Citrus Huanglongbing: Understanding the Vector-Pathogen Interaction for Disease Management

Size: px
Start display at page:

Download "Citrus Huanglongbing: Understanding the Vector-Pathogen Interaction for Disease Management"

Transcription

1 Page 1 of 9 Feature Story December 2007 Image Slide Show Previous APSnet Features Unfamiliar word? See Glossary Interested in contributing an APSnet Feature? Have a comment? Please contact APSnet Feature Editor Dr. Gary D. Franc Citrus Huanglongbing: Understanding the Vector-Pathogen Interaction for Disease Management R. H. Brlansky and M. E. Rogers University of Florida-IFAS Citrus Research and Education Center Lake Alfred, Florida (Corresponding author: rhby@ufl.edu) Introduction Citrus Huanglongbing (HLB), better known as citrus greening disease, is a recently introduced disease to the Americas (Brazil and Florida). Numerous reviews on this important disease are available (2,5,6) and include a recent article by Gottwald et al. published jointly in Plant Health Progress and as an APSnet feature article (8). A PDF file has been developed that provides detailed information about the disease and its vectors. The article by Gottwald et al. addressed the pathogen and its impact, with an emphasis on the history and distribution of the disease, symptoms, the causal organism, its insect vectors, impacts for Brazil and Florida, and potential threats to other citrus producing regions in the Americas. The article extensively dealt with the epidemiology of the disease and the challenges that the temporal increase and spatial spread of the disease have on disease control and management. In this article we will discuss the currently known facts of vector (psyllid) transmission of the citrus greening pathogen and how an understanding of the vector-pathogen interaction affects the current management strategies for HLB. As previously reviewed by Gottwald et al. (8) HLB is putatively caused by an unculturable bacterium belonging to the α proteobacter. Three types of the disease Asian, African and American (Brazil) have been described, with causal bacteria tentatively named Candidatus Liberibacter asiaticus (2), Ca. L. africanus (2) and Ca. L. americanus (17,18,19), respectively. As described, the two known insect vectors of HLB are Diaphorina citri and Trioza erytreae, which inhabit different environmental niches, yet can apparently vector both the Asian or African HLB bacteria. In Brazil D. citri has been found to be the vector of the Ca. L. americanus bacterium (28), limited to Brazil thus far, as well as the Ca. L. asiaticus bacterium. In Florida, HLB is caused by Ca. L. asiaticus, which is vectored by D. citri. Biology of the Vector The Asian citrus psyllid, Diaphorina citri Kuwayama, is a Hemipteran insect measuring 3 4 mm in length with piercing-sucking mouthparts that allow this pest to feed on the

2 Page 2 of 9 phloem of citrus spp. and other related rutaceous plants (13). A summary of known host plants fed on by D. citri is provided by Halbert & Manjunath (9). Adult psyllids are readily observed in aggregations feeding and mating on developing new leaves of host plants (Fig. 1). After mating, female psyllids oviposit (lay eggs) on the new leaf growth of expanding terminals, in the folds of unfurled leaves and behind developing leaf buds. Expanded leaves are not suitable oviposition sites and thus gravid females (females filled with eggs) may migrate in response to scarcity of suitable oviposition sites. A single female psyllid is capable of producing 800 to 1,000 eggs over her lifespan (21). Eggs are almond shaped and small measuring about 0.3 mm in length thus Fig. 1. Adult Asian citrus psyllid (Diaphorina citri) feeding on host. requiring additional magnification for identification (Fig. 2). Eggs are pale in color when first laid and turn a dark yellow/orange color prior to eclosion (emergence of the first nymphal stage) (13). Eclosion occurs an average of 3 days after the egg is laid but can require more or less time depending on temperature (11). Fig. 2. Asian citrus psyllid (Diaphorina citri) eggs. There are five nymphal stages of immature development (Fig. 3). The cumulative duration of the five nymphal stages ranges from 10 to 40 days depending on temperature (11). However, under typical climatic conditions in Florida when a new flush of growth is typically present, the total duration of the nymphal stages is expected to last between 10 to 14 days. Feeding by psyllid nymphs is restricted to the young, tender leaves on which eggs were laid, but also may include the tender portions of the plant branches which have not yet hardened and the succulent stems of developing flowers or newly formed fruit.

3 Page 3 of 9 Fig. 3. Waxy exudate from Asian citrus psyllid (Diaphorina citri) as it feeds on a leaf. The two main factors regulating psyllid populations are availability of young growing shoots for oviposition and temperature. Based on these two regulating factors, psyllid populations in Florida citrus groves begin building on the early season growth flushes (Fig. 4) and reach their highest levels on the first summer growth flush, which usually occurs in late May or early June. During the summer months psyllid populations oscillate with the abundance of new flush. During periods of limited availability of unexpanded flush for oviposition, adult psyllids either remain in the plant canopy feeding on mature leaves or migrate to new areas where new flush is available. Summer temperatures above 30 C (86 F) may shorten the longevity of psyllid adults (< 30 days) and lower their reproductive fitness as demonstrated by Liu and Tsai (11). During the slightly cooler (average 26 to 30 C; 79 to 86 F) autumn months in Florida, psyllid populations may increase on the final flushes of the year. Following this flush, adult psyllids will overwinter inside the canopy of citrus plants and are commonly found on the underside of mature leaves feeding on the leaf mid- and lateral veins. At the average daily winter temperature of 15 to 20 C (59 to 68 F) in Florida, adult psyllids can be expected to live on average 50 to 80 days (11) feeding occasionally on their host plants until they move in response to new flush needed for oviposition. Fig. 4. Blotchy mottle symptoms of citrus greening affected tree with new growth flush showing yellow shoot symptom. Pathogen Transmission Previous studies (26) have shown that adults as well as nymphs have been found to acquire and transmit the causal bacterium. Moll and Martin (14) produced electron microscopy evidence for the presence of bacteria similar to those found

4 Page 4 of 9 Fig. 5. Electron micrograph of bacteria (Candidatus Liberibacter sp.) in the phloem of infected citrus tree. in HLB infected citrus (Fig. 5). The reported times for acquisition and transmission of both Asian and African bacteria have varied greatly. For example acquisition times for D. citri have been reported from 15 to 30 minutes (4) and up to 5 h (26). D. citri fourth and fifth instar nymphs can acquire the pathogen and the resulting adults can transmit it (26). Once the bacterium is acquired, the psyllid will retain and transmit the bacterium throughout the psyllid s life. Some evidence that T. erytreae can acquire and transmit the pathogen transovarially (via eggs) has been published (22). In Florida it has been found that when D. citri are held for 7 days in the laboratory on HLB infected citrus plants, less than 5% of the psyllids test positive, using a PCR assay, for the presence of Ca. L. asiaticus. However, as confinement time increases on the infected plants, so does the percentage of psyllids testing positive for the presence of Ca. L. asiaticus, with an average percent infection rate between 20% and 30% after a 30 day confinement (Rogers and Brlansky, unpublished). Additionally, adult psyllids have been shown to be capable of acquiring Ca. L. asiaticus from citrus that is infected with the pathogen yet not showing symptoms. For those asymptomatic plants, psyllids were only able to acquire the pathogen from branches of the tree whose leaves gave a positive PCR result when tested, suggesting that due to the uneven distribution of the pathogen within a plant, not all parts of the tree will serve as an inoculum source at any given time (Rogers and Brlansky, unpublished). Past Approaches to Insect Vectored Disease Management Insecticide applications to reduce insect populations normally are used to prevent a pest from causing economic damage to a crop. Most of the available information on the use of insecticides for the control of insect vectors of systemic pathogens is for plant virus vectors, especially aphids. Control of insect virus vectors to prevent infection is difficult since only a few winged individuals are necessary to cause considerable spread of the virus. This fact also may be the situation for HLB. Contact insecticides are normally thought to be of limited use since frequent applications are necessary. Persistent insecticides including systemic ones have offered some virus control via vector population control. However, winged aphids (alates) usually carry viruses into crops and may transmit prior to being killed by insecticides. Non-persistent viruses are lost by the aphid upon feeding so insecticides normally do not make any difference in the amount of virus transmission into a crop. However, if aphids that vector a persistent virus are killed, the vectors are halted in their ability to transmit to other plants thus reducing spread. An example of this was shown in potato, where the spread of a persistent virus, potato leaf roll virus (PLRV), was reduced with systemic insecticide applications (3), but a non-persistent potato virus, virus Y, was not (24). Burt et al. (3) pointed out how important reducing the aphid populations early in the season was for successful reduction in virus spread in potatoes. Imidacloprid and three other insecticides were found to

