenyrefutesthepreviousassertionthat PHOT2 istheancestral phototropinandthat PHOT1 evolvedlaterinseedplants(galván<ampudiaandoffringa, 2007).Theancestralphototropinisneither PHOT1 nor PHOT2,becausetheirparalogsin seedplants,lycophytes,fernsandmosseswerederivedfromseparategeneduplicationsthatare confinedtoeachorganismallineage.inotherwords,seed<plantphot15andphot2aremore closelyrelatedtooneanotherthantofernphotsormossphots.myrevisedgeneorthologyhas importantfunctionalandevolutionaryimplications.plantsoftenresponddifferentlyunderlow< andhigh<lightlevels;chloroplasts,inparticular,aggregateunderweaklightbutretreatwhenthe intensityistoohigh.consequently,asshowninourphylogeneticreconstruction,phototropin paralogshaverepeatedly,andconvergently,specializedintomediatingeitherlow<orhigh<light responses,inseedplants,ferns,lycophytesandmosses,althoughsomeredundanciesdoexist (Christie,2007).OfthetwophototropinsknowninArabidopsis5thaliana,Atphot1mediates phototropismunderlow<lightintensity,andismoresensitivethanatphot2intriggering chloroplastaccumulation(sakaietal.,2001).atphot2,incontrast,respondspredominantlyto high<lightintensity,andissolelyresponsibleforchloroplastavoidanceunderstronglight (Kagawaetal.,2001).AsimilarfunctionaldifferentiationcanalsobeseeninthefernAdiantum5 capillusevenerisacphot1andacphot2phototropins.acphot2controlschloroplastavoidance underhigh<lightintensity,whereasacphot1playsaminorroleinthisresponse(kagawaetal., 2004).Similarly,Kasaharaetal.(2004)examinedfourphototropinsinthemossPhyscomitrella5 patens,andfoundthatppphot1a<2(seetable1)isofprimaryimportanceinchloroplast avoidancebehavior,whereastheotherscontributetothisresponsetoamuchlessextent. 40

56 Tounderstandhowphototropinfunctionaldivergences(subfunctionalizations) repeatedlyevolvedinplants,thekeyistoreconstructthefunctionofancestralphototropinthat existsasasingle<copygene.intheirrecentstudyoftheliverwortmarchantia5polymorpha phototropin(singlecopy),komatsuetal(2014)foundthatitencompassesallthefunctional characteristicsofbothatphot1andatphot2.thisfindingsuggeststhattheancestrallandplant phototropinwaslikelya general<purpose photoreceptorthatrespondedtoawiderangeof lightintensities.thesubsequentandparallelspecializationsofphototropinintolow<andhigh< lightintensityfunctionalresponsesmayhaveplayedanimportantroleintheadaptationofearly landplantstoearth schanginglandscapes.sincetheformationoftheearliestforestsbyextinct fernsandhorsetails(cladoxylopsids)about385millionyearsago(steinetal.,2007)throughto today sangiosperm<dominatedterrestrialecosystems,lightenvironmentshavebecome increasinglyheterogeneousanddynamic.possessingduplicatedphototropingenesandco< optingthemfordifferentlightintensitieswouldbeespeciallybeneficial(galenetal.,2004)and advantageousovertheancestral,general<purposephototropin.indeed,mostofthelandplant lineagesthatpossessduplicatedphototropinhomologs(seedplants,ferns,lycophytes,and mosses)aremorespeciesrichthanthosethatdonot(liverwortsandhornworts). TheevolutionaryhistorypatternthatIobservehereforphototropinsshowsastriking resemblancetothatforphytochromes.asimilarsequenceofconvergentevolutionaryevents followinggeneduplication hasalsobeenreportedforphytochromesacrossallmajorplant lineages(chapter1).bothphotoreceptors(phytochromesandphototropins)duplicated repeatedlyinseedplants,ferns,lycophytesandmosses,whiletheyremainedsingle<copyin liverwortsandhornworts(figure9).althoughthispatternofconcertedgenefamilyexpansion 41

57 andstasiscouldbeduetowholegenomeduplications(wgd),thesetwophotoreceptorsdifferin theexactevolutionarypositionsofgeneduplicationevents theydidnotallhappenalongthe samephylogeneticbranches(figure9),suggestingthatwgdisnotsolelyresponsible.ipropose herethattherehasbeenatightco<evolutionaryrelationshipbetweenphototropinsand phytochromes.recentstudieshaveshownthatthesetwophotoreceptorsnotonlysharecross< talkintheirsignaltransductionpathways(lariguetetal.,2006;decarbonneletal.,2010; Demarsyetal.,2012),butalsocanphysicallyinteract(Jaedickeetal.,2012).Inaddition,the convergentevolutionandhorizontalgenetransferofneochromes(suetsuguetal.,2005;lietal., 2014Chapter3)furtherillustratethat,throughoutplantevolutionaryhistory,atightpartnership hasresultedbetweenthetwophotoreceptors.ihypothesizethattheintegrationofbothblueand red/far<redlightinformationenabledplantstorespondoptimallytochangingenvironments throughtime.duplicationofonephotoreceptormayhavepromptedduplicationintheother,and henceresultedintheratherparallelgenefamilyevolutionaryhistories. Insummary,hereIleveragedtherecentsurgeingenomicandtranscriptomicdatato identifyphototropinsfromacrossabroadrepertoireofextantbiodiversity.mystudyrevealsthat phototropinsareuniquetoviridiplantae,andthatgenefamilyexpansionandstasishasoperated uniquelywithineachofthevariouslandplantlineages apatternsimilartothatofthe phytochromephotoreceptor.existingfunctionaldataforphototropins,interpretedinlightofmy genephylogeny,suggestsahistoryofrepeatedgeneduplicationsfollowedbyparallelfunctional divergences(subfunctionalizations).ourbroadphylogeneticapproachgreatlycomplements ongoingphotobiologyresearchfocusedonselectplantmodelorganisms,andwillenablefuture 42

58 researchlinkingecology,evolution,andphotochemistrytounderstandinghowplantsadapt(and haveadapted)tovariablelightenvironments. 2.4 Materials and Methods Mining phototropins from transcriptomes and genomes ThetranscriptomesandgenomesIusedarelistedinAppendixTable4,Table5.Tomine phototropinhomologs,iusedthebluedevilpythonpipelinefollowinglietal(2014)for transcriptomes,andforgenomesiusedblastpimplementedinphytozome(goodsteinetal., 2012)orindividualgenomeportal(AppendixTable4,Table5).Aphototropinsequencefrom Anthoceros5bhardwajii(voucher:Villarreal#6)wasobtainedbyPCRandcloning(primers: photf1970andphotr4102,seeappendixtable9) Sequence alignment and phylogenetic reconstruction IusedMUSCLE(Edgar,2004)toaligntheaminoacidsequences,andthenback< translatedthesetonucleotides.theresultingalignmentwasmanuallyimprovedbasedonknown domainandmotifboundaries,andunalignableregionswereexcludedpriortophylogenetic analyses.iusedpartitionfinder(lanfearetal.,2012)toobtaintheoptimaldatapartitionscheme (bycodonposition)andtheassociatednucleotidesubstitutionmodels.garli2.0(zwickl,2006) wasemployedtofindthebestmaximumlikelihoodtreewith genthreshfortopoterm setto 500,000and8independentruns.Icarriedoutbootstrappingtoassessbranchsupport,using RAxML(Stamatakis,2006)with1,000replicates.Thesamepartitionschemeandmodelswere usedinmrbayes3.2(ronquistetal.,2012)bayesianinference.icarriedouttwoindependent MCMCruns,eachwithfourchainsandtreessampledevery1,000generations.Iunlinked substitutionparametersandsettheratepriortovaryamongsubsets.theresultingmcmc 43

59 statisticswereinspectedintracer(rambautanddrummond,2013)toensureconvergenceand propermixing;25%ofthetotalgenerationswerediscardedasburn<inbeforecompilingthe50% majorityconsensustree.ialsocarriedoutphylogeneticreconstructionbasedoncodonmodels. CodonPhyML(Giletal.,2013)wasused,withGoldman<Yangcodonsubstitutionmodel (GoldmanandYang,1994),empiricalcodonfrequency(F1X61)andthreecategoriesofnon< synonymous/synonymoussubstitutionrateratio Target enrichment for confirming phototropin copy number in hornworts ThetargetenrichmentdatawerefromChapter1,wherebyahornwort(Anthoceros5 punctatus)dnalibrarywashybridizedwith7,502120merrnaprobestoenrichphototropin, phytochromeandneochromehomologs.thecapturedfragmentsweresequencedonone<tenthof amiseq(250bppe)run.iusedsickle(joshiandfass,2011)andcutadapt(martin,2011)toclean andtrimthereads,respectively,andassembledusingsoapdenovo(luoetal.,2012).the phototropincontigswereidentifiedbytblastn. 44

