Effects of photoperiod and temperature on growth and flowering in the annual (primocane) fruiting raspberry (Rubus idaeus L.

Size: px
Start display at page:

Download "Effects of photoperiod and temperature on growth and flowering in the annual (primocane) fruiting raspberry (Rubus idaeus L."

Transcription

1 Journal of Horticultural Science & iotechnology (29) 84 (4) Effects of photoperiod and temperature on growth and flowering in the annual (primocane) fruiting raspberry (Rubus idaeus L.) cultivar Polka y A. SØNSTEY 1 * and O. M. HEIDE 2 1 Arable Crops Division, Norwegian Institute for Agriculture and Environmental Research, NO-2849 Kapp, Norway 2 Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. ox 3, NO-1432 Ås, Norway ( anita.sonsteby@bioforsk.no) (Accepted 22 March 29) SUMMARY Growth and flowering of the annual-fruiting raspberry (Rubus idaeus L.) cultivar Polka were studied under controlled environment conditions in order to facilitate out-of-season production. Vegetatively-propagated plants originating from adventitious root buds were used. Height growth and the rate of leaf formation increased with increasing temperature, up to a broad optimum in the mid-2 C range. While elongation was consistently enhanced by long-day () conditions, photoperiod had no effect on the rate of leaf formation. stimulation of growth thus resulted from increased internode length only. In agreement with earlier reports, it was found that, in contrast to biennial-fruiting cultivars, such annual-fruiting cultivars do not need low temperatures for flower initiation, nor do they appear to have a juvenile phase during which they are un-responsive to flower-inducing conditions. Polka plants responded to inductive conditions as early as the -leaf stage, and flowered freely across the entire range of growth temperatures, even at 3 C. Flowering was advanced and the number of flowers increased with increasing temperature, up to an optimum at 27 C. Flowering was also consistently advanced and occurred at lower nodes under than under short-day () conditions across the whole range of temperatures. Night interruption for 3 h in the middle of the night was also effective, demonstrating that this is a true photoperiodic response and not merely an effect of increased light integral in. It was also confirmed that a distinct vernalisation-type advancement of flowering took place when small, non-dormant plants were exposed to additional chilling at 6 C for several weeks. At low temperatures, a large proportion of the lateral buds were dormant, so that, at 12 C, the plants actually flowered only at their tips. Dissections also revealed that the dormant buds had initiated flowers; but, because of their dormant state, they needed several weeks of chilling before they could flower (biennial-fruiting behaviour). oth types of buds were initiated by the same environmental conditions. Practical applications of the findings are suggested. Red raspberry (Rubus idaeus L.) is a temperate species with short-lived woody shoots borne on a long-lived perennial root system. Two groups of cultivars with different life cycles are commonly recognised. In the common biennial-fruiting cultivars, the shoots (canes) have a 2-year life cycle during which they pass through a sequence of seasonal phases involving vegetative growth, flower formation, and fruiting, as well as induction and breaking of Winter bud dormancy (Hudson, 199; Williams, 199a, b; 196; Sønsteby and Heide, 28). In the so-called primocane-fruiting cultivars, on the other hand, the entire cycle of vegetative growth, flowering, and fruiting is normally completed in a single growing season (Keep, 1988). In addition, a third, intermediate, so-called tip-flowering type is also often recognised (Carew et al., 2; 23). Such cultivars usually produce a few flowers and fruits at the tip of the cane at the end of the first growing season, while the rest of the buds will flower and fruit in the second year. The physiological and horticultural aspects of life-cycle control in these types of plants were reviewed by Carew et al. (2). *Author for correspondence. Annual-fruiting cultivars have variously been referred to as Autumn-fruiting, everbearing, Fall-bearing, primocane-fruiting, or tip-fruiting cultivars (Keep, 1988); whereas biennial-fruiting cultivars, sometimes also termed Summer-cropping cultivars, are often now referred to as floricane-fruiting cultivars (Carew et al., 2; Oliveira et al., 21; Dale et al., 2). Since none of these terms are self-explanatory, and since annual- and biennial-fruiting are the terms that best and adequately describe the essential difference, namely a 1-year or 2-year shoot life-cycle, we prefer to use these terms and suggest that they should be generally adopted. Environmental control of growth and flowering has been studied extensively in both biennial- and annualfruiting raspberry cultivars (for reviews, see Keep, 1988; Carew et al., 2). In biennial-fruiting cultivars flower buds are initiated in short days () if the temperature is below C (Williams, 199a, b; 196; Sønsteby and Heide, 28). However, if the temperature is below 12 C, buds are also initiated under long-day () conditions, whereas flowering can be prevented indefinitely at 18 C and higher temperatures, regardless of daylength conditions (Williams, 196; Sønsteby and Heide, 28). It is important that, in these cultivars, floral initiation is