5 Page 5 of 9 reduce the transmission of PLRV by Myzus persicae to potato when exposed to insecticide residues on virus sources (15). The speed that insecticides kill leafhopper vectors also has been linked to the ability to control viruses that the leafhoppers transmit. Wang et al. (23) suggested that the use of specific systemic insecticides applied when the crops are most susceptible to beet curly top virus (BCTV) could be an effective way to control the curly top disease. The rate of transmission of BCTV, a geminivirus transmitted by the beet leafhopper (Circulifer tenellus) in a circulative, nonpropagative manner, was significantly lowered with applications of the systemic insecticide imidacloprid. Soil applications with imidacloprid produced significantly better reduction in BCTV transmission rates than foliar sprays with the insecticide dimethoate. Some success also was reported with the aphid-transmitted sugar beet luteoviruses in England (25) and with barley yellow dwarf luteovirus (12). Other examples of disease management with insecticides include the control of the whitefly vectors of geminiviruses of vegetable crops. Ahmed et al. (1) found that a systemic insecticide imidacloprid applied two times to control the whitefly, Bemesia tabaci, indirectly controlled the geminivirus tomato yellow leaf curl (TYLCV). However, complete control of virus infection was not obtained; infection rates were lowered early in the growing season, so the tomato crop was protected against disease early in its growth. Imidacloprid is applied to nearly 100% of the tomato acreage in Florida for control of Bemisia argentifolli, the silverleaf whitefly, and the geminiviruses (especially TYLCV) that it transmits (16). Systemic insecticides also have been used for the control of leafhopper vectors of the xylem-limited, fastidious bacterium Xylella fastidiosa. The glassy-winged sharpshooter, Homalodisca coagulata, a known vector of the various X. Fastidiosa srains that cause Pierce s disease of grape, phony peach, and citrus variegated chlorosis, was introduced into California in the late 1990s and populations have reached very high levels. Insecticide applications of imidacloprid and other products such as kaolin and harpin have successfully reduced glassy-winged sharpshooter populations in California (20). Developing New Management Programs There is general consensus throughout the world literature that three general practices must be adopted in order to have a successful citrus greening management program. These include the planting of certified, clean nursery stock, effective control of psyllid populations and removal of infected trees that serve as an inoculum source for psyllid acquisition. What there is not agreement on, however, is the level of psyllid control needed to be "effective." Currently, no studies have been conducted proving that managing psyllid populations will indeed provide a benefit in terms of reducing the spread of citrus greening disease. Researchers from countries such as China and South Africa report anecdotal evidence for the need to control psyllids to minimize disease spread and maintain viable citrus production (10,27). However, in each of these growing regions there are differences in climate, cultural practices, and even strains of the pathogen or vector species which makes direct comparison of results difficult. There are examples where demonstrated low vector populations have limited the spread of the pathogen. In China, for example, greening disease has severely limited citrus production in the lowland areas where D. citri is relatively abundant. In contrast, in the highland

6 Page 6 of 9 areas of China greening disease is not a problem (27). In these areas of higher altitude, D. citri survival is low and thus spread of Ca. L. asiaticus is also low. However, in this particular situation, the cold weather also affects citrus, thus limiting production to mandarin varieties which are better suited for the colder environment. The situation in Florida is much different as the climate and current production practices are ideal for buildup of large psyllid populations. It is thus impractical to attempt to eliminate psyllids to virtually undetectable levels as this would require an inordinate and unsustainable amount of insecticide applications. A more realistic and sustainable approach to psyllid management would be to target psyllids during the periods when pathogen spread is more likely to occur. This will require knowledge of the seasonal trends for higher percentages of psyllids carrying and transmitting the citrus greening pathogen, if such differences do exist. In addition information is needed regarding when those psyllids are likely moving and infecting healthy trees. Based on work completed thus far in Florida (discussed above), reducing pathogen spread may be achieved by targeting overwintering adult psyllids. In our research we have demonstrated that the longer psyllids are allowed to feed on infected plant material, the higher the percentage of psyllids that test positive for the presence of the greening pathogen with the highest rates of infection occurring after more than 30 days of feeding. Thus, psyllids that pass the winter months feeding on infected plants are more likely to spread the pathogen to healthy trees when they move in response to the presence of new growth flushes in the spring. Therefore, targeting overwintering adults prior to movement may prove to be an effective approach to minimizing pathogen spread. There also is evidence that the concentration of the greening pathogen fluctuates within an infected tree throughout the year. PCR diagnostic techniques have been less able to detect the presence of the pathogen (within the same tree) due to the changes in concentration at certain times of the year. Since psyllids do not readily acquire the greening pathogen from sections of an infected plant that do not give a positive Ca. L. asiaticus PCR result, this may mean that psyllid acquisition and movement of the pathogen is also lower at certain times of the year. Research is underway to determine the seasonality of pathogen transmission by D. citri in Florida and to better define the process of transmission of Ca. L. asiaticus by D. citri. For example, can the use of soil-applied systemic and foliar applied pesticides cause mortality of D. citri carrying Ca. L. asiaticus prior to successful transmission of the pathogen? Based on the results of these research objectives, we may be able to design more effective strategies for psyllid management in order to manage the spread of citrus greening disease and maintain a viable citrus production system. Literature Cited 1. Ahmed, N. E., Kanan, H. O., Sugimoto, Y., Ma, Y. Q., and Inanaga, S Effect of imidacloprid on incidence of tomato yellow leaf curl virus. Plant Dis. 85: Bové, J. M Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88: Burt, P. E., Heathcote, G. D., and Broadbent, L The use of insecticides to find when leaf roll and virus Y spread within potato crops. Ann Appl. Biol. 54:13-22.