60 3. The origin and evolution of neochromes Li,F.<W., 325coEauthors,S.Mathews,andK.M.Pryer.2014.Horizontal/transfer/of/an/ adaptive/chimeric/photoreceptor/from/bryophytes/to/ferns.proceedingsofthenational AcademyofSciences,USA111:6672< Introduction Plantgrowthanddevelopmentaremodulatedbyphotoreceptorsystemsthatprovide informationaboutthesurroundingenvironment.majorpeaksintheactionspectraofthese informationalphotoreceptorslieeitherintheuv<blue(e.g.,cryptochromesandphototropins)or red/far<red(phytochromes)lightregions(möglichetal.,2010).thechimericphotoreceptor, neochrome,isaremarkableexception.itfusesred<sensingphytochromeandblue<sensing phototropinmodulesintoasinglemolecule(figure12a)thatmediatesphototropicresponses (Nozueetal.,1998;Kawaietal.,2003;Kanegaeetal.,2006).Neochromeshavearestricted occurrenceintheplanttreeoflife,andtwoindependentorigins(suetsuguetal.,2005) onein thegreenalgamougeotia5scalarisandanotherinferns suggestingthatthepossessionof neochromemaybeevolutionarilyadvantageous.thisisconsistentwithevidenceofgreatly enhancedphototropicresponsesinfernswithneochrome(kawaietal.,2003;kanegaeetal., 2006),aswellasitsphylogeneticdistributionwithinthefernlineage.Theearly<divergingfern ordersosmundalesandschizaealesdonotpossessneochrome(kawaietal.,2003).ithasbeen reportedonlyincyatheales(yangetal.,2010)andpolypodiales(kawaietal.,2003;yangetal., 2010),lineagesthatmostlydiversifiedfollowingtheCretaceous/Tertiaryestablishmentoflow< light,angiosperm<dominatedforestcanopies(schneideretal.,2004;schuettpelzandpryer,2009). 45

61 Asaresult,ithasbeensuggestedthattheevolutionofneochromewasakeyinnovationthat conferredaphototropicadvantageonfernsgrowingunderlow<lightconditions,facilitatingtheir moderndiversificationinthe shadowofangiosperms (Schneideretal.,2004;Schuettpelzand Pryer,2009;Kawaietal.,2003).Althoughpotentiallysignificantfromanevolutionarystandpoint, theoriginoffernneochromehasremainedamystery,andnopreviousstudyhasrevealedhowit mighthaveevolved. Inthisstudy,Iinvestigatedtheoriginofneochromebysearchingforhomologous sequencesin434transcriptomesand40wholegenomesofplantsandalgae5(appendixtable6), andsurprisinglydiscoveredneochromehomologsfromhornworts(figure12b,appendixtable 6).Analysesofthehornwortdraftgenome(Anthoceros5punctatus)suggestthatneochrome originatedinhornworts,independentfromthegreenalgae.large<scalephylogeneticanalyses anddivergencetimeestimationsfurtherdemonstratethatfernsacquiredneochromefrom hornwortsviahorizontalgenetransfer(hgt). 3.2 Results and Discussions Algal neochrome Theonlypublishedalgalneochromeisfromasinglespecies,5Mougeotia5scalaris5(Suetsugu etal.,2005).iidentifiedhomologsofneochromeinthetranscriptomesofall10sampledmembers ofthe Zygnemataceae superclade[sensugoncharovandmelkonian(2010)],including Mougeotia,5Mesotaenium,Cylindrocystis,andZygnemopsisbutinnootheralgaltranscriptomes surveyed(figure12,appendixtable6,figure18). 46

62 A 5 3 phytochrome neochrome phototropin B Angio. PHOT1 Gymno. PHOT1 C HGT Fern NEO HGT 179 MYA Angio. PHOT2 Gymno. PHOT2 Fern PHOT1 Fern PHOT2 Lycophyte PHOT Moss PHOTA Moss PHOTB Liverwort PHOT Fern NEO Hornwort NEO Hornwort PHOT D Nothoceros Megaceros Phymatoceros Hornwort Paraphymatoceros NEO Phaeoceros Anthoceros Nothoceros Megaceros Phymatoceros Paraphymatoceros Phaeoceros Anthoceros gene fusion Hornwort PHOT 0.1 substitutions/site horizontal gene transfer Algae PHOT retrotransposition Algae NEO conventional PHOT with introns Algae PHOT MYA Figure/12:/The/origin/of/fern/neochrome./(A)Neochromeisachimericphotoreceptorinwhichthe N<terminusconsistsofaphytochromesensorymodulefusedtoanalmostcompletephototropinsequenceat thec<terminus.thickandthinlinesrepresentexonsandintrons,respectively;lengthnottoscale.(b)dated phylogenyofphototropinandneochrome,showingneochromehgtfromhornwortstoferns(detailsin Figure/21).(C)Portionofthephototropinphylogeny,showingrelationshipsoffernneochrome,hornwort phototropinandneochrome,withhighlysupportedbranchesthickened(detailsinfigure/13).(d)a schematicdepictingtheoriginoffernneochrome Novel neochrome in hornworts Amonglandplants,Idocumentedtheoccurrenceofneochromein25additionalfern species(figure13,figure14).surprisingly,ialsodiscoveredneochromeinhornworts,asmall 47

63 bryophytelineagethatdivergedearlyinthehistoryoflandplants.althoughtheexactbranching orderamongthethreebryophytelineages(hornworts,mosses,liverworts)isnotresolvedwith certainty,somerecentanalyseshavesuggestedthathornwortsaresistertovascularplants (lycophytes,ferns,andseedplants;qiuetal.,2006).iempiricallyconfirmedthepresenceof neochromeinhornwortsthroughpcrandcloning,andisolatedneochromesequencesfromthe generanothoceros,megaceros,phymatoceros,phaeoceros,5paraphymatoceros5andanthoceros, representingfouroutofthefivehornwortorders(dendrocerotales,phymatocerotales, Notothyladales,andAnthocerotales).Iwasunabletoobtainadequatematerialofthemonotypic hornwortleiosporocerostotestforthepresenceofneochromeinleiosporocerotales.toconfirm thatthehornwortneochromesequencedatawereindeedderivedfromthehornwortnuclear genomeandnotfromcontaminantalgaeorferns,iperformedgenome<walkinginnothoceros aenigmaticustoobtainflankinggenomicsequences.downstreamofifoundapseudogenefor imidazoleglycerol<phosphatedehydratase(igpd)and,becauseitssequenceismostclosely relatedtootherhornwortigpdgenes(figure20),iareconfidentthatneochromeispresentinthe hornwortgenome Neochrome HGT from hornworts to ferns Thephylogeneticdistributionofneochromeinlandplants(presentonlyinhornworts andferns)couldbeexplainedby1)anancientoriginalongthebranchthatuniteshornwortsand tracheophytes,followedbylossesfromlycophytesandseedplants,2)independentoriginsin fernsandhornworts,or3)oneormoreinstancesofhorizontalgenetransfer(hgt)between hornwortsandferns.todistinguishamongthesethreepossiblescenarios,icompiled comprehensivesequencealignmentsofphototropinandphytochromefromacrossalllandplants 48

64 andalgae,whichincludedthecorrespondingdomainsfromhornwortandfernneochromes,and evaluatedtheresultantgenephylogenies.maximumlikelihoodandbayesianestimatesof phototropinandphytochromephylogeniesrevealedthatfernneochromesareembeddedwithin hornwortneochromeswithverystrongbranchsupport(figure12bandc,figure13,appendix Figure18,Figure19).Thisnestedrelationshipindicatesthatneochromewastransferred horizontallyfromhornwortstoferns,alongthestemlineageleadingtophymatoceros+nothoceros +Megaceros(Figure13,AppendixFigure18,Figure19).Thealternativepossibilities,suggesting eitheranancientverticaltransferofneochrome(i.e.,fernandhornwortneochromeswere reciprocallymonophyletic)oranindependentoriginofneochrome(i.e.,fernneochromeswere monophyleticwitheitherfernphototropinsorphytochromes)werebothrejected(p<10 30 )and wereneverobservedinthebayesianposteriortreesamples. IuseddivergencetimeestimatestofurthertesttheHGThypothesis,reasoningthat,ina caseofhgt,thesplitbetweenhornwortandfernneochromeshouldbesignificantlyyounger thanthesplitbetweenthehornwortandfernlineagesthemselves.byintegratingfossil calibrations(appendixtable7)withabayesianrelaxedmolecularclockanalysis,iestimatedthe divergencedatebetweenhornwortandfernneochrometobeapproximately179millionyears ago(mya)witha95%highestposteriordensityintervalof133and229mya(figure12, AppendixFigure21).Thisdateisfarmorerecentthanpublisheddivergenceestimatesbetween fernsandhornworts(atleast400mya;hedgesandkumar,2009),butiscongruentwiththedate estimatesforthestembranchleadingtophymatoceros5+nothoceros5+megaceros(85<244mya; VillarrealandRenner,2012).Thedisparityindivergencetimesrejectsthehypothesisinvoking multipleneochromeoriginsorlossesandreinforcesthehgtscenario. 49