2 44 Growth and flowering in annual-fruiting raspberry accompanied by a cessation of growth and bud dormancy (Sønsteby and Heide, 28). Therefore, since release from this dormancy requires exposure to low temperatures (Winter chill) over several weeks (Williams, 199a; Sønsteby and Heide, 28), this confers a 2-year life cycle upon the shoots of these cultivars. Accordingly, Sønsteby and Heide (28) concluded that a different linkage between flower initiation and bud dormancy is the crucial feature responsible for the different life-cycles in raspberry. Furthermore, in biennial-fruiting cultivars, shoots originating from adventitious buds formed on the roots of mature plants are juvenile and must develop 2 nodes (leaves) before they are able to respond to low temperatures and with flower formation (Williams, 199b; Sønsteby and Heide, 28). This implies that rejuvenation takes place during the process of adventitious bud formation (Sønsteby and Heide, 28). Shoots arising from such adventitious buds are therefore useful experimental material for studies on the control of flowering. In annual-fruiting cultivars, the environmental control of growth and flowering is less well understood, although progress has been made in recent years (Carew et al., 21; 23; Dale, 28). As in biennialfruiting cultivars, several weeks of chilling are required to break dormancy in the adventitious buds formed on the perennial root system (Keep, 1988; Carew et al., 2). Furthermore, in annual-fruiting cultivars, there is an additional vernalisation effect of low temperatures (chilling) on flowering, which is distinct from that on the release of dormancy (Carew et al., 21). Although Vasilakakis et al. (198) and Takeda (1993) reported that chilling was not a requirement for flowering in annual-fruiting Heritage raspberry; flowering was erratic and took place only after 24 d and the production of 8 9 nodes. Also, after some weeks of chilling, flowering was greatly advanced and the number of nodes was reduced to approx. 3. On the other hand, Dale et al. (2) reported that dormancy in non-chilled shoots was gradually broken as the photoperiod increased during the season, and that annual-fruiting cultivars flowered and fruited on their primocanes for three consecutive years in the absence of chilling (i. e., at temperatures > 16 C). Post-chilling growth temperature also has a marked effect on growth and flowering of annual-fruiting cultivars. Lockshin and Elfving (1981) grew Heritage plants at day/night temperatures of 29 /24 C and 2 /2 C in a 16 h photoperiod and found that plants at the higher temperature flowered approx. 2 weeks earlier and produced more flowers and flowering nodes than those at the lower temperature conditions. Carew et al. (1999) grew plants of Autumn liss at a range of semicontrolled temperature conditions (averages of approx C) with a 16 h photoperiod, and found that the rate of node production increased with temperature, to an optimum at 22 C, and declined thereafter. The rate of progress to flowering and fruiting increased similarly up to approx. 22 C and also declined at higher temperatures. However, the final numbers of leaves produced before the terminal flower were similar (approx. 3) at temperatures of approx. 19., 22., or 23.4 C, but significantly higher at lower temperatures ( C and 17 C). In a later paper, Carew et al. (23) found that both rate of vegetative growth and progress to flowering increased with temperature, with a relatively broad optimum in the low-to-mid 2 C range. The effect of photoperiod on flowering of annualfruiting raspberry cultivars, and its interaction with temperature, have not been researched extensively, and various statements on the effect of photoperiod can be found in the literature. The only true photoperiodic study was reported by Carew et al. (23). Under semicontrolled temperature conditions (approx. º/2ºC day/night temperatures, 8 h day/16 h night) they found that, while photoperiod had no significant effect on vegetative growth, flowering was somewhat advanced by intermediate photoperiods (11 h and 14 h) compared to 8 h and 17 h photoperiods. Quantitative effects on flowering (e.g., the number of flowers or flowering nodes) were not reported. Considering that buds at different positions along the length of a