7 Page 7 of 9 4. Capoor, S. P., Rao, D. G., and Viswanath, S. M Greening disease of citrus in the Deccan trap country and its relationship with the vector, Diaphorina citri Kuwayama. Pages in: Proc. of the 6th Conf. of the Intn'l Org. of Citrus Virologists. L. G. Weathers and M. Cohen, eds. Univ. of California, Davis. 5. da Graça, J. V Citrus greening disease. Annu. Rev. Phytopathol. 29: da Graça, J. V., and Korsten, L Citrus huanglongbing: Review, present status and future strategies. Pages in: Diseases of Fruits and Vegetables, Vol. I. S. A. M. H. Naqvi, ed. Kluwer Academic Press, Dordrecht, The Netherlands. 7. Gatineau, F., Loc, H. T., Tuyen, N. D., Tuan, T. M., Hien, N. T. D., and Truc, N. T. N Effects of two insecticide practices on population dynamics of Diaphorina citri and huanglongbing incidence in south Vietnam. Page 110 in: Proc. of the Huanglongbing Greening Intl. Workshop, July 16-20, 2006, Ribeirão Preto, Brazil. 8. Gottwald, T. R., da Graça, J. V., and Bassanezi, R. B Citrus Huanglongbing: The pathogen and its impact. Online. Plant Health Progress doi: /php rv. 9. Halbert, S. E., and Manjunath, K. L Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 87: Le Roux, H. F., van Vuuren, S. P., Pretorius, M. C., and Buitendag, C. H Management of Huanglongbing in South Africa. Pages in: Proc. of the Huanglongbing Greening Intl. Workshop, July , Ribeirão Preto, Brazil. 11. Liu, Y. H., and Tsai, J. H Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Ann. Appl. Biol. 137: McKirdy, S. J., and Jones, R. A. C Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of barley yellow dwarf luteovirus in cereals. Plant Dis. 80: Mead, F. W The Asiatic citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Entomol. Circ. No Fla. Dept. of Agric. and Consumer Serv., Div. of Plant Indust., Gainesville, FL. 14. Moll, J. N., and Martin, M. M Electron microscope evidence that citrus psylla (Trioza erytreae) is a vector of greening disease in South Africa. Phytophylactica 5: Mowry, T. M Insecticidal reduction of potato leaf roll virus transmission by Myzus persicae. Ann. Appl. Biol. 146: Schuster, D. J., Stansly, P. A., Polston, J. E., Gilreath, P. R., and McAvoy, E Management of whiteflies, whitefly vectored plant virus, and insecticide resistance for vegetable production in southern Florida. ENY-735, Univ. of Fla., Gainesville, FL. 17. Teixeira, D. C., Ayres, A. J., Kitajima, E. W., Tanaka, F. A. O., Danet, J. L., Jagoueix-Eveillard, S., Saillard, C., and Bové, J. M First report of a Huanglongbing-like disease of citrus in São Paulo State, Brazil, and association of a new liberibacter species, "Candidatus Liberibacter americanus", with the disease. Plant Dis. 89: Teixeira, D. C., Saillard, C., Jagoueix-Eveillard, S., Danet, J. L., Ayres, A. J., and Bové, J. M "Candidatus Liberibacter americanus"

8 Page 8 of 9 associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. Intl. J. Syst. Evol. Microbiol. 55: Teixeira, D. C., Danet, J. L., Eveillard, S., Martins, E. C., Jesus Junior, W. C., Yamamoto, P. T., Lopes, S. A., Bassanezi, R. B., Ayres, A. J., Saillard, C., and Bové, J. M Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the 'Candidatus' Liberibacter species associated with the disease. Mol. Cell. Probes 19: Tubajika, K. M., Civerolo, E. L., Puterka, G. J., Hashim, J. M., and Luvisi, D. A The effects of kaolin, harpin, and imidacloprid on development of Pierce s disease in grape. Crop Prot. 26: Tsai, J. H., and Liu, Y. H Biology of Diaphorina citri (Homoptera: Psyllidae) on four host plants. J. Econ. Entomol. 93: Van den Berg, M. A., van Vuuren, S. P., and Deacon, V. E Studies on greening disease transmission by the citrus psylla, Trioza erytreae (Hemiptera: Triozidae). Israel J. Entomol : Wang, H., Gurusinghe, P. de A., and Falk, B. W Systemic insecticides and plant age affect beet curly top virus transmission to selected host plants. Plant Dis. 83: Webley, D. P., and Stone, L. E. W Field experiments on potato aphids and virus spread in South Wales 1966/9. Ann. Appl. Biol. 72: Westwood, F., Bromilow, R., and Dewar, A Controlling virus yellows: How far does your Gaucho go? Br. Sugarbeet Rev. 65: Xu, C. F., Xia, Y. H., Li, K. B., and Ke, C Further study of the transmission of citrus huanglongbing by a psyllid, Diaphorina citri Kuwayama. Pages in: Proc. of the 10th Conf. Intl. Organ. Citrus Virol. L. W. Timmer, S. M. Garnsey, and L. Navarro, eds. IOCV, Riverside, CA. 27. Xueyuan, Z Huanglongbing in China. Page 3 in: Proc. of the Huanglongbing Greening Intl. Workshop, July , Ribeirão Preto, Brazil. 28. Yamamoto, P. T., Felippe, M. R., Garbim, L. F., Coelho, J. H. C., Ximenes, N. L., Martins, E. C., Leite, A. P. R., Sousa, M. C., Abrahão, D. P., and Braz, J. D Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae): Vector of the bacterium Candidatus Liberibacter americanus. Page 96 in: Proc. of the Huanglongbing-Greening Intl. Workshop, July 16-20, 2006, Ribeirão Preto, Brazil. Related Link From the IFAS Citrus Research and Education Center: Citrus Greening (Huanglongbing) Disease Identification and Management - PDF format, 1.5 MB Copyright 2007 by The American Phytopathological Society American Phytopathological Society 3340 Pilot Knob Road St. Paul, MN aps@scisoc.org

9 Page 9 of 9

Management Of Insect And Mite Vectors Of Vegetable Diseases

Management Of Insect And Mite Vectors Of Vegetable Diseases Great Plains Growers Conference And Trade Show St. Joseph, MO January 12, 2018 Management Of Insect And Mite Vectors Of Vegetable Diseases Raymond A. Cloyd Professor and Extension Specialist in Horticultural

More information

Dr. Judith K. Brown The University of Arizona Tucson, AZ USA

Dr. Judith K. Brown The University of Arizona Tucson, AZ USA Dr. Judith K. Brown The University of Arizona Tucson, AZ USA jbrown@ag.arizona.edu About 3,000 psyllid species worldwide Most psyllid species are specific to the plant hosts (family level) on which they

More information

10.2 A Stochastic Spatiotemporal Analysis of the Contribution of Primary versus Secondary Spread of HLB.

10.2 A Stochastic Spatiotemporal Analysis of the Contribution of Primary versus Secondary Spread of HLB. Page 285 10.2 A Stochastic Spatiotemporal Analysis of the Contribution of Primary versus Secondary Spread of HLB. 1 Gottwald T., 1 Taylor E., 2 Irey M., 2 Gast T., 3 Bergamin-Filho A., 4 Bassanezi R, 5

More information

Mathematical models are a powerful method to understand and control the spread of Huanglongbing

Mathematical models are a powerful method to understand and control the spread of Huanglongbing Mathematical models are a powerful method to understand and control the spread of Huanglongbing Rachel A. Taylor, Erin Mordecai, Christopher A. Gilligan, Jason R. Rohr, Leah R. Johnson August 26, 2016