65 Theoriginoflandplantneochromewithinthehornwortlineageissupportedbyits relationshiptohornwortphototropin.thesinglehornwortphototropingeneintheanthoceros5 punctatusdraftgenomecompletelylacksintrons(figure12d),andthuscloselyresemblesthec< terminalendofbothfernandhornwortneochromes.ifoundthisintron<freephototropininall hornwortsexamined,byusingpcrongenomicdna.allotherphototropinscharacterizedto date,includingthoseofferns,containmorethantwentyintrons.iexploredwhetherthismightbe apartialneochromemasqueradingasaphototropinbyusinginversepcrtoobtainthe5 upstreamgenomicregioninnothoceros5aenigmaticus.multiplestopcodonswereencountered upstreamofthenothoceros5phototropingene,andtherewasnoindicationofnearbyphytochrome domains.thesedatasuggestthathornwortsdonothaveacanonicalphototropingene.instead, hornwortphototropinsaremostcloselyrelatedtofernandhornwortneochromes(figure12, Figure13,AppendixFigure19),implyingthattheylikelyrepresenttheancestral,retrotransposed phototropinlineagethatgaverisetoneochromethroughfusionwiththephytochromemodule (Figure12D) Recurrent fern-to-fern HGT Idetectedanextraordinaryincongruencebetweenmyfernneochromegenetreeandthe publishedphylogenyofferns(figure14)(schuettpelzandpryer,2007).byexaminingtheentire Bayesianposteriortreesample,Ifoundthatnoneofthetreesresolvedneochromesfromthesame fernfamilytobemonophyletic.thisconflictingpatternisnotobservedinotherfernphylogenies basedonnucleargenes(rothfelsetal.,2013),andisnotseeninthehornwortneochrometree (Figure13),whichperfectlymirrorsthepublishedphylogenyofhornworts(VillarrealandRenner, 50

66 2012).HereIexamineanddiscussthepossiblecausesoftheincongruentgenetree/speciestreein ferns. Go to Appendix Fig. S1 Figure18 93/93/98/+/+ Phegopteris hexagonoptera KJ Athyrium filix-femina AFPO KJ Deparia acrostichoides KJ Adiantum aleuticum WCLG KJ Onoclea sensilibis KJ Thelypteris noveboracensis KJ /96/98/+/+ Macrothelypteris torresiana KJ Homalosorus pycnocarpos OCZL KJ Coniogramme intermedia var glabra FJ Plagiogyria distinctissima FJ Alsophila podophylla KJ Dennstaedtia punctilobula KJ Pronephrium lakhimpurense FJ /97/98/+/+ Dryopteris amurensis KJ Allantodia dilatata FJ /83/96/+/+ Diplazium wichurae UFJN KJ Blechnum spicant KJ /93/96/+/+ Plagiogyria japonica UWOD KJ Dipteris conjugata MEKP KJ /+/98/+/+ Lindsaea linearis NOKI KJ /99/96/+/+ Adiantum capillus-veneris AB /85/93/+/+ Hemidictyum marginatum KJ Hypolepis tenuifolia KJ Adiantum raddianum BMJR KJ /99/95/+/+ Nothoceros aenigmaticus KJ Megaceros flagellaris UCRN KJ /89/95/+/+ Phymatoceros phymatodes KJ Paraphymatoceros hallii FAJB KJ /+/98/+/+ Phaeoceros carolinianus WCZB KJ Anthoceros punctatus KJ /+/99/+/+ Nothoceros aenigmaticus KJ Megaceros flagellaris UCRN KJ /99/+/+/+ 87/89/88/+/+ Phymatoceros phymatodes KJ Paraphymatoceros hallii FAJB KJ Phaeoceros carolinianus WCZB KJ Anthoceros punctatus KJ substitutions/site Fern NEO Hornwort NEO Hornwort PHOT / Figure/13:/Phylogenetic/relationships/of/fern/neochrome/(NEO),/hornwort/neochrome/and/ phototropin/(phot)./topologyderivedfromthebestmaximumlikelihoodtree.numbersabovebranches aremaximumlikelihoodbootstrapvalues(bs)fromgarli/bsfromnhphyml/alrtsh<likesupportsunder codonmodel(alrt<sh)/bayesianposteriorprobabilities(pp)frommrbayes/ppfrombeast;theseareonly displayed(alongwiththickenedbranches)whenbs>70,sh<alrt>70andpp> denotesbs=, alrt<sh=orpp=1.00;thickenedbrancheswithoutnumbersare +/+/+/+/+.Alphanumericcodes followingspeciesnamesarethefour<letter1kptranscriptomeidentifiers,genbankaccessionsorboth; indicatesthesequencecamefromgenomesequencedata,and frompteridium5aquilinumtranscriptome. Theblue,orangeandyellowbranchesrepresenthornwortphototropin,hornwortneochromeandfern neochrome,respectively.// 51

67 Gene Tree Species Tree Hornwort NEO 94/+/.99 95/+/+ 98/95/+ 98/97/+ 99/+/+ 99/97/ substitutions/site Deparia lancea Deparia lobato-crenata Deparia acrostichoides Onoclea sensilibis Adiantum tetraphyllum Pronephrium lakhimpurense Thelypteris noveboracensis Athyrium filix-femina Phegopteris hexagonoptera Matteuccia struthiopteris Homalosorus pycnocarpos Macrothelypteris torresiana Coniogramme intermedia Tectaria zeylanica Didymochlaena truncatula Plagiogyria distinctissima Alsophila podophylla Dennstaedtia punctilobula Adiantum aleuticum Adiantum pedatum Adiantum andicola Deparia acrostichoides Deparia lancea Dryopteris expansa Dryopteris amurensis Dryopteris filix-mas Diplazium wichurae Diplazium bombonasae Allantodia dilatata Blechnum spicant Plagiogyria japonica Plagiogyria formosana Dipteris conjugata Adiantum raddianum Doodia media Adiantum hispidulum Bolbitis auriculata Hypolepis tenuifolia Hypolepis punctata Lindsaea linearis Adiantum capillus-veneris Hemidictyum marginatum Deparia lancea Deparia lobato-crenata Deparia acrostichoides Diplazium wichurae Diplazium bombonasae Allantodia dilatata Athyrium filix-femina Doodia media Blechnum spicant Matteuccia struthiopteris Onoclea sensilibis Thelypteris noveboracensis Pronephrium lakhimpurense Macrothelypteris torresiana Phegopteris hexagonoptera Homalosorus pycnocarpos Hemidictyum marginatum Dryopteris expansa Dryopteris amurensis Dryopteris filix-mas Bolbitis auriculata Tectaria zeylanica Didymochlaena truncatula Adiantum aleuticum Adiantum pedatum Adiantum andicola Adiantum capillus-veneris Adiantum tetraphyllum Adiantum hispidulum Adiantum raddianum Coniogramme intermedia Hypolepis punctata Hypolepis tenuifolia Dennstaedtia punctilobula Lindsaea linearis Plagiogyria japonica Plagiogyria formosana Plagiogyria distinctissima Alsophila podophylla Dipteris conjugata Cyatheales Gleicheniales Polypodiales Figure/14: Phylogenetic/incongruence/between/fern/neochrome/gene/tree/and/fern/species/tree./ Thegenetreetopologyisderivedfromthebestmaximumlikelihoodtreebasedonthenucleotide dataset,andthespeciestreesummarizedfromschuettpelzandpryer(1),kuoetal(2),rothfelsand Schuettpelz(3),andRothfelsetal(4).Treeinferencebasedoncodonmodels,1st+2ndand3rdcodon positionsyieldedsimilartopologies(fig.s7).closelyrelatedspecies/generaarecodedwiththesamecolor. Theneochromegenetreeisrootedwithhornwortneochromes(notshown).Numbersabovebranchesare maximumlikelihoodbootstrapvalues(bs)/alrtsupportsundercodonmodel(alrt)/bayesianposterior probabilitiesfrommrbayes(pp),andareonlydisplayed(alongwiththickenedbranches)ifbs>70,alrt> 70andPP> denotesbs=,alrt=orpp=1.00;thickenedbrancheswithoutnumbersare +/+/+.ArrowheadspointtothetwodivergentneochromecopiesfoundinDeparia5spp.Arrowspointto neochromesfromgleichenialesandcyathealesthatappearnestedamongpolypodialesneochromes.// Incompletesamplingofextantneochromehomologsisnotlikelytobetheexplanation, becauseneochromehasbeenshownbysouthernblottingtobeasingle<copygeneinadiantum5 capilluseveneris5(nozueetal.,1998).thiswascorroboratedbythecloningeffortsthatproduced mostofmysequencedata(appendixtable8).exceptfordeparia5spp.,wheretwodivergent 52