cane usually behave differently and may have different life-cycles, Oliveira and Dale (27) and Dale (28) speculated that these buds might also have different photoperiodic requirements for flower initiation. According to these workers, the upper nodes or so may initiate flower buds at a certain stage of maturity, independent of photoperiodic conditions, and flower in the first season, while buds further down the shoot may require for initiation, as in biennial-fruiting cultivars (cf. Williams, 196; Sønsteby and Heide, 28). However, since the distinction between annual- and biennial-fruiting cultivars is not absolute, but represents a continuum from true biennial-fruiting cultivars, through tip-fruiting, to annual-fruiting cultivars (Carew et al., 2; 23), such a mechanism seems unlikely and warrants further scrutiny. Given this background, we decided to study growth and flowering in a typical annual-fruiting raspberry cultivar under fully-controlled environmental conditions. Special emphasis was placed on the effects of photoperiod and temperature on growth and flowering, and their modifying effect on lateral development (i.e., plant architecture) and on the strength of the annual-fruiting tendency along the length of the shoot. MATERIALS AND METHODS Plant material and cultivation The raspberry (Rubus idaeus L.) cultivar Polka, derived from Autumn liss (Danek, 22), was used for the experiments which were conducted in the Ås phytotron, as described by Sønsteby and Heide (28). For the purpose of propagation, mature plants grown in 3. l plastic pots were cut at soil level after fruiting and the pots were exposed to chilling at 2 C in the dark for 6 weeks. The root systems were then separated from the soil and left to sprout in trays with moist sphagnum peat at 21 C. Emerging shoots with new roots were cut at the base, potted in 12 cm plastic pots, and raised at 21 C in 1 h conditions for 2 weeks, at which time the plants had an average of. ±.2 leaves and the experimental treatments were started.at a height of approx. 3 cm, the plants were transplanted into 3. l plastic pots where they remained until the experiments were terminated. At all stages, plants were grown in a coarse-textured sphagnum peat fertilised with 3 g 8 l 1 of Osmocote

3 A. SØNSTEY and O. M. HEIDE 441 controlled-release fertiliser (14% N, 4.2% P, 11.6% K plus micronutrients; release rate 3 4 months) from Scotts UK Ltd., Nottingham, UK. All plants were watered daily with tap water as required. Throughout the plant raising and experimental periods, all plants were grown in daylight phytotron compartments in natural daylight from h and were then moved into adjacent growth rooms with darkness, or with low-intensity light (6 7 µmol quanta m 2 s 1 provided by 7 W incandescent lamps) for daylength manipulations. Thus the plants received almost the same daily light integral in both daylengths (only 2 3% more radiation in ). Whenever the photosynthetic photon flux density (PPFD) in the daylight compartments fell below µmol quanta m 2 s 1, as on cloudy days, an additional 12 µmol quanta m 2 s 1 were automatically added using Philips HPT-I 4 W lamps. Temperatures were controlled to ± 1 C, and a water vapour pressure deficit of 3 Pa was maintained at all temperatures. Three experiments were conducted. Experiment 1 examined the effect of three constant temperatures (12 C, 18 C, or 24 C) and two photoperiods of 1 h () or 24 h (). In addition a fourth group of plants was grown at 6 C in or for 7 weeks, then transferred to 24 C, the daylengths remaining unchanged. The temperature and daylength treatments were started on 22 January 28. Experiment 2 was similar in structure, except that temperatures of 21 C, 27 C, and 3 C were used, and the treatments were started on 29 April 28. Experiment 3 compared the effect of a 3 h night interruption with that of 1-h and 24-h as described above, at a temperature of 21 C. The night interruption treatment consisted of 3 h with low intensity light (6 7 µmol quanta m 2 s 1 ) given in the middle of the 14 h night with 7 W incandescent lamps. Experimental design, data observation, and analysis All three Experiments were fully factorial, with a splitplot design, with temperature as the main plots, and photoperiod as sub-plots. All Experiments were replicated with three randomised blocks, each consisting of four plants on a separate trolley (i.e., a total of 12 plants per treatment). Growth was monitored by weekly measurements of plant height and counting of leaf (node) numbers. Time of flowering, expressed as the first (terminal) anthesis, was recorded daily. One week after terminal anthesis, each plant was terminated and the developmental state, length, and number of flowers (flowers + buds) of each lateral bud or shoot were recorded. Experimental data were subjected to analysis of variance (ANOVA) by standard