More information

Bacterial Leaf Scorch

Bacterial Leaf Scorch Bacterial Leaf Scorch Barbara J. Smith Research Plant Pathologist USDA-ARS Thad Cochran Southern Horticultural Laboratory Poplarville, MS 39470 January 17, 2013 Based primarily on Brannen, P.M., Krewer,

More information

Spatio-temporal Analysis of an HLB Epidemic in Florida and Implications for Spread

Spatio-temporal Analysis of an HLB Epidemic in Florida and Implications for Spread Spatio-temporal Analysis of an HLB Epidemic in Florida and Implications for Spread T. R. Gottwald 1, M. S. Irey 2, T. Gast 2, S. R. Parnell 3, E. L. Taylor 1 and M. E. Hilf 1 1 USDA, ARS, US Horticultural

More information

Bacterial Leaf Scorch of Blueberry

Bacterial Leaf Scorch of Blueberry Bacterial Leaf Scorch of Blueberry Phillip M. Brannen 1, Gerard Krewer 2, Bob Boland 3, Dan Horton 4, C. J. Chang 5 University of Georgia Relative to total sales, blueberries are the number one fruit commodity

More information

Tomato Spotted Wilt Virus (TSWV) Information and Control Strategies

Tomato Spotted Wilt Virus (TSWV) Information and Control Strategies Tomato Spotted Wilt Virus (TSWV) Information and Control Strategies Craig H. Canaday Dept. of Entomology and Plant Pathology The University of Tennessee West Tennessee Research and Education Center (WTREC)

More information

PEST AND DISEASE MANAGEMENT

PEST AND DISEASE MANAGEMENT PEST AND DISEASE MANAGEMENT Arthropod Pests The examples of arthropod pests shown here are aphids, spider mites, whiteflies, mealybugs, corn earworm, and tomato hornworm. Aphids Aphids are small, soft-bodied

More information

1. Introduction to scales 1. The Hemiptera (True bugs) 2. How bugs got their name 3. Difference between Heteroptera and Homoptera 4.

1. Introduction to scales 1. The Hemiptera (True bugs) 2. How bugs got their name 3. Difference between Heteroptera and Homoptera 4. 1. Introduction to scales 1. The Hemiptera (True bugs) 2. How bugs got their name 3. Difference between Heteroptera and Homoptera 4. Major scale families 5. Parts of a scale 6. Scale life cycles 2. Biology

More information

6 2 Insects and plants

6 2 Insects and plants 6 2 Insects and plants Insect DIY 1. Find plant habitat 2. Find plant 3. Accept plant 4. Eat survive, reproduce Plant characteristics Shape structure Mechanical defenses trichomes Chemical defenses sap,

More information

White flies and their natural enemies. Moshe cohen Bio-bee Sde Eliyahu Ltd. October 2015

White flies and their natural enemies. Moshe cohen Bio-bee Sde Eliyahu Ltd. October 2015 White flies and their natural enemies Moshe cohen Bio-bee Sde Eliyahu Ltd. October 2015 White flies and their natural enemies: Two species of whiteflies. Attack flowers and vegetables crops: 1.Bemisia

More information

Todd A.Steinlage, Alaska Department of Natural Resources, Division of Agriculture, Plant Materials Center

Todd A.Steinlage, Alaska Department of Natural Resources, Division of Agriculture, Plant Materials Center Tomato Spotted Wilt Virus in Alaska Greenhouses and Nurseries Todd A.Steinlage, Alaska Department of Natural Resources, Division of Agriculture, Plant Materials Center Tomato spotted wilt virus (TSWV)

More information

Colonization of Dodder, Cuscuta indecora, by Candidatus Liberibacter asiaticus and Ca. L. americanus

Colonization of Dodder, Cuscuta indecora, by Candidatus Liberibacter asiaticus and Ca. L. americanus Bacteriology Colonization of Dodder, Cuscuta indecora, by Candidatus Liberibacter asiaticus and Ca. L. americanus John S. Hartung, Cristina Paul, Diann Achor, and R. H. Brlansky First and second authors:

More information

Leaf and Stem Feeding Aphids

Leaf and Stem Feeding Aphids Cooperative Extension Service College of Agriculture B-1050.4 February, 1998 Leaf and Stem Feeding Aphids Order: Homoptera (aphids, whiteflies, scales, mealybugs, cicadas) Family: Aphididae (aphids) Metamorphosis:

More information

A New Candidatus Liberibacter Species Associated with Solanaceous Plants

A New Candidatus Liberibacter Species Associated with Solanaceous Plants A New Candidatus Liberibacter Species Associated with Solanaceous Plants Lia Liefting, Bevan Weir, Lisa Ward, Kerry Paice, Gerard Clover Plant Health and Environment Laboratory MAF Biosecurity New Zealand

More information

Foliar Nutrient Uptake (Translocation) in HLB Affected Leaves

Foliar Nutrient Uptake (Translocation) in HLB Affected Leaves Foliar Nutrient Uptake (Translocation) in HLB Affected Leaves Ron Brlansky, Ai-vy Riniker and Carmen Bierman University of Florida Citrus Research and Education Center Why does this HLB Tree Look Good?

More information

Scale Insects. Order: Hemiptera. Families: Diaspididae (armored scales), Coccidae (soft scales), Eriococcidae (Felt scales), others

Scale Insects. Order: Hemiptera. Families: Diaspididae (armored scales), Coccidae (soft scales), Eriococcidae (Felt scales), others Scale Insects Order: Hemiptera Families: Diaspididae (armored scales), Coccidae (soft scales), Eriococcidae (Felt scales), others Scale Insect Basics Scale insects feed on plant fluids using piercing-sucking

More information

2016 Soybean Vein Necrosis Disease Survey

2016 Soybean Vein Necrosis Disease Survey 216 Soybean Vein Necrosis Disease Survey Nathan Kleczewski Ph.D. Extension Plant Pathologist Bill Cissel Extension IPM Agent University of Delaware Cooperative Extension Soybean Vein Necrosis Disease (SVND)

More information

EPIDEMIOLOGY OF HLB (HUANGLONGBING)

EPIDEMIOLOGY OF HLB (HUANGLONGBING) EPIDEMIOLOGY OF HLB (HUANGLONGBING) A. Bergamin Filho 1, R. B. Bassanezi 2, L. Amorim 1, and T. R. Gottwald 3 1 Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Escola Superior de Agricultura

More information

Tree and Shrub Insects

Tree and Shrub Insects Aphids Aphids are small soft-bodied insects that suck plant juices. High aphid populations can cause leaves to yellow, curl, or drop early. The most bothersome aspect of aphids is the honeydew they produce.