68 sequenceswerefound(figure14,arrowheads),iwasonlyabletoisolateasingleneochromefor eachfernspecies. Next,Iinvestigatedwhetheranaberrantnucleotidesubstitutionprocessmayhave misledthephylogeneticreconstruction.forexample,pervasivepositiveselectionorvariationin GCcontentcanobscuretruephylogeneticsignal(SandersonandShaffer,2002;Kapralovand Filatov,2007;Nabholzetal.,2011),therebycausingagenetreetobeincongruentwiththespecies tree.usingcodonmodelsfortreeinferencecanpotentiallyaccommodatecomplexselection profiles,byallowingdifferentnonsynonymous/synonymoussubstitutionrateratiostofallinto distinctclasses(giletal.,2013).however,ifoundthatincorporatingcodonmodelsdidnot improvetheincongruencebetweenthegenetreeandspeciestree;theresultanttreelargely matchesthatfromthenucleotidesubstitutionmodel,withcomparablebranchsupportvalues (Figure15A).Similarly,inferencesbasedonfirst+secondcodonpositions,aswellasonthird codonpositionsonly,alsoyieldedtopologiesdiscordantwiththespeciestree(figure15b,c). Ithenusedarandomeffectsbranch<sitemodeltoinferthedynamicsofpositiveselection acrosstheneochrometree(kosakovskypondetal.,2011).onlyfivefernbrancheswereidentified ashavingexperiencedsignificantepisodicpositiveselection(figure15d),andtheproportionof positivelyselectedcodonsitesalongeachofthesefivebranchesisverylow(<3%).theseresults suggestthatpositiveselectionoperatedonveryfewcodonsoveralimitednumberofbranches. Similarly,aslidingwindowanalysisofGCcontentfoundnoneofthefernsequencestobe deviantinbasecomposition(figure15e).takentogether,thenucleotidesubstitutionprocesses amongfernneochromesappeartobeunexceptional,andarenotlikelytoexplainthe incongruencebetweenthegenetreeandspeciestree. 53

69 A codon model Horwort NEO Deparia lancea Deparia lobato-crenata Deparia acrostichoides Athyrium filix-femina Phegopteris hexagonoptera Matteuccia struthiopteris Adiantum tetraphyllum Pronephrium lakhimpurense Onoclea sensilibis Deparia lancea Deparia acrostichoides Thelypteris noveboracensis Macrothelypteris torresiana Homalosorus pycnocarpos Coniogramme intermedia Tectaria zeylanica Didymochlaena truncatula Dennstaedtia punctilobula Alsophila podophylla Plagiogyria japonica Adiantum pedatum Adiantum aleuticum Adiantum andicola Dryopteris amurensis Dryopteris expansa Dryopteris filix-mas Diplazium bombonasae Diplazium wichurae Allantodia dilatata Blechnum spicant Plagiogyria formosana Plagiogyria distinctissima Dipteris conjugata Doodia media Adiantum raddianum Adiantum hispidulum Bolbitis auriculata Hypolepis punctata Hypolepis tenuifolia Lindsaea linearis Adiantum capillus-veneris Hemidictyum marginatum B 1 st + 2 nd position Horwort NEO Deparia lancea Deparia lobato-crenata Deparia acrostichoides Onoclea sensilibis Athyrium filix-femina Phegopteris hexagonoptera Matteuccia struthiopteris Deparia lancea Deparia acrostichoides Thelypteris noveboracensis Pronephrium lakhimpurense Adiantum tetraphyllum Adiantum aleuticum Adiantum pedatum Adiantum andicola Macrothelypteris torresiana Homalosorus pycnocarpos Coniogramme intermedia Alsophila podophylla Plagiogyria distinctissima Dennstaedtia punctilobula Tectaria zeylanica Didymochlaena truncatula Dryopteris amurensis Dryopteris expansa Dryopteris filix-mas Diplazium bombonasae Diplazium wichurae Allantodia dilatata Blechnum spicant Plagiogyria formosana Plagiogyria japonica Dipteris conjugata Adiantum raddianum Adiantum hispidulum Doodia media Bolbitis auriculata Hypolepis punctata Hypolepis tenuifolia Adiantum capillus-veneris Lindsaea linearis Hemidictyum marginatum C 3 rd position 0.3 substitutions/site 0.05 substitutions/site 0.3 substitutions/site Horwort NEO Deparia lancea Deparia lobato-crenata Deparia acrostichoides Thelypteris noveboracensis Pronephrium lakhimpurense Adiantum tetraphyllum Onoclea sensilibis Macrothelypteris torresiana Homalosorus pycnocarpos Athyrium filix-femina Phegopteris hexagonoptera Matteuccia struthiopteris Deparia lancea Deparia acrostichoides Coniogramme intermedia Tectaria zeylanica Didymochlaena truncatula Dennstaedtia punctilobula Alsophila podophylla Plagiogyria distinctissima Adiantum aleuticum Adiantum pedatum Adiantum andicola Dipteris conjugata Plagiogyria japonica Plagiogyria formosana Blechnum spicant Dryopteris amurensis Dryopteris expansa Dryopteris filix-mas Allantodia dilatata Diplazium bombonasae Diplazium wichurae Doodia media Adiantum hispidulum Adiantum raddianum Bolbitis auriculata Hypolepis punctata Hypolepis tenuifolia Adiantum capillus-veneris Lindsaea linearis Hemidictyum marginatum D Purifying selection Neutral or nearly neutral Positive selection Alsophila podophylla Plagiogyria japonica Dennstaedtia punctilobula Didymochlaena truncatula Tectaria zeylanica Deparia acrostichoides Deparia lancea Adiantum andicola Adiantum aleuticum Adiantum pedatum Deparia lancea Deparia lobato-crenata Deparia acrostichoides Onoclea sensilibis Thelypteris noveboracensis Pronephrium lakhimpurense Adiantum tetraphyllum Matteuccia struthiopteris Phegopteris hexagonoptera Athyrium filix-femina Coniogramme intermedia Homalosorus pycnocarpos Macrothelypteris torresiana Allantodia dilatata Diplazium wichurae Diplazium bombonasae Dryopteris filix-mas Dryopteris amurensis Dryopteris expansa Blechnum spicant Plagiogyria formosana Plagiogyria distinctissima Dipteris conjugata Hypolepis tenuifolia Hypolepis punctata Bolbitis auriculata Adiantum hispidulum Adiantum raddianuum Doodia media Hemidictyum marginatum Lindsaea linearis Adiantum capillus-veneris E GC Content Window position (bp) Phymatoceros phymatodes Megaceros flagellaris Nothoceros vincentianus Nothoceros aenigmaticus 0.02 substitutions/site Paraphymatoceros hallii Phaeoceros carolinianus Anthoceros punctatus Figure/15: Phylogeny,/selection/profile/and/GC/content/of/fern/neochromes./Maximumlikelihood reconstructionsofgenephylogenybasedon(a)codonmodel,(b)firstandsecondcodonpositions,and(c) thirdcodonposition.thickenedbranchesindicatealrtsupports(ina)orbootstrapsupports(inb,c)>70. (D)Selectionprofiledisplayedalongphylogeneticbranchesforfernandhornwortneochromes.Tree topologyderivedfromthebestmaximumlikelihoodtree(figure/13).thewidthofeachcoloralonga branchisproportionaltothenumberofcodonsitesinthecorrespondingselectionclass.thickenedbranches haveexperiencedsignificantepisodicpositiveselection(p5<0.05).(e)slidingwindowanalysisofgc contentforfernneochrome.eachlinedisplaysthegccontentforeachneochromesequence.noneofthe fernsinmystudyweredeviantinbasecompositionforneochrome.eachwindowis400bpinsizeandthe windowslidesevery50bp. 54

70 Ithereforehypothesizedthattheincongruenttreecouldbetheresultof1)multiplefern< to<fernhgtevents,2)anelevatedgeneturnoverratethatmayhavebeenselectedforafterhgt (Lindetal.,2010;Näsvalletal.,2012),or3)acombinationofboth.Ihavesomeevidence suggestingrecurringfern<to<fernhgtmighthavebeeninvolved.forexample,idiscovered neochromegenesfromtwoearly<divergingfernorders[gleicheniales(dipteris5conjugata)and Cyatheales(Alsophila5podophyllaandPlagiogyria5spp.)]thatwerelikelyderivedfromsecondary HGTevents(Figure14,arrows).Theseneochromesarenotphylogeneticallyresolvedaswouldbe predictedbasedonpublishedfernspeciesrelationships(schuettpelzandpryer,2007),butinstead arenestedamongpolypodiales(figure14).furthermore,thesplitbetweentheseandotherfern neochromes(81mya,95%highestposteriordensityinterval:59<106mya;appendixfigure21) occurredlongaftertheestimatedorganismaldivergencedatesforgleicheniales(276mya)and Cyatheales(223MYA)(SchuettpelzandPryer,2009),apatternthatmaybestbeexplainedby fern<to<fernhgt. MyhypothesisofpotentiallyrecurrentHGTeventswithinfernsisnotunprecedented.In angiosperms,rampanthgtshavebeendocumentedforthemitochondrialcox1homingintron. Thisintronisbelievedtohaveexperiencedoneinitial seedtransfer fromfungithatwas followedbyatleast80incidentsofplant<to<planthgtamong833diverseangiospermspecies (Choetal.,1998;Sanchez<Puertaetal.,2008;2011).Perhapsneochromeissimilarlyassociated withmobileelementsthatmayhavefacilitateditsmovementacrossspeciesboundaries Evolutionary and physiological implications of neochrome in hornworts Mydiscoveryofneochromeinhornwortsisanimportantsteptowardunderstandingthe evolutionofphotosensorysystemsinplants.inthemossphyscomitrella5patens,bothredandblue 55