procedures using a MiniTab Statistical Software programme package (Release 14; Minitab, Inc., State College, PA, USA). RESULTS Effects of temperature and photoperiod Shoot growth and the production of new nodes exhibited a sigmoid time-course and both were highly temperature-dependent (Figure 1A, ). Long days also consistently increased the rate of shoot growth at all temperatures, but had no effect on the rate of leaf initiation. Thus, stimulation of growth resulted from Plant height (cm) No. of leaves : A : 6º24ºC 12ºC 18ºC 21ºC 24ºC 27ºC 3ºC 6º24ºC 12ºC 18ºC 21ºC 24ºC 27ºC 3ºC Time (weeks) Time (weeks) FIG.1 Effects of temperature and photoperiod on the time-course of shoot elongation (Panel A) and on leaf formation (Panel ) in Polka raspberry plants. Pooled results of Experiments 1 and 2. Values are the means of three replicates, each with four plants. increased internode length only (cf. Figure 2). While growth increased with temperature up to 24 C in Experiment 1 (the highest temperature tested), an optimum was reached at 27 C in Experiment 2. Plants which were initially kept at 6 C for 7 weeks grew very little during this period; but, after transfer to 24 C, they resumed the same growth rate as in plants maintained at 24 C from the start. Under conditions, the shoots developed an arcing (parageotropic) growth habit (Figure 2A). Combining the data from Experiments 1 and 2, an ANOVA of the shoot height and node number data at week 7, at the end of the main growth period, and before flowering, revealed a highly significant (P <.1) main effect of temperature on both growth and node development, while photoperiod had a highly significant effect only on shoot growth (Table I). Higher PPFD during mid-summer in Experiment 2 increased both growth and node development significantly (P =.1) compared with Experiment 1, without changing the general trend in the temperature and daylength responses (Figure 1A, ). While the rate of leaf initiation was unaffected by photoperiod during vegetative growth, flowering was delayed under conditions and, hence, the period of growth and leaf initiation was generally prolonged under conditions (Figure 1). Since flowering terminates vegetative growth and the production of new leaves (Figure 2D), node number at anthesis (i.e., the A

4 442 Growth and flowering in annual-fruiting raspberry A D 39 cm 6 C 39 cm 6 C 12 C D 12 C C 18 C 24 C 18 C 24 C FIG.2 Appearance of Polka raspberry plants after 7 weeks of cultivation under (Panel A) or conditions (Panel ) and a range of temperatures, as indicated. Inserted are close-ups of the shoot tips of plants grown at 24 C under (Panel C) and (Panel D) conditions. Note the termination of growth by a terminal flower (Panel D). number of nodes subtending the terminal flower) was a reliable physiological indicator of earliness of flower initiation. The results revealed that flowering consistently took place at lower nodes in than in at all temperatures, except for the 6 C 24 C shift treatment (Figure 3A, ). Likewise, days to anthesis were also significantly (P <.1) reduced in compared with, at all temperatures except the 6ºC 24 C treatment (Figure 3C). Anthesis was greatly advanced as temperature increased from 12 C to 21 C, with no further advancement at higher temperatures (Figure 3C). The number of flowers per plant was significantly (P <.1) higher in than in under all temperature conditions (Figure 4A). Flowering also increased highly significantly (P <.1) with increasing temperature, reaching an optimum at 27 C and declining Height at anthesis (cm) Final number of nodes Days to anthesis Heigth at antesis No. of nodes days to antesis Expt. 1: Expt. 2: FIG.3 Effects of temperature and daylength on plant height at anthesis (Panel A), the final number of nodes (Panel ), and the number of days to anthesis (Panel C) in Polka raspberry plants. Columns to the left in each Panel represent the results of plants grown at 6 C for 7 weeks, then transferred to 24 C in Experiment 1. Values are the means (± SE) of three replicates, each with four plants. again at 3 C. Higher light fluxes during mid-summer in Experiment 2 also increased flowering markedly without changing the general response trends. Reduced flowering at low temperature was mainly an effect of a reduction in the number of lateral buds that developed A C TALE I Probability levels of significance for main effects and interactions of temperature and photoperiod on flowering and growth variables in Polka raspberry Source of variation Plant height No. of leaves Days to anthesis Flowers per plant Dormant buds Total length of laterals Temperature (A) <.1 <.1 <.1 <.1 <.1 <.1 Photoperiod () <.1 n.s. <.1 <.1 <.1 <.1 A <.1 n.s. <.1.4 <.1 <.1 Data in columns 1 and 2 refer to results after 7 weeks of cultivation, whereas the other data are final results from Experiments 1 and 2.