More information

Bacterial Leaf Scorch of Blueberry

Bacterial Leaf Scorch of Blueberry Bacterial Leaf Scorch of Blueberry Phillip M. Brannen, UGA Extension Plant Pathologist; Gerard Krewer, UGA Extension Horticulturist; Bob Boland, UGA Extension County Agent; Dan Horton, UGA Extension Entomologist;

More information

Insect and other pests in high tunnel vegetables. Gerald Brust IPM Vegetable Specialist

Insect and other pests in high tunnel vegetables. Gerald Brust IPM Vegetable Specialist Insect and other pests in high tunnel vegetables Gerald Brust IPM Vegetable Specialist Over the years high tunnel (HT) production of vegetables have enabled growers to extend their vegetable production

More information

What is insect forecasting, and why do it

What is insect forecasting, and why do it Insect Forecasting Programs: Objectives, and How to Properly Interpret the Data John Gavloski, Extension Entomologist, Manitoba Agriculture, Food and Rural Initiatives Carman, MB R0G 0J0 Email: jgavloski@gov.mb.ca

More information

New Insect Pests of Golf Courses. Wendy Gelernter PTRI

New Insect Pests of Golf Courses. Wendy Gelernter PTRI New Insect Pests of Golf Courses Wendy Gelernter PTRI Redgum lerp psyllid Glycaspis brimblecombei Redgum lerp psyllid Imported to CA from Australia in 1998 Prolonged infestations can kill eucalyptus Infests

More information

Vector Transmission of Xylella fastidiosa to Dormant Grape

Vector Transmission of Xylella fastidiosa to Dormant Grape Vector Transmission of Xylella fastidiosa to Dormant Grape R. P. P. Almeida, Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu 96822; C. Wistrom, Department

More information

Towards the Ultimate Solution: Genetic Resistance to HLB in Commercial Citrus. Greening Summit Florida Citrus Growers Institute 2008

Towards the Ultimate Solution: Genetic Resistance to HLB in Commercial Citrus. Greening Summit Florida Citrus Growers Institute 2008 Towards the Ultimate Solution: Genetic Resistance to HLB in Commercial Citrus Greening Summit Florida Citrus Growers Institute 2008 Jude Grosser University of Florida, Citrus Research and Education Center,

More information

Unit D: Controlling Pests and Diseases in the Orchard. Lesson 5: Identify and Control Diseases in the Orchard

Unit D: Controlling Pests and Diseases in the Orchard. Lesson 5: Identify and Control Diseases in the Orchard Unit D: Controlling Pests and Diseases in the Orchard Lesson 5: Identify and Control Diseases in the Orchard 1 Terms Abiotic disease Bacteria Biotic diseases Cultural disease control Disease avoidance

More information

The Influence of Weather on the Survival and Population Fluctuations of Trioza erytreae (Del Guercio)-A Vector of Greening

The Influence of Weather on the Survival and Population Fluctuations of Trioza erytreae (Del Guercio)-A Vector of Greening PROCEEDINGS of the IOCV The Influence of Weather on the Survival and Population Fluctuations of Trioza erytreae (Del Guercio)-A Vector of Greening H. D. CATLING and G. C. GREEN THIS PAPER, which summarizes

More information

Welcome to the Iowa Certified Nursery Professional Training program Module 7: Introduction to Plant Diseases and Insects.

Welcome to the Iowa Certified Nursery Professional Training program Module 7: Introduction to Plant Diseases and Insects. Welcome to the Iowa Certified Nursery Professional Training program Module 7: Introduction to Plant Diseases and Insects. 1 After completing this module you should: 1. Understand the causes of abssiotic

More information

Unit G: Pest Management. Lesson 2: Managing Crop Diseases

Unit G: Pest Management. Lesson 2: Managing Crop Diseases Unit G: Pest Management Lesson 2: Managing Crop Diseases 1 Terms Abiotic disease Bacteria Biotic disease Cultural disease control Disease avoidance Disease resistance Disease tolerance Fungi Infectious

More information

HUANGLONGBING - A RESEARCH AND EXTENSION UPDATE

HUANGLONGBING - A RESEARCH AND EXTENSION UPDATE HUANGLONGBING - A RESEARCH AND EXTENSION UPDATE An overview Dr. Megan Dewdney Assistant Professor and Extension Specialist Citrus Research and Education Center, Lake Alfred HLB Management Psyllid (vector)

More information

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT Stephen D. Cockfield and Daniel L. Mahr Department of Entomology University of Wisconsin-Madison

More information

Soybean stem fly outbreak in soybean crops

Soybean stem fly outbreak in soybean crops Soybean stem fly outbreak in soybean crops By Kate Charleston Published: April 10, 2013 An estimated 4,000 ha of soybeans near Casino in Northern NSW have been affected to varying degrees by soybean stem

More information

Entomology Research Laboratory The University of Vermont South Burlington, Vermont USA

Entomology Research Laboratory The University of Vermont South Burlington, Vermont USA THE LIFE CYCLE OF PEAR THRIPS, Taeniothrips inconsequens (Uzel) IN VERMONT Margaret Skinner, Bruce L. Parker and Sandra H. ~ilmot' Entomology Research Laboratory The University of Vermont South Burlington,

More information

Exposure of pollinating insects to neonicotinoids by guttation on straw cereals after seed-treated sugar beet (November 2017)

Exposure of pollinating insects to neonicotinoids by guttation on straw cereals after seed-treated sugar beet (November 2017) Exposure of pollinating insects to neonicotinoids by guttation on straw cereals after seed-treated sugar beet (November 2017) SUMMARY At the early stage of their growth, sugar beets are protected from

More information

Sharpshooter & Whiteflies: What s New in Ornamental Research

Sharpshooter & Whiteflies: What s New in Ornamental Research Sharpshooter & Whiteflies: What s New in Ornamental Research Rick Redak and Erich Schoeller Department of Entomology University of California, Riverside Study System: Giant Whitefly (Aleurodicus dugesii)

More information

Spatial Dispersion Pattern and Development of a Sequential Sampling Plan for The Asian Citrus Psyllid (Hemiptera: Liviidae) in Mexico

Spatial Dispersion Pattern and Development of a Sequential Sampling Plan for The Asian Citrus Psyllid (Hemiptera: Liviidae) in Mexico Spatial Dispersion Pattern and Development of a Sequential Sampling Plan for The Asian Citrus Psyllid (Hemiptera: Liviidae) in Mexico 白加列 Dr. Gabriel Díaz-Padilla * J. Isabel López-Arroyo Rafael A. Guajardo-Panes

More information

Plant Disease Introduction. Larry A. Sagers Utah State University Extension Regional Horticulturist

Plant Disease Introduction. Larry A. Sagers Utah State University Extension Regional Horticulturist Plant Disease Introduction Larry A. Sagers Utah State University Extension Regional Horticulturist Plant Pathology Basics Disease Anything that interferes with normal plant function Plant Pathology Basics

More information

Dectes Stem Borer: A Summertime Pest of Soybeans

Dectes Stem Borer: A Summertime Pest of Soybeans Dectes Stem Borer: A Summertime Pest of Soybeans Veronica Johnson* and Cerruti R 2 Hooks $ University of Maryland Dept. of Entomology * Graduate student and $ Associate professor and Extension Specialist

More information

Parasitic Diseases. Plants killing plants

Parasitic Diseases. Plants killing plants Parasitic Diseases Plants killing plants Parasitic Plants According to the American Heritage Dictionary a parasite is- An organism that grows, feeds, and is sheltered on or in a different organism while

More information

Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri,in sweet orange seedlings

Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri,in sweet orange seedlings Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri,in sweet orange seedlings J. P. Bonani 1,A.Fereres 2,E.Garzo 2,M.P.Miranda 3, B. Appezzato-Da-Gloria 4 &J.R.S.Lopes

More information

Express PRA 1) for Syndrome basses richesses (SBR) Prepared by: Julius Kühn-Institut, Institute for Plant Health: 11 July, 2012.