71 lightcanelicitdirectionalchloroplastmovements,andthesearemediatedbymolecular interactionsbetweenphysicallyseparatephytochromeandphototropinproteins(jaedickeetal., 2012).Thehornwortneochromerepresentsastrikinglydifferentstrategyforintegratingthese twophotosensorysystems,combiningthemintoasingle,chimericgene.light<induced directionalchloroplastmovementhasnotyetbeenobservedinhornworts,probablybecause theirepidermalcellsusuallycontainonlyonechloroplastthatoccupiesmostofthecellularspace. However,nearly50yearsago,Burr(1968)documentedanunusualchloroplastphotoresponsein Megaceroshornworts;shediscoveredthatthelargechloroplasts contract toformcompact shapesunderstronglight.althoughiconfirmedthisphenomenoninhornworts(figure16), futurestudiesareneededtoexamineifneochromeisresponsibleforthecontractionresponse andtoexploreotherpossiblephysiologicalroles. A B Figure/16: Hornwort/chloroplasts/contract/under/strong/light./(A)Beforeirradiation,chloroplasts ofnothoceros5aenigmaticus5(arrowhead)occupymostofthecellularspace.(b)afterirradiationwithbluelight (57Ñmolm <2 s< 1 )for2hours,chloroplastsevidentlyreducedinsize.scalebar=40ñm Evolutionary significance of plant-to-plant HGT Thisstudypinpointstheoriginoflandplantneochromewithinthehornwortlineageand demonstratesthatneochromewashorizontallytransferredfromhornwortstoferns.thelife historyoffernsmayhelptoexplaintheirhypothesizedsusceptibilitytohgt.mostlandplants shareacommonsexuallifecyclethatalternatesbetweenadiploidsporophyteandahaploid 56

Chapter 29: Plant Diversity I How Plants Colonized Land

Chapter 29: Plant Diversity I How Plants Colonized Land Chapter 29: Plant Diversity I How Plants Colonized Land 1. Evolutionary History of Plants 2. General Features of Plants 3. Survey of the Plant Kingdom A. Nonvascular Plants B. Seedless Vascular Plants

More information

Similarities: 1 (for good answers) - dehisces along longitudinal lines

Similarities: 1 (for good answers) - dehisces along longitudinal lines TOTAL: / 118 Station 1 19 Total Plant A Plant B To what taxon does each plant belong? Anthocerotophyta 1 Andreaeopsida 1 Based on what you know about this organism, circle the term(s) that apply to it.

More information

Ferns. and Allied Plants

Ferns. and Allied Plants Ferns and Allied Plants Rolla M. Tryon Alice F. Tryon Harvard University Ferns and Allied Plants With Special Reference to Tropical America Habitat Photography Principally by Walter H. Hodge Springer-Verlag

More information

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants. Vascular Plants - a quick review. Vascular Plants - a quick review

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants. Vascular Plants - a quick review. Vascular Plants - a quick review Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants Vascular Plants - a quick review Two unrelated groups within cryptogams seed free vascular plants are recognized as phyla: 1. Lycopodiophyta

More information

North Carolina Ferns and Fern Allies : a survey

North Carolina Ferns and Fern Allies : a survey North Carolina Ferns and Fern Allies : a survey Ferns of North Carolina 122 species, in 46 genera, in 22 families from sea level to tops of Mount Mitchell in nearly all habitats (under water and dry sands

More information

Changes in the composition of the RNA virome mark evolutionary transitions in green plants

Changes in the composition of the RNA virome mark evolutionary transitions in green plants Mushegian et al. BMC Biology (2016) 14:68 DOI 10.1186/s12915-016-0288-8 RESEARCH ARTICLE Open Access Changes in the composition of the RNA virome mark evolutionary transitions in green plants Arcady Mushegian

More information

BIOLOGY. Nonvascular and Seedless Vascular Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Nonvascular and Seedless Vascular Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 29 Nonvascular and Seedless Vascular Plants Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Greening of Earth

More information

Bryophyte Gametophytes. Bryophyte Gametophytes. A spore germinates into a gametophyte. composed of a protonema and gamete producing gametophore

Bryophyte Gametophytes. Bryophyte Gametophytes. A spore germinates into a gametophyte. composed of a protonema and gamete producing gametophore A spore germinates into a composed of a protonema and gamete producing gametophore Rhizoids Anchor s to substrate Lack of vascular :ssues Bryophyte Gametophytes Restricts the height of s Mature s produce

More information

Evolutionary Morphology of Land Plants

Evolutionary Morphology of Land Plants MHRD Scheme on Global Initiative on Academic Network (GIAN) Evolutionary Morphology of Land Plants Overview This century will be dominated by Life Sciences for well reasons of understanding evolution,

More information

Major lineages and life cycles of land plants. Green plants: viridiplantae

Major lineages and life cycles of land plants. Green plants: viridiplantae Liverworts Mosses Hornworts Lycophytes Major lineages and life cycles of land plants Green plants: viridiplantae Green plants Embryophytes (land plants) Bryophytes Tracheophytes (vascular plants) Seed

More information

BOTANY M.S.c SYLLABUS

BOTANY M.S.c SYLLABUS BOTANY M.S.c SYLLABUS SEMESTER SYSTEM Semester-One Paper Name of Paper Max Marks Paper-I : Algae and Bryophytes 50 Paper-II : Fungi and plant viruses 50 Paper-III : Pteridophytes, Gymnosperms and Palacobotany

More information

Plant Diversity I: How Plants Colonized Land

Plant Diversity I: How Plants Colonized Land Chapter 29 Plant Diversity I: How Plants Colonized Land PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

An introduction to Bryophytes

An introduction to Bryophytes An introduction to Bryophytes THE BRYOPYHTES One small step for algae, one giant leap for the plant kingdom Bryophytes were the earliest group of land plants to evolve from water bound algae, this group

More information

Sequenced Mitochondrial Genomes of Bryophytes

Sequenced Mitochondrial Genomes of Bryophytes Mitochondrial Genomes of Bryophytes 1 Sequenced Mitochondrial Genomes of Bryophytes Asheesh Shanker Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India Abstract: The determination

More information

TreeShrink: efficient detection of outlier tree leaves

TreeShrink: efficient detection of outlier tree leaves TreeShrink: efficient detection of outlier tree leaves Uyen Mai Siavash Mirarab University of California at San Diego 1 Lesser Hedgehog Tenrec Long branches are suspect Sphagnum lesc Amborella trichopoda

More information

PATTERN AND DISTRIBUTION OF RNA EDITING IN LAND PLANT RBCL AND NAD5 TRANSCRIPTS. A Thesis. Presented to

PATTERN AND DISTRIBUTION OF RNA EDITING IN LAND PLANT RBCL AND NAD5 TRANSCRIPTS. A Thesis. Presented to PATTERN AND DISTRIBUTION OF RNA EDITING IN LAND PLANT RBCL AND NAD5 TRANSCRIPTS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the

More information

Plant Diversity I: How Plants Colonized Land

Plant Diversity I: How Plants Colonized Land LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 29 Plant Diversity I: How Plants

More information

Rapid report. Andrew A. Meharg

Rapid report. Andrew A. Meharg Research Blackwell Science, Ltd Variation in arsenic accumulation hyperaccumulation in ferns and their allies Author for correspondence: Andrew A. Meharg Tel: +44 1224 272264 Fax: +44 1224 272703 Email:

More information

Useful Terms. Bryophyte Habitats

Useful Terms. Bryophyte Habitats Common Mosses and Liverworts of the Chicago Region Kalman Strauss, Jerry Jenkins, Gary Merrill, Charles DeLavoi, Juan Larraín, Laura Briscoe & Matt von Konrat The Field Museum, The Northern Forest Atlas

More information

Introduction to Botany

Introduction to Botany Introduction to Botany Alexey Shipunov Minot State University Lectures 27 29 Shipunov (MSU) Introduction to Botany Lectures 27 29 1 / 61 Outline 1 Plant diversity Systematics 2 Mosses Ferns Classis Equsetopsida,

More information

From algae to angiosperms inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

From algae to angiosperms inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 RESEARCH ARTICLE Open Access From algae to angiosperms inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Brad R Ruhfel

More information

Chapters 29 & 30: Plant Diversity

Chapters 29 & 30: Plant Diversity Chapters 29 & 30: Plant Diversity AP Biology 2013 1 Chara species, a pond organism 5 mm Colonization of the Land Coleochaete orbicularis, a disk-shaped charophyte that also lives in ponds (LM) Since colonizing

More information

TEST on PLANT TAXONOMY for NEET 2017

TEST on PLANT TAXONOMY for NEET 2017 TEST on PLANT TAXONOMY for NEET 2017 1. Which one of the following shows isogamy with non-flagellated gametes? a) Sargassum b) Ectocarpus c) Ulothrix d) Spirogyra 2. Which of the following is responsible

More information

Sea!Urchin!Body!Plan!Development!and!Evolution:!An!Integrative! Transcriptomic!Approach! by! Jennifer!Wygoda!Israel!