5 A. SØNSTEY and O. M. HEIDE 443 TALE II Effects of temperature and photoperiod on plant architecture and flowering of Polka raspberry plants (Experiments 1 and 2)* Total no. No. of No. of Flowering Mean no. Lateral Temperature ( C) Photoperiod (h) of nodes flowering laterals dormant buds laterals (%) flowers per lateral length (cm) j 16.8 c 8.4 h 67.4 ab 12.1 bc 14.7 de fgh 7.7 e 22.1 a 23.1 h 3. i 3.9 g ij 8.9 e 23. a 27.9 h 7.7 fg 1.4 f efg 16.3 c 18. c 47.4 g 7.9 fg 11.9 ef fgh 23. a 1. g 69.1 ab 8.1 fg 16.3 cd b 21.8 ab.8 d 7.8 de 13. ab 26.7 a a 22.1 ab 19.3 c 3.4 efg 9.3 ef 2.9 b Mean hi. c 12.3 fg 6.2 def 14.2 a 18. bc gh 7.8 e 21.2 ab 26.9 h.4 h 6.4 g ij 12.9 d 12.4 fg.7 fg 7.7 g.1 de efg 2.4 b 1.8 g 6.1 bc 1. de 21.3 b fgh 21.6 ab 8. h 73. a 1. de 16.6 cd bc 23.1 a 13.1 ef 63.8 bc 13.9 a 27. a b 23.3 a 14.9 de 61. cd 11.3 cd 2.9 a Mean *All data are means of three replicates, each represented by four plants. Mean values within each column followed by different lower-case letters are significantly different (P <.) by Tukey s test. into flower-bearing shoots, resulting in typical tip flowering. (Table II; Figure 4). The number of dormant buds at the lower part of the shoot was particularly high at 12 C and at 18 C in, whereas generally resulted in high numbers of growth-active and flowering buds with a broad temperature optimum in the C range. In both daylengths, the number of dormant buds increased again when the temperature was raised to 3 C (Figure 4). An illustration of the impact of No. of flowers No. of flowers Expt. 1: Expt. 2: A temperature and photoperiod on plant architecture and total flowering is presented in Figure. There was a gradual delay in the earliness of flowering of the laterals from the top towards the base of the shoot, and this was accompanied by a basipetal increase in growth and in the final length of the laterals (Figure ). These lower laterals produced large numbers of flowers that contributed greatly to the total number of flowers. Dissection of a number of non-growing (dormant) lower lateral buds revealed that they all had initiated flower buds which were at an advanced stage at the time that the terminal buds were flowering. These buds remained dormant for several months at 21 C, and required 4 6 weeks of chilling at 2 4 C for growth activation and flowering (data not shown). Low temperature treatment for 7 weeks at an early stage of development reduced plant height at anthesis, lowered the number of nodes before flowering, and reduced the number of days to anthesis at the subsequent high temperature (24 C) compared with continuous 24 C (Figure 3). However, compared to a constant 24 C, the number of flowers per plant was not significantly increased by such early low-temperature 2 2 No. of dormant buds No of dormant buds FIG.4 Effects of temperature and daylength on the total number of flowers per plant (Panel A), and the number of dormant buds per plant (Panel ) in Polka raspberry plants. Columns to the left in each Panel represent the results of plants grown at 6 C for 7 weeks, then transferred to 24 C in Experiment 1.Values are the means (± SE) of three replicates, each with four plants. FIG. Illustration of plant architecture (i.e., plant height, total number of nodes, the number and length of laterals, and the number of dormant buds) of Polka raspberry plants grown under different temperature and daylength conditions, as indicated on the x-axis. For simplification, all laterals are drawn on only one side of the stem. Lateral lengths are drawn on the same scale as plant height (cm). Numbers denote the total number of flowers per plant in the respective treatments. Results are from Experiment 1.