Express PRA 1) for Syndrome basses richesses (SBR) Prepared by: Julius Kühn-Institut, Institute for Plant Health: 11 July, 2012. Express PRA 1) for Prepared by: Julius Kühn-Institut, Institute for Plant Health: 11 July, 2012. Initiation: Dr. Gritta Schrader: translated by Elke Vogt-Arndt Occurrence in Baden-Württemberg Phytosanitary

More information

Epidemiology of Grapevine leafroll associated virus-3 and regional management

Epidemiology of Grapevine leafroll associated virus-3 and regional management Epidemiology of Grapevine leafroll associated virus-3 and regional management Acknowledgements Funding sources: American Vineyard Foundation (AVF) California Grape Rootstock Improvement Commission California

More information

Meteorological Information for Locust Monitoring and Control. Robert Stefanski. Agricultural Meteorology Division World Meteorological Organization

Meteorological Information for Locust Monitoring and Control. Robert Stefanski. Agricultural Meteorology Division World Meteorological Organization Meteorological Information for Locust Monitoring and Control Robert Stefanski Agricultural Meteorology Division World Meteorological Organization Objectives of Workshop Presentation Meteorological requirements

More information

Certified Arborist. Diagnosis and Plant Disorders. What is a healthy plant?

Certified Arborist. Diagnosis and Plant Disorders. What is a healthy plant? Certified Arborist Diagnosis and Plant Disorders What is a healthy plant? Vitality Ability to deal with stress Vigor Genetic ability to deal with stress 1 Many things combine to cause decline! Plant Health

More information

Vegetable Diagnostics 101: Insects and Diseases

Vegetable Diagnostics 101: Insects and Diseases Vegetable Diagnostics 101: Insects and Diseases The 2013 Educational Program Committee is pleased to share conference educational materials with you under the condition that they are used without alteration

More information

Invasive Species Management Plans for Florida

Invasive Species Management Plans for Florida Invasive Species Management Plans for Florida Air Potato Dioscorea bulbifera (L.) Dioscoreaceae INTRODUCTION A native to tropical Asia, air potato, Dioscorea bulbifera, was first introduced to the Americas

More information

Cryotherapy: A New Method to Eliminate Pathogens from Sweetpotato Propagation Materials

Cryotherapy: A New Method to Eliminate Pathogens from Sweetpotato Propagation Materials Cryotherapy: A New Method to Eliminate Pathogens from Sweetpotato Propagation Materials Margaret Worthington Graduate Group in Horticulture and Agronomy University of California, Davis April 14, 2009 http://www.judithbarathart.com

More information

Rose Black spot-diplocarpon rosae

Rose Black spot-diplocarpon rosae Issue 20-July 16, 2013 This bulletin from the Cooperative Extension Plant Health Clinic (Plant Disease Clinic) is an electronic update about diseases and other problems observed in our lab each month.

More information

INSECTS AND PESTS OF AFRICAN VIOLETS By Mary Lou Harden

INSECTS AND PESTS OF AFRICAN VIOLETS By Mary Lou Harden INSECTS AND PESTS OF AFRICAN VIOLETS By Mary Lou Harden I. Insect and mite pests. Many different pests attack African violets. Some feed on the roots, some on the foliage, and others on the blooms. II.

More information

Field Identification Guide

Field Identification Guide Field Identification Guide Oriental Chestnut Gall Wasp Image: Gyorgy Csoka Hungary Forest Research Institute, Bugwood.org Funded by the EU s LIFE programme Oriental Chestnut Gall Wasp Dryocosmus kuriphilus

More information

Abstract. Introduction. Key words: stylet sheath, feeding behaviour, huanglongbing, citrus greening, Hemiptera, Psyllidae, Liviidae, Rutaceae

Abstract. Introduction. Key words: stylet sheath, feeding behaviour, huanglongbing, citrus greening, Hemiptera, Psyllidae, Liviidae, Rutaceae Influences of leaf age and type, non-host volatiles, and mineral oil deposits on the incidence, distribution, and form of stylet tracks of Diaphorina citri Yueping Yang 1,G.AndrewC.Beattie 2, Robert N.

More information

Pages in the Montana Master Gardener Handbook

Pages in the Montana Master Gardener Handbook Insect Identification Pages 309-326 in the Montana Master Gardener Handbook Integrated Pest Management Integrated Pest Management is an effective and environmentally sensitive approach to pest management

More information

Identifying Thrips & Their Damage in New England Greenhouses

Identifying Thrips & Their Damage in New England Greenhouses Identifying Thrips & Their Damage in New England Greenhouses Cheryl Frank and Alan Eaton University of Vermont and University of New Hampshire Cooperative Extension January 2016 Thrips (Order: Thysanoptera)

More information

North American Bramble Growers Research Foundation 2016 Report. Fire Blight: An Emerging Problem for Blackberry Growers in the Mid-South

North American Bramble Growers Research Foundation 2016 Report. Fire Blight: An Emerging Problem for Blackberry Growers in the Mid-South North American Bramble Growers Research Foundation 2016 Report Fire Blight: An Emerging Problem for Blackberry Growers in the Mid-South Principal Investigator: Burt Bluhm University of Arkansas Department

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

Biocontrol of Garlic Mustard and Buckthorn, an Update

Biocontrol of Garlic Mustard and Buckthorn, an Update Biocontrol of Garlic Mustard and Buckthorn, an Update Jeanie Katovich, Esther Gerber, Hariet Hinz, Luke Skinner, David Ragsdale Roger Becker, Laura Van Riper and Andre Gassman Where is garlic mustard a

More information

Insects Affecting Commercial Jojoba Production in Arizona

Insects Affecting Commercial Jojoba Production in Arizona Insects Affecting Commercial Jojoba Production in Arizona Item Type text; Article Authors Rethwisch, Michael D. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Journal Deciduous Fruit

More information

THE PANGAEAN ORIGIN OF CANDIDATUS LIBERIBACTER SPECIES

THE PANGAEAN ORIGIN OF CANDIDATUS LIBERIBACTER SPECIES Journal of Plant Pathology (2013), 95 (3), 455-461 Edizioni ETS Pisa, 2013 Nelson et al. 455 Letter to the Editor THE PANGAEAN ORIGIN OF CANDIDATUS LIBERIBACTER SPECIES W.R. Nelson 1, J.E. Munyaneza 2,

More information

Scale Insects. Hemiptera: Many families

Scale Insects. Hemiptera: Many families Scale Insects Hemiptera: Many families Soft Scales Armored Scales Some Important Armored (Hard) Scales in Colorado Oystershell scale Pine needle scale Scurfy scale Walnut scale San Jose scale Poplar scale

More information

Monthly overview. Rainfall

Monthly overview. Rainfall Monthly overview 1-10 May 2018 During the first ten days of May, dry conditions were experienced across the country. Temperatures dropped to below 10 C over the southern half of the country for the first

More information

Physiological and Molecular Plant Pathology

Physiological and Molecular Plant Pathology Physiological and Molecular Plant Pathology 74 (2009) 76 83 Contents lists available at ScienceDirect Physiological and Molecular Plant Pathology journal homepage: www.elsevier.com/locate/pmpp Anatomical

More information

1/30/2015. Overview. Measuring host growth

1/30/2015. Overview. Measuring host growth PLP 6404 Epidemiology of Plant Diseases Spring 2015 Lecture 8: Influence of Host Plant on Disease Development plant growth and Prof. Dr. Ariena van Bruggen Emerging Pathogens Institute and Plant Pathology

More information

The New Zealand Institute for Plant & Food Research Limited. Xylella fastidiosa: A pathogen with the X-factor

The New Zealand Institute for Plant & Food Research Limited. Xylella fastidiosa: A pathogen with the X-factor Xylella fastidiosa: A pathogen with the X-factor Myrtle Rust Symposium, 28 August 2017 The pathogen Xylella fastidiosa» X. fastidiosa (Xf) is a gammaproteobacterium.» Xf is comprised of four subspecies.»