Sea!Urchin!Body!Plan!Development!and!Evolution:!An!Integrative! Transcriptomic!Approach! by! Jennifer!Wygoda!Israel! SeaUrchinBodyPlanDevelopmentandEvolution:AnIntegrative TranscriptomicApproach by JenniferWygodaIsrael UniversityPrograminGeneticsandGenomics DukeUniversity Date: Approved: DavidMcClay,CoHSupervisor GregWray,CoHSupervisor

More information

The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO 2 diffusion as a key trait

The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO 2 diffusion as a key trait Research The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO 2 diffusion as a key trait Tiina Tosens 1 *, Keisuke Nishida 2 *, Jorge Gago 3 *, Rafael Eduardo Coopman 4 *, Hernan Marino

More information

Tansley insight. Why we need more non-seed plant models. Review. Stefan A. Rensing 1,2. Contents. Summary. I. Introduction

Tansley insight. Why we need more non-seed plant models. Review. Stefan A. Rensing 1,2. Contents. Summary. I. Introduction Review Why we need more non-seed plant models Author for correspondence: Stefan A. Rensing Tel: +49 6421 28 21940 Email: stefan.rensing@biologie. uni-marburg.de Stefan A. Rensing 1,2 1 Faculty of Biology,

More information

A novel chloroplast gene reported for flagellate plants

A novel chloroplast gene reported for flagellate plants RESEARCH ARTICLE BRIEF COMMUNICATION A novel chloroplast gene reported for flagellate plants Michael Song 1,5, *, Li-Yaung Kuo 2,3, *, Layne Huiet 4, Kathleen M. Pryer 4, Carl J. Rothfels 1, and Fay-Wei

More information

Community assembly of the ferns of Florida

Community assembly of the ferns of Florida RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Community assembly of the ferns of Florida Emily B. Sessa,4, Sally M. Chambers,2, Daijiang Li

More information

Some History: In the life cycle of the kelp Laminaria. One way to separate algae from protozoa is that. Rocks of Cambrian Age (ca.

Some History: In the life cycle of the kelp Laminaria. One way to separate algae from protozoa is that. Rocks of Cambrian Age (ca. One way to separate algae from protozoa is that a. Protozoa are photosynthetic, while algae are not. b. Algae are photosynthetic, while protozoa are not. c. Protozoa are prokaryotic, while algae are eukaryotic.

More information

SALMONBERRY DAYS 2009 BRYOPHYTE WALK CAMOSUN BOG AND FOREST WALK CAMOSUN BOG. with Shona Ellis

SALMONBERRY DAYS 2009 BRYOPHYTE WALK CAMOSUN BOG AND FOREST WALK CAMOSUN BOG. with Shona Ellis CAMOSUN BOG Camosun Bog is a small peatland sitting on the edge of Pacific Spirit Park (formerly Endowment Lands of the University of British Columbia). The formation of this wetland took thousands of

More information

Introduction to the Plant Kingdom - 1

Introduction to the Plant Kingdom - 1 Introduction to the Plant Kingdom - 1 The Plant Kingdom comprises a large and varied group of organisms that have the following characteristics in common. All plants are: Eukaryotic Photosynthetic Multicellular

More information

GBE. An Exploration into Fern Genome Space. Abstract. Introduction

GBE. An Exploration into Fern Genome Space. Abstract. Introduction An Exploration into Fern Genome Space Paul G. Wolf 1, *, Emily B. Sessa 2,3,DanielBlaineMarchant 2,3,4,Fay-WeiLi 5,CarlJ.Rothfels 6,ErinM.Sigel 5,9, Matthew A. Gitzendanner 2,3,4,ClaytonJ.Visger 2,3,4,JoAnnBanks

More information

Textbook Evert RF and SE Eichorn 2012 Raven Biology of Plants. Eighth Edition. WH Freeman. (Table of Contentsi). Lecture Topics

Textbook Evert RF and SE Eichorn 2012 Raven Biology of Plants. Eighth Edition. WH Freeman. (Table of Contentsi). Lecture Topics Science/Biology 2010.04 Plant Biology 3 credits lecture (3 hours/week; 12 weeks); 1 credit laboratory (3 hours/week; 12 weeks) Current advances in plant biology research, highlighting plant structure,

More information

Plant Kingdom. C l a s s i f i c a t i o n Artificially grouped into Nonvascular or Vascular Plants

Plant Kingdom. C l a s s i f i c a t i o n Artificially grouped into Nonvascular or Vascular Plants Plant Kingdom C h a r a c t e r i s t i c s Eukaryotic Photosynthetic Multicellular Sexually reproducing Life History involves an alternation of a haploid phase (Gametophyte) with a diploid phase (Sporophyte)

More information

Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants Liu et al. BMC Evolutionary Biology (2017) 17:47 DOI 10.1186/s12862-017-0891-5 RESEARCH ARTICLE Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

More information

Photomorphogenesis in Plants and Bacteria 3rd Edition

Photomorphogenesis in Plants and Bacteria 3rd Edition Photomorphogenesis in Plants and Bacteria 3rd Edition Function and Signal Transduction Mechanisms Eberhard Schäfer and Ferenc Nagy (Eds.) PHOTOMORPHOGENESIS IN PLANTS AND BACTERIA 3RD EDITION Photomorphogenesis

More information

Domain Eukarya: Kingdom Plantae non-vascular plants

Domain Eukarya: Kingdom Plantae non-vascular plants Domain Eukarya: Kingdom Plantae non-vascular plants Land plants descended from a green algae ancestor Some key characteristics of land plants are shared with green algae, like Multicellular, eukaryotic,

More information

Casa Flora / Florasource, Ltd 72/tray = 4 trays/box, 40/tray = 3 trays/box

Casa Flora / Florasource, Ltd 72/tray = 4 trays/box, 40/tray = 3 trays/box Adiantum capillus-veneris Southern Maidenhair 40 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 Adiantum capillus-veneris Southern Maidenhair 72 0 68 0 0 0 0 0 0 19 0 0 0 0 39 0 0 Adiantum hispidulum Rosy Maidenhair

More information

Combined data from chloroplast and mitochondrial genome sequences showed paraphyly of bryophytes

Combined data from chloroplast and mitochondrial genome sequences showed paraphyly of bryophytes 1 Combined data from chloroplast and mitochondrial genome sequences showed paraphyly of bryophytes Asheesh Shanker Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India. Email:

More information

Plants I. Introduction

Plants I. Introduction Plants I Objectives: 1. List the characteristics of plants that link them to their ancestral green algae. 2. Describe the problems faced by plants that moved onto the land. 3. Describe the adaptations

More information

SGTB Khalsa College, University of Delhi Lesson Plan ( ) Department of Botany

SGTB Khalsa College, University of Delhi Lesson Plan ( ) Department of Botany SGTB Khalsa College, University of Delhi Lesson Plan (2016-17) Department of Botany Title of the Paper: Biodiversity I (Microbes, Algae, Fungi and Archegoniate) Course Name: B.Sc. Life sciences I Year

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

CMJ UNIVERSITY, SHILLONG REGULATION FOR MSC BOTANY

CMJ UNIVERSITY, SHILLONG REGULATION FOR MSC BOTANY CMJ UNIVERSITY, SHILLONG REGULATION FOR MSC BOTANY Duration Two Years Eligibility - B.Sc. with relevant subject or its equivalent Scheme of Distribution of Sr. No. 1 2 3 First Year Algae, Fungi, Lichens,

More information

The Producers: The Plant Kingdom An Introduction to Plants and the Mosses

The Producers: The Plant Kingdom An Introduction to Plants and the Mosses The Producers: The Plant Kingdom An Introduction to Plants and the Mosses Mosses Phylum Bryophyta - ~12,000 species Liverworts - Phylum Hepaticophyta - ~8,500 species Hornworts - Phylum Anthocerophyta

More information

Chloroplast Photorelocation Movement

Chloroplast Photorelocation Movement Chloroplast Photorelocation Movement N. Suetsugu and M. Wada( *ü ) Abstract Chloroplast photorelocation movement is one of the best-characterized plant organelle movements and is found in various plant

More information

Date Location Habitat GPS Coordinates No. of Species 6/29/06 Brown s Meadow Creek