6 444 Growth and flowering in annual-fruiting raspberry TALE III Effects of photoperiod (,, or with a 3 h night interruption) at 21ºC on growth and flowering in Polka raspberry plants* Photoperiod Plant Total number Flowers Days to No. of flowering No. of Flowering Flowers per Lateral (h) height (cm) of nodes per plant anthesis laterals dormant buds laterals (%) lateral length (%) a 34.3 a 12.8 b 64 a 16.3 b 18. a 47.4 b 7.9 a 11.9 b 24 a 31.3 b 21.7 a 3 c 2.4 ab 1.8 b 6.1 a 1. a 21.3 a a 32.4 ab a 6 b 21.3 a 12.8 b 62. a 8.3 a 19.9 a P value n.s..2.1 < n.s..4 *All data are means of three replicates, each represented by four plants. Mean values within each column followed by different lower-case letters are significantly different (P <.) by Tukey s test. treatment (Figure 4A). Whereas continuous cultivation at 12 C resulted in a high proportion of dormant lateral buds, with a corresponding reduction in the number of flowering laterals, this was not the case when plants were first grown at 6 C for 7 weeks, and then transferred to a higher temperature (Figure 4; Table II). Effects of night interruption Night interruption with low-intensity light for 3 h during the middle of the night, significantly promoted flowering compared with 1-h, but was less effective than 24-h (Table III). For most flowering parameters the response to night interruption was intermediate between those of and. The number of flowers per plant was higher, and days to first anthesis was significantly lower with night interruption than in, while the number of nodes subtending the terminal flower was barely significantly different (P =.2) when compared to and. The number of dormant buds was significantly lower in the night interruption than in the treatment, and not significantly different from the treatment. The number and percentage of flowering laterals was similarly and significantly increased by both the and night interruption treatments. Also, and night interruption caused a significant increase in the length of the lateral shoots compared with conditions (Table III). DISCUSSION The results showed that, unlike biennial-fruiting raspberries, the annual-fruiting Polka had no need for low temperatures for flower formation. Thus, Polka flowered freely at temperatures as high as 3 C (Figure 3; Figure 4). However, the number of nodes subtending the terminal flower increased and the total number of flowers decreased markedly when the temperature was increased from 27 C to 3 C (Figure 3; Figure 4A), suggesting an upper temperature limit for flowering also in annual-fruiting cultivars. Also, days to anthesis decreased with increasing temperature up to 21 C, then levelled-off at higher temperatures (Figure 3C). These results are in general agreement with those of Carew et al. (23) using the related cultivar Autumn liss which, likewise, flowered freely at temperatures up to approx. 27 C with a broad temperature optimum in the mid-2 C range. The results also confirm the findings of Carew et al. (21) that flowering in annual-fruiting raspberry was advanced by additional chilling (vernalisation) at 6 7 C for 6 8 weeks, even in plants raised from roots that had previously been chilled to break bud dormancy and initiate vegetative growth. These results show that, although annual-fruiting raspberries are promoted in their flowering by high growth temperatures, they also exhibit a distinct vernalisation-type promotion of flowering at low temperatures. The fact that small plants with only four-to-five leaves did respond to low temperature vernalisation (Carew et al., 21; Figure 3) indicates that annual-fruiting raspberries have no juvenile phase during which their flowering is unresponsive to environmental factors. Furthermore, the present results demonstrate, for the first time, a consistent and significant promotion of flowering by in annual-fruiting raspberry (Figure 3; Figure 4; cf. Carew et al., 23). Significant promotion of flowering by night interruption (Table III) also proves that the effect is a true photoperiodic response and not merely an effect of increased daily light integral in the treatments. All these results demonstrate a remarkably different and, in fact, contrasting environmental control of flowering in biennial-fruiting and annual-fruiting raspberry cultivars. Thus, while the former have an obligatory need for low temperature and/or conditions for the initiation of flower primordia (Williams, 196; Sønsteby and Heide, 28), the annualfruiting cultivars flower freely