More information

Diagnosing Plant Problems. A strategy to get started

Diagnosing Plant Problems. A strategy to get started + Diagnosing Plant Problems A strategy to get started + Causes of plant damage Living factors Pests such as insects, mites, rodents, mammals Pathogens that cause disease such as fungi, bacteria, viruses,

More information

Control of thrips in Allium and Brassica crops

Control of thrips in Allium and Brassica crops Factsheet 9/11 Field Vegetables Control of thrips in Allium and Brassica crops Rosemary Collier, The University of Warwick The onion thrips (Thrips tabaci) is a pest of several crops in the UK, particularly

More information

An Application of Space-Time Analysis to Improve the Epidemiological Understanding of the Papaya-Papaya Yellow Crinkle Pathosystem

An Application of Space-Time Analysis to Improve the Epidemiological Understanding of the Papaya-Papaya Yellow Crinkle Pathosystem 2007 Plant Management Network. Accepted for publication 26 April 2007. Published. An Application of Space-Time Analysis to Improve the Epidemiological Understanding of the Papaya-Papaya Yellow Crinkle

More information

Investigating San Jose scale in northwest Michigan sweet cherries

Investigating San Jose scale in northwest Michigan sweet cherries Investigating San Jose scale in northwest Michigan sweet cherries E. A. Pochubay and N. L. Rothwell Michigan State University Extension, AgBioResearch January 13-14, 2015 Northwest Michigan Orchard and

More information

Student Name: Teacher: Date: Test: 9_12 Agriculture AP41 - Horticulture I Test 2 Description: Pest Management District: Wake County Form: 501

Student Name: Teacher: Date: Test: 9_12 Agriculture AP41 - Horticulture I Test 2 Description: Pest Management District: Wake County Form: 501 Student Name: Teacher: Date: Test: 9_12 Agriculture AP41 - Horticulture I Test 2 Description: Pest Management District: Wake County Form: 501 1. Aimee uses traps in her garden to: 2. Which is MOST true

More information

History INVASIVE INSECTS THREATENING YOUR BACKYARD: BROWN MARMORATED STINK BUG & VIBURNUM LEAF BEETLE. Identification. Common Look-A-Likes 1/12/2015

History INVASIVE INSECTS THREATENING YOUR BACKYARD: BROWN MARMORATED STINK BUG & VIBURNUM LEAF BEETLE. Identification. Common Look-A-Likes 1/12/2015 History INVASIVE INSECTS THREATENING YOUR BACKYARD: BROWN MARMORATED STINK BUG & VIBURNUM LEAF BEETLE Native to Asia First discovered in Pennsylvania, 1998 David R. Lance, USDA APHIS PPQ Adults emerge

More information

Plant disease. Plant Diseases: Learning objectives: Plant Disease: Any physiological or structural abnormality that is harmful to the plant

Plant disease. Plant Diseases: Learning objectives: Plant Disease: Any physiological or structural abnormality that is harmful to the plant Plant disease Plant Diseases: Identification and Control Melodie Putnam Extension Plant Pathologist Learning objectives: Difference between biotic and abiotic diseases and their manifestation Difference

More information

Plant Pathology Fact Sheet

Plant Pathology Fact Sheet Plant Pathology Fact Sheet PP-22 Selerotinia Diseases of Vegetable and Field Crops in Florida Ken Pernezny and L. H. Purdy, Professor, Everglades Research and Education Center, Belle Glade; and Professor,

More information

PLP 6404 Epidemiology of Plant Diseases Spring 2015

PLP 6404 Epidemiology of Plant Diseases Spring 2015 PLP 6404 Epidemiology of Plant Diseases Spring 2015 Ariena van Bruggen, modified from Katherine Stevenson Lecture 8: Influence of host on disease development - plant growth For researchers to communicate

More information

ECOLOGICAL OBSERVATIONS ON TWO LEAFHOPPERS THAT TRANSMIT THE PIERCE'S DISEASE BACTERIUM1

ECOLOGICAL OBSERVATIONS ON TWO LEAFHOPPERS THAT TRANSMIT THE PIERCE'S DISEASE BACTERIUM1 Proc. Fla. State Hort. Soc. 93:115-120. 1980. ECOLOGICAL OBSERVATIONS ON TWO LEAFHOPPERS THAT TRANSMIT THE PIERCE'S DISEASE BACTERIUM1 W. C. Adlerz University of Florida, IFAS, Agricultural Research Center,

More information

Lecture 8 Insect ecology and balance of life

Lecture 8 Insect ecology and balance of life Lecture 8 Insect ecology and balance of life Ecology: The term ecology is derived from the Greek term oikos meaning house combined with logy meaning the science of or the study of. Thus literally ecology

More information

Biology and Ecology of Forest Health. Climate Change and Tree Health

Biology and Ecology of Forest Health. Climate Change and Tree Health Biology and Ecology of Forest Health Climate Change and Tree Health Assume classic UKCIP scenario: ca 3 o C warming in 50-80 yrs; warmer winters/summers; increased winter rain and summer drought; perturbations

More information

Invasive Species Test. 30 Stations 90 seconds each -or- 15 stations (2/seat) 3 minutes each

Invasive Species Test. 30 Stations 90 seconds each -or- 15 stations (2/seat) 3 minutes each Invasive Species Test 30 Stations 90 seconds each -or- 15 stations (2/seat) 3 minutes each Station 1 A. The insect transmits Huanglongbing killing the plant upon which it feeds. How was this species introduced

More information

Aphids belong in the order Hemiptera and family

Aphids belong in the order Hemiptera and family Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-108-07 July 2007 Aphids in alfalfa Erin W. Hodgson Extension Entomology Specialist What You Should Know Aphids

More information

Light Brown Apple Moth Management in Nurseries

Light Brown Apple Moth Management in Nurseries Light Brown Apple Moth Management in Nurseries Steve Tjosvold University of California Cooperative Extension April 21, 2009 Watsonville, California IPM: Best Management Practices for Light Brown Apple

More information

Insect/Bacterial Symbioses Aphid/Buchnera association

Insect/Bacterial Symbioses Aphid/Buchnera association Insect/Bacterial Symbioses Aphid/Buchnera association I. Introduction A. Intracellular symbioses are common in the order Homoptera, which includes aphids, mealy bugs, whiteflies, and cicadas, Blattaria,

More information

Epidemiology and forecasting of BYDV on winter cereals. Richard Harrington Rothamsted Insect Survey RETIRED. Rothamsted Research where knowledge grows