Date Location Habitat GPS Coordinates No. of Species 6/29/06 Brown s Meadow Creek Bryophyte Purposive Survey Project Report Erica Heinlen August 7, 2006 Several Forest Service botanists and I conducted purposive surveys on the Tonasket and Methow Valley Ranger Districts [Okanogan-Wenatchee

More information

Multigene Phylogeny of Land Plants with Special Reference to Bryophytes and the Earliest Land Plants

Multigene Phylogeny of Land Plants with Special Reference to Bryophytes and the Earliest Land Plants Multigene Phylogeny of Land Plants with Special Reference to Bryophytes and the Earliest Land Plants Daniel L. Nickrent,* Christopher L. Parkinson, 1 Jeffrey D. Palmer, and R. Joel Duff* 2 *Department

More information

Organellar genomes of the four-toothed moss, Tetraphis pellucida

Organellar genomes of the four-toothed moss, Tetraphis pellucida https://helda.helsinki.fi Organellar genomes of the four-toothed moss, Tetraphis pellucida Bell, Neil E. 2014-05-19 Bell, N E, Boore, J L, Mishler, B D & Hyvonen, J 2014, ' Organellar genomes of the four-toothed

More information

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers Announcements Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology Study: Display case outside HCK 132 with labeled conifers Movie: Sexual Encounters of the Floral Kind Intro to Keying/Greenhouse

More information

Diversity of Plants How Plants Colonized the Land

Diversity of Plants How Plants Colonized the Land Chapter 29, 30. Diversity of Plants How Plants Colonized the Land 1 The first plants For more than 3 billion years, Earth s terrestrial surface was lifeless life evolved in the seas 1st photosynthetic

More information

Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes

Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes Research Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes Alejandra Vasco 1,2, Tynisha L. Smalls 1, Sean W. Graham 3,4, Endymion D. Cooper 5, Gane Ka-Shu Wong 6,7,8,

More information

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations Chapter 21-Seedless Plants Major modern plant groups All groups of land-adapted plants have a common set of characteristics: -plant bodies composed of tissues produced by an apical meristem -spores with

More information

Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny

Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny Research Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny James Clark 1,2 *, Oriane Hidalgo 3 *, Jaume Pellicer 3, Hongmei Liu 4, Jeannine Marquardt 1, Yannis

More information

Sequences of rdna internal transcribed spacers from the chloroplast DNA of 26 bryophytes: properties and phylogenetic utility

Sequences of rdna internal transcribed spacers from the chloroplast DNA of 26 bryophytes: properties and phylogenetic utility FEBS 19748 FEBS Letters 422 (1998) 47^51 Sequences of rdna internal transcribed spacers from the chloroplast DNA of 26 bryophytes: properties and phylogenetic utility Tagir H. Samigullin a; *, Karmen M.

More information

PROTISTS. Bui Tan Anh College of Natural Sciences

PROTISTS. Bui Tan Anh College of Natural Sciences CHAPTER 6 Plantae PROTISTS Protistsare eukaryotes and thus have organelles and are more complex than prokaryotes. Most protistsare unicellular, but there are some colonial and multicellular species Nutrition

More information

An Exploration of Fern Genome Space

An Exploration of Fern Genome Space Utah State University DigitalCommons@USU An Exploration of Fern Genome Space Datasets 7-28-2014 An Exploration of Fern Genome Space Paul G. Wolf Utah State University Emily B. Sessa University of Florida

More information

Topic 22. Introduction to Vascular Plants: The Lycophytes

Topic 22. Introduction to Vascular Plants: The Lycophytes Topic 22. Introduction to Vascular Plants: The Lycophytes Introduction to Vascular Plants Other than liverworts, hornworts, and mosses, all plants have vascular tissues. As discussed earlier, the mosses

More information

Plants! Plants. Plants. Plants. Plant Classifications. Plant Classifications. All plants are multi-cellular, autotrophic.

Plants! Plants. Plants. Plants. Plant Classifications. Plant Classifications. All plants are multi-cellular, autotrophic. Plants Plants! An introduction All plants are multi-cellular, autotrophic. Lots of cells. Produces its own food using chlorophyll. Has a Nucleus. Plants The plant kingdom is one of the largest groups of

More information

BOT 3015C: Lives of Plants and Algae Syllabus CRN 10540, Spring 2017

BOT 3015C: Lives of Plants and Algae Syllabus CRN 10540, Spring 2017 BOT 3015C: Lives of Plants and Algae Syllabus CRN 10540, Spring 2017 Instructor: William B. Sanders 211 Whitaker Hall, tel. 590-7639. wsanders@fgcu.edu OFFICE HOURS: Monday & Wednesday 10:30-1 pm, WH 211.

More information

The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution

The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution Yang Liu 1, Jia-Yu Xue 1,2, Bin Wang 1, Libo Li 1, Yin-Long Qiu 1 * 1 Department

More information

1.1 Identifying and stating the functions of the primary parts of a compound microscope.

1.1 Identifying and stating the functions of the primary parts of a compound microscope. Common Course Number: BOT-1010-L Course Title: Botany Laboratory Catalog Course Description: Laboratory for BOT-1010. Credit Hours Breakdown: 1 lecture hour Prerequisite: none Corequisite: BOT-1010, with

More information

BOTANY 305. Plant Morphology & Evolution

BOTANY 305. Plant Morphology & Evolution Spring 2017 BOTANY 305 Plant Morphology & Evolution 4 credits. Intermediate Course. Biology Major Area D Evolution and Systematics Professor: Dr. Ken Cameron (Professor) 154 Birge Hall, Dept. of Botany

More information

Plants. Primer. Charles F. Delwiche 1,2, * and Ruth E. Timme 1

Plants. Primer. Charles F. Delwiche 1,2, * and Ruth E. Timme 1 Magazine R417 Primer Plants Charles F. Delwiche 1,2, * and Ruth E. Timme 1 Plants have been recognized since ancient times as a distinct lineage of organisms, but the precise boundaries of the group have

More information

Reproductive Morphology

Reproductive Morphology Week 3; Wednesday Announcements: 1 st lab quiz TODAY Reproductive Morphology Reproductive morphology - any portion of a plant that is involved with or a direct product of sexual reproduction Example: cones,

More information

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor Kingdom: Plantae Domain Eukarya Domain Bacteria Domain Archaea Domain Eukarya Common ancestor The First Plants For more than 3 billion years, Earth s terrestrial surface was lifeless life evolved in the

More information

Evolution of Chloroplast Vesicle Transport

Evolution of Chloroplast Vesicle Transport Plant Cell Physiol. 44(2): 217 222 (2003) JSPP 2003 Short Communication Evolution of Chloroplast Vesicle Transport Sabine Westphal, Jürgen Soll and Ute C. Vothknecht 1 Botanisches Institut der LMU München,

More information

CHAPTER 9-2 LIGHT: ADAPTATIONS FOR SHADE

CHAPTER 9-2 LIGHT: ADAPTATIONS FOR SHADE Glime, J. M. 2017. Light: Adaptations for Shade. Chapt. 9-2. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. 9-2-1 Ebook sponsored by Michigan Technological University and the International

More information

Plant Evolution and Diversity. B. Importance of plants. C. Where do plants fit, evolutionarily? What are the defining traits of plants?

Plant Evolution and Diversity. B. Importance of plants. C. Where do plants fit, evolutionarily? What are the defining traits of plants? Plant Evolution and Diversity Reading: Chap. 30 I. What is a plant? A. Basic structure and function B. Why are plants important? C. What are plants, evolutionarily? D. Problems of living on land II. Overview

More information

Botany 401 Vascular Flora of Wisconsin

Botany 401 Vascular Flora of Wisconsin Botany 401 Vascular Flora of Wisconsin Pick up syllabus from one of the instructors http://courses.botany.wisc.edu/botany_401/class/lecture.html Botany 401 Vascular Flora of Wisconsin Objectives for the

More information

Kingdom Plantae. A Brief Survey of Plants

Kingdom Plantae. A Brief Survey of Plants Kingdom Plantae A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as follows: 1. Common cellular

More information

This is a repository copy of Pteridophyte fungal associations: Current knowledge and future perspectives.

This is a repository copy of Pteridophyte fungal associations: Current knowledge and future perspectives. This is a repository copy of Pteridophyte fungal associations: Current knowledge and future perspectives. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109975/ Version:

More information

CHAPTER 2-4 BRYOPHYTA TAKAKIOPSIDA

CHAPTER 2-4 BRYOPHYTA TAKAKIOPSIDA Glime, J. M. 2017. Bryophyta - Takakiopsida. Chapt. 2-4. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. 2-4-1 Ebook sponsored by Michigan Technological University and the International

More information

Primary Cell Wall Structure in the Evolution of Land Plants

Primary Cell Wall Structure in the Evolution of Land Plants Journal of Integrative Plant Biology 2007, 49 (8): 1271 1278 Primary Cell Wall Structure in the Evolution of Land Plants Alex L. Nothnagel and Eugene A. Nothnagel (Department of Botany and Plant Sciences,

More information

PLANT KINGDOM

PLANT KINGDOM PLANT KINGDOM 1. All organisms belonging to the following kingdoms have cell wall I. Monera II. Protista III. Fungi IV. Plantae a) All except II and III *b) All except I and II c) All except I and III

More information

Mobile Elements Shape Plastome Evolution in Ferns

Mobile Elements Shape Plastome Evolution in Ferns Utah State University DigitalCommons@USU Biology Faculty Publications Biology 8-25-2018 Mobile Elements Shape Plastome Evolution in Ferns Tanner A. Robison Utah State University Amanda L. Grusz University

More information

Plant Evolution & Diversity

Plant Evolution & Diversity Plant Evolution & Diversity Ancestors of plants were probably charophytes (green algae) Chlorophyll a and b, beta carotene Similar thylakoid arrangements Identical cell walls Starch as a storage carbohydrate

More information

Plant Diversity & Evolution (Outline)

Plant Diversity & Evolution (Outline) Plant Diversity & Evolution (Outline) Review the Life cycle of Fungi Characteristics of organisms in the Kingdom Plantae. Evolution of plants: Challenges and adaptations to living on land Highlights of

More information

Environmental and Evolutionary Influences of Light on Fern Leaf Morphology in California. Lindsey P. Agnew ABSTRACT

Environmental and Evolutionary Influences of Light on Fern Leaf Morphology in California. Lindsey P. Agnew ABSTRACT Environmental and Evolutionary Influences of Light on Fern Leaf Morphology in California Lindsey P. Agnew ABSTRACT Climate change is predicted to increase the amount of solar radiation reaching understory

More information

9. The rhizoids of seedless nonvascular plants are comparable to the of a seed plant.

9. The rhizoids of seedless nonvascular plants are comparable to the of a seed plant. Name: # Date: Science Chapter 5 Study Guide 1. List three adaptations that allow plants to survive on land? 2. List three characteristic of plants. 3. Why is binomial nomenclature used to name plants?

More information

Nucleic acid hybridization assays, detecting genotypes C12Q 1/68. Attention is drawn to the following places, which may be of interest for search:

Nucleic acid hybridization assays, detecting genotypes C12Q 1/68. Attention is drawn to the following places, which may be of interest for search: A01H NEW PLANTS OR PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES New non-transgenic plants (including multicellular algae, multicellular fungi and lichens), plant varieties,

More information

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Palaeozoic era. They are the successful colonizers on land habit.

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM Eukaryotic, multicellular, chlorophyll containing and having cell wall, are grouped the kingdom Plantae, popularly known as plant kingdom.

More information

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity 1/8/2006 Phylogeny 2 1/8/2006 Phylogeny 3 Proteobacteria Chlamydias Spirochetes Cyanobacteria Gram positive bacteria Korarchaeotes Euryarchaeotes,

More information

Biology is the study of Life (Bios = life, logos=knowledge) Plant Biology or Botany is the part of Biology that studies plants.

Biology is the study of Life (Bios = life, logos=knowledge) Plant Biology or Botany is the part of Biology that studies plants. Introduction Biology is the study of Life (Bios = life, logos=knowledge) Plant Biology or Botany is the part of Biology that studies plants. Ethnobotany (Ethno= man) is the part of plant Biology that studies

More information

Biology IA & IB Syllabus Mr. Johns/Room 2012/August,

Biology IA & IB Syllabus Mr. Johns/Room 2012/August, Biology IA & IB Syllabus Mr. Johns/Room 2012/August, 2017-2018 Description of Course: A study of the natural world centers on cellular structure and the processes of life. First semester topics include:

More information

LAB 4: PHYLOGENIES & MAPPING TRAITS

LAB 4: PHYLOGENIES & MAPPING TRAITS LAB 4: PHYLOGENIES & MAPPING TRAITS *This is a good day to check your Physcomitrella (protonema, buds, gametophores?) and Ceratopteris cultures (embryos, young sporophytes?)* Phylogeny Introduction The

More information

Report: Les Mehrhoff Botanical Research Fund Bryoflora of Mt. Greylock 110 Years Later

Report: Les Mehrhoff Botanical Research Fund Bryoflora of Mt. Greylock 110 Years Later Report: Les Mehrhoff Botanical Research Fund Bryoflora of Mt. Greylock 110 Years Later By Susan A. Williams. December 3, 2015. Background: Approximately 110 years ago A. Leroy Andrews did one of the most

More information

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts Major plant groups Topics Bryophyte adaptations synapomorphies Alternation of generation in Bryophytes Phylum Hepaticophyta Phylum Bryophyta

More information

MIAMI DADE COLLEGE SCHOOL OF EDUCATION COURSE SYLLABUS SURVEY OF PLANT DIVERSITY LABORATORY

MIAMI DADE COLLEGE SCHOOL OF EDUCATION COURSE SYLLABUS SURVEY OF PLANT DIVERSITY LABORATORY MIAMI DADE COLLEGE SCHOOL OF EDUCATION COURSE SYLLABUS SURVEY OF PLANT DIVERSITY LABORATORY This syllabus, course calendar, and other attending documents are subject to change during the semester in the

More information

THE FERN GAZETTE VOLUME TWELVE PART FIVE. THE JOURNAL OF THE BRmSH PTERIDOLOGICAL SOCIETY

THE FERN GAZETTE VOLUME TWELVE PART FIVE. THE JOURNAL OF THE BRmSH PTERIDOLOGICAL SOCIETY THE FERN GAZETTE VOLUME TWELVE PART FIVE 1983 THE JOURNAL OF THE BRmSH PTERIDOLOGICAL SOCIETY THE FERN GAZETTE VOLUME 12 PART 5 1983 CONTENTS MAIN ARTICLES An ecological survey of the ferns of the Killamey

More information

Evolution of mixed-linkage (1 3, 1 4)-b-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes

Evolution of mixed-linkage (1 3, 1 4)-b-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes Annals of Botany 109: 873 886, 2012 doi:10.1093/aob/mcs018, available online at www.aob.oxfordjournals.org RESEARCH IN CNTEXT Evolution of mixed-linkage (1 3, 1 4)-b-D-glucan (MLG) and xyloglucan in Equisetum

More information

The Chloroplast Genome Sequence of Chara vulgaris Sheds New Light into the Closest Green Algal Relatives of Land Plants

The Chloroplast Genome Sequence of Chara vulgaris Sheds New Light into the Closest Green Algal Relatives of Land Plants The Chloroplast Genome Sequence of Chara vulgaris Sheds New Light into the Closest Green Algal Relatives of Land Plants Monique Turmel, Christian Otis, and Claude Lemieux Département de Biochimie et de

More information

Online Plant Lab. 2. Draw the parts of the plant after you take the first two quizzes.

Online Plant Lab. 2. Draw the parts of the plant after you take the first two quizzes. Name: Online Plant Lab Period: What is a Plant? (Complete case 1 in the Great Plant escape, and answer the following questions) 1. What are the parts of the plant? 2. Draw the parts of the plant after

More information

(1, 5, 6, 8-10). The reasons for discrepancy among. in apparently different phylogenetic lineages; convergent or

(1, 5, 6, 8-10). The reasons for discrepancy among. in apparently different phylogenetic lineages; convergent or Proc. Nail. Acad. Sci. USA Vol. 91, pp. 57305734, June 1994 Evolution rbcl gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns (pteridophyte/molecular systematics/phylogenetls/ribuloseblsphosphate

More information

EMPACTS Project Fall 2013 Bryophytes & Liverworts

EMPACTS Project Fall 2013 Bryophytes & Liverworts EMPACTS Project Fall 2013 Bryophytes & Liverworts PLANT BIOLOGY FALL 2013 INSTRUCTOR: KURTIS CECIL Group Members / Labor Andy Warren Research Field Work Field Photography Slide preparation Slide photography

More information

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE 1 CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE Photomorphogenesis and Light Signaling Photoregulation 1. Light Quantity 2. Light Quality 3. Light Duration 4. Light

More information

CHAPTER 7-7 WATER RELATIONS: BIOCHEMICAL ADAPTATIONS TO DRYING

CHAPTER 7-7 WATER RELATIONS: BIOCHEMICAL ADAPTATIONS TO DRYING Glime, J. M. 2017. Water Relations: Biochemical Adaptations to Drying. Chapt. 7-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. 7-7-1 Physiological Ecology. Ebook sponsored by Michigan Technological University

More information

Botany: Part I Overview of Plants & Plant Structure

Botany: Part I Overview of Plants & Plant Structure Botany: Part I Overview of Plants & Plant Structure Plant evolution Plant Evolution Chlorophytes Bryophytes (nonvascular plants) Seedless vascular plants Gymnosperms Angiosperms Chlorophytes are a green

More information

Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions

Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two

More information

TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a

TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a continuous system. For the first time, the stelar organisation

More information