across the entire range of temperatures and with a marked enhancement of flowering by conditions (Figure 3C; Figure 4A). Furthermore, while biennial-fruiting cultivars have a distinct juvenile phase and do not respond to flowerinducing conditions before they have formed 2 leaves (Williams, 196; Sønsteby and Heide, 28), such a juvenile phase is absent in annual-fruiting cultivars which respond to flower-inducing conditions at the -leaf stage (Carew et al., 21; Figure 3; Table III). It was suggested (Haltwick and Struckmeyer, 196) that the main physiological difference between annualand biennial-fruiting cultivars was that the biennialfruiting types had shorter photoperiod and lower temperature requirements for flower initiation (cf. Carew et al., 2). However, although such a difference is definitely present, the crucial point is whether the shoots have an annual or a biennial life cycle, a matter that is determined by the dormancy control system of the plant. Since it was found that floral initiation was accompanied by dormancy induction in biennial-fruiting cultivars, Sønsteby and Heide (28) concluded that a different linkage between flowering and dormancy induction was the main feature responsible for the different shoot lifecycles in the two groups of raspberry. The present results fully support and verify this conclusion. However, the results in Figure and Table III also demonstrate that the degree of bud dormancy, and hence the degree of tip flowering (see Carew et al., 2), is not only a matter of the genetic constitution of the plant, but is also under environmental control. Thus, both the number and proportion of dormant buds were strongly

7 A. SØNSTEY and O. M. HEIDE 44 influenced by both temperature and photoperiod (Figure 4; Figure ; Table III). In Experiment 1, more than 7% of the buds of plants grown at 12 C did not grow out, but became dormant, while only about 2% of the buds were dormant in plants grown at 24 C (Figure 4; Figure ). While daylength had no effect at these temperatures, both the number and proportion of dormant buds were significantly higher under than under conditions at intermediate temperatures of 18 C and 21 C (Figure 4), with night interruption being almost as effective as daylength extension in this respect (Table III). ud dormancy also tended to increase once again when the temperature was raised above 24ºC. Interestingly, a chilling temperature (6 C) for 7 weeks at an early stage of growth did not significantly increase the number or proportion of dormant buds if the plants were subsequently grown at 24 C (Figure 4). These results are in full agreement with, and may explain, many of the responses observed in commercial production. Thus, in Portugal, where annual-fruiting cultivars such as Autumn liss are widely grown on a commercial scale, tip-flowering in the Autumn is the general rule when plants are over-wintered in the field under natural conditions. The majority of buds go dormant and do not flower until the following Spring (Oliveira et al., 1996; 21, and references therein). The result is a small, off-season Autumn crop, while the major crop occurs in the following Summer. Temperatures during the mild Portuguese Winter are about 12 C during December February (Oliveira et al., 1996). The temperature effects in Experiment 1 (Figure 4; Figure ) strongly suggest that such cool growth temperatures, in combination with natural conditions over a period of 3 months, are the main reasons for this flowering and cropping behaviour. This conclusion was further supported by the fact that greenhouse-propagated planting material imported from UK and planted in the field in Spring, after the temperature has risen to > 2 C, produced abundant Autumn flowering and cropping under the same conditions (P.. Oliveira, personal communication). Likewise, in Norway, Heiberg (26) found that plants of Polka and Autumn liss, transferred from a cold store to a non-heated plastic tunnel on April, grew to a height of more than 2 m and produced typical tip-flowering. Again, we conclude that the low temperatures prevailing during April and May in Norway were the main reason for this growth and flowering behaviour. Thus, it seems clear that temperature during the growing season largely determines the degree of annual flowering and fruiting, even in typical annual-fruiting genotypes such as Autumn liss and Polka. Manipulation of an annual-fruiting cultivar by cultural treatments may, in fact, modify the flowering behaviour to the extent that only a negligible Autumn crop is obtained, with the plants then behaving in effect as biennial cultivars (Oliveira et al., 1996; 21). The present results support the view that the distinction between annual- and biennial-flowering raspberry cultivars is not absolute, but that cultivars represent a continuum from true biennial-flowering, through tip-flowering, to annual-flowering types (cf. Carew et al., 2; 23; Dale, 28). Furthermore, expression of these various flowering types may be modified to a considerable extent by the environment. It is well known that inherently biennial-flowering cultivars such as the classical Lloyd George (Williams, 196), and others such as Glen Moy (Carew et al., 2), commonly produce some flowers at the tips of the annual shoots. On the other hand, the present results, and those discussed above, further demonstrate that typical annual-fruiting cultivars such as Autumn liss and Polka may also perform as tip-flowering cultivars under cool temperatures and/or conditions (Oliveira et al., 1996; 21; Figure 4A; Figure ). Oliveira and Dale (27) and Dale (28) speculated that floral induction in the uppermost annual-flowering buds and in the lower biennial-flowering buds of such tipflowering plants may be controlled by different external conditions. However, our results with Polka clearly demonstrate that this was not the case. Floral initiation took place in both types of buds at both low (12 C) and high temperatures (24 C) under both and conditions. The only difference was that the uppermost buds developed directly into open flowers, whereas the lower buds became dormant and needed Winter chilling to flower (biennial-flowering behaviour). Dissection of these dormant buds revealed that they contained flower buds at an advanced stage. Flowering, and the annual-flowering tendency, also varied along the length of the shoot. Starting at the apex (Figure 2), flowering spread basipetally towards the base. Then, at a certain stage, depending on temperature and daylength conditions, flower development halted and the remaining buds at the lower nodes became dormant, with various degrees of tip-flowering as a result. The length of the lateral shoots, and hence the number of flowers produced per lateral, increased almost linearly from the top to the base of the shoot (Figure ; Table III). Therefore, the key to abundant first-year flowering and fruit yield was to produce a plant with many flowering laterals as far down the shoot as possible, with only a minimum number of dormant buds at the base. The results showed that this type of plant architecture is strongly favoured by relatively high temperatures, with a broad optimum in the mid-2 C range. These findings have the potential to improve commercial production systems of annual-fruiting raspberry. In Mediterranean climates, with mild but cool Winters, Autumn planting should be avoided and Spring planting should be delayed until the temperature has risen to > 2 C. Exposure to cool temperatures (1 C) should be avoided at all times. Either cold-stored or greenhouse-grown planting material should be used, and daylength extension by night interruption should be considered. An extended harvest season can be obtained by early planting in plastic tunnels and late planting directly in the field (cf. Oliveira et al., 1996; 21). Likewise, at higher latitudes, where protected cultivation is needed for these cultivars, temperatures above 2 C should be maintained throughout culture. Natural long days are an advantage at these latitudes.

8 446 Growth and flowering in annual-fruiting raspberry REFERENCES CAREW, J. G., HADLEY, P. and ATTEY, N. H. (1999). The effect of temperature on the vegetative growth and reproductive development of the primocane fruiting raspberry Autumn liss. Acta Horticulturae,, CAREW, J. G., GILLESPIE,T.,WHITE, J.,WAINWRIGHT, H., RENNAN, R. and ATTEY, N. H. (2). The control of the annual growth cycle in raspberry. Journal of Horticultural Science & iotechnology, 7, CAREW, J. G., MAHMOOD, K., DARY, J., HADLEY, P. and ATTEY, N. H. (21). The effects of low temperature on vegetative growth and flowering of the primocane fruiting raspberry Autumn liss. Journal of Horticultural Science & iotechnology, 76, CAREW,J.G.,MAHMOOD, K., DARY,J.,HADLEY, P. and ATTEY,N.H. (23). The effect of temperature, photosynthetic photon flux density, and photoperiod on the vegetative growth and flowering of Autumn liss raspberry. Journal of the American Society for Horticultural Science