Epidemiology and forecasting of BYDV on winter cereals. Richard Harrington Rothamsted Insect Survey RETIRED. Rothamsted Research where knowledge grows Rothamsted Research where knowledge grows Epidemiology and forecasting of BYDV on winter cereals Richard Harrington Rothamsted Insect Survey RETIRED Alnarp 5 th June 2015 Talk content Aphids The suction-trap

More information

Alberto Alma and Rosemarie Tedeschi DIVAPRA Entomologia e Zoologia applicate all Ambiente «C. Vidano» University of Torino - Italy

Alberto Alma and Rosemarie Tedeschi DIVAPRA Entomologia e Zoologia applicate all Ambiente «C. Vidano» University of Torino - Italy Emerging phytoplasma diseases: research of the insect vectors Alberto Alma and Rosemarie Tedeschi DIVAPRA Entomologia e Zoologia applicate all Ambiente «C. Vidano» University of Torino - Italy In the last

More information

Viroids are unique plant pathogens that are smaller than viruses and consist of a short single-stranded circular RNA without a protein coat (Diener,

Viroids are unique plant pathogens that are smaller than viruses and consist of a short single-stranded circular RNA without a protein coat (Diener, Citrus Viroids Viroids are unique plant pathogens that are smaller than viruses and consist of a short single-stranded circular RNA without a protein coat (Diener, 1971). These pathogens cause damage to

More information

Effect of Host Plant Resistance to Tomato yellow leaf curl virus (TYLCV) on Virus Acquisition and Transmission by Its Whitefly Vector

Effect of Host Plant Resistance to Tomato yellow leaf curl virus (TYLCV) on Virus Acquisition and Transmission by Its Whitefly Vector Virology Effect of Host Plant Resistance to Tomato yellow leaf curl virus (TYLCV) on Virus Acquisition and Transmission by Its Whitefly Vector Moshe Lapidot, Michael Friedmann, Meir Pilowsky, Rachel Ben-Joseph,

More information

EVALUATION OF AVOCADO COLD HARDINESS

EVALUATION OF AVOCADO COLD HARDINESS Proc. Fla. State Hort. Soc. 88:496-499. 1975. EVALUATION OF AVOCADO COLD HARDINESS R. S. Scorza and W. J. Wiltbank IFAS Fruit Crops Department, Gainesville Abstract Cold hardiness of 'Gainesville' cuttings,

More information

Databases of host species to support research on plant pests: the case of Xylella fastidiosa

Databases of host species to support research on plant pests: the case of Xylella fastidiosa Databases of host species to support research on plant pests: the case of Xylella fastidiosa Ciro Gardi, Miren Andueza, Andrea Baù, Ewelina Czwienczek, Ioannis Koufakis, Marco Pautasso, Giuseppe Stancanelli

More information

Roses: Back on the Menu. David Cook

Roses: Back on the Menu. David Cook Roses: Back on the Menu David Cook Feeding Symptoms: Stippling White or yellow spots, known as stippling, result when certain foliage feeders pierce leaf tissue with their mouthparts and remove cell sap.

More information

Managing stink bugs through cultural practices

Managing stink bugs through cultural practices Managing stink bugs through cultural practices Rachael Long, Farm Advisor, UC Cooperative Extension Yolo, Solano, Sacramento Counties, http://ceyolo.ucanr.edu Common stink bugs: Southern green (Africa

More information

Viruses in Camellias. Simon W. Scott. Clemson University

Viruses in Camellias. Simon W. Scott. Clemson University Viruses in Camellias Simon W. Scott Clemson University 1 In plants all viruses are graft-transmissible agents but Not all graft-transmissible agents are viruses 2 As you are all well aware camellias are

More information

Leo Donovall PISC Coordinator/Survey Entomologist

Leo Donovall PISC Coordinator/Survey Entomologist Leo Donovall PISC Coordinator/Survey Entomologist Executive Order 2004-1 Recognized the Commonwealth would benefit from the advice and counsel of an official body of natural resource managers, policy makers,

More information

Gypsy Moth Defoliation Harpers Ferry, Va

Gypsy Moth Defoliation Harpers Ferry, Va Gypsy Moth Defoliation Harpers Ferry, Va Common Bad Bugs Eastern Tent Caterpillar Bagworm Japanese Beetles Aphids Scale Insects Borers Eastern Tent Caterpillar Bagworm Japanese Beetles Aphids Soft Scales

More information

CAMBIUM, meristem, heartwood, and lenticel are

CAMBIUM, meristem, heartwood, and lenticel are Examining the Structures of a Tree CAMBIUM, meristem, heartwood, and lenticel are some terms that may be new to you. These terms are used to describe various tree structures. Not surprisingly, many terms

More information

Bacterial spot of pepper and tomato

Bacterial spot of pepper and tomato Website to brush up on bacterial diseases Bacterial spot of pepper and tomato http://www.apsnet.org/edcenter/intropp/lessons/prokaryotes/pages/bacterialspot.aspx Potato blackleg and soft rot http://www.apsnet.org/edcenter/intropp/lessons/prokaryotes/pages/blacklegpotato.aspx

More information

Plant Disease Introduction

Plant Disease Introduction Utah State University DigitalCommons@USU All Archived Publications Archived USU Extension Publications 6-30-2006 Plant Disease Introduction Larry A. Sagers Utah State University Follow this and additional

More information

HOMEOWNER PLANT DISEASE CLINIC REPORT Holly Thornton, Homeowner IPM Specialist

HOMEOWNER PLANT DISEASE CLINIC REPORT Holly Thornton, Homeowner IPM Specialist MARCH 2007 HOMEOWNER PLANT DISEASE CLINIC REPORT Holly Thornton, Homeowner IPM Specialist As March nears an end, sample submission (both Commercial and Homeowner) is beginning to increase as I expected

More information

Bee Colony Activities Throughout The Year

Bee Colony Activities Throughout The Year Bee Colony Activities Throughout The Year Written by Khalil Hamdan Apeldoorn The Netherlands A honeybee gathering nectar from a flower. Photo source: forestwander.com Bee collecting pollen. Photo source:

More information

Objectives. Teaching Basic Entomology. My questions for you. Anatomy of an insect 2/27/15

Objectives. Teaching Basic Entomology. My questions for you. Anatomy of an insect 2/27/15 Objectives GARDEN INSECT PESTS: HOW STUDENTS CAN ENGAGE IN INTEGRATED PEST MANAGEMENT Introduction to entomology Provide examples of activities and exercises you can use in the classroom (k-8) Common insects

More information

THE IRON-CHLOROPHYLL RELATEONSHIP IN YOUNG HASS AVOCADO LEAVES

THE IRON-CHLOROPHYLL RELATEONSHIP IN YOUNG HASS AVOCADO LEAVES Proc. Fla. State Hort. Soc. 83:372-375. 1970. THE IRON-CHLOROPHYLL RELATEONSHIP IN YOUNG HASS AVOCADO LEAVES E. F. Wallihan and R. G. Sharpless University of California, Riverside ABSTRACT Young summer

More information

Effect of temperature on the development of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae)

Effect of temperature on the development of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) Scientific Research and Essays Vol. 6(31), pp. 6459-6464, 16 December, 2011 Available online at http://www.academicjournals.org/sre DOI: 10.5897/SRE11.832 ISSN 1992-2248 2011 Academic Journals Full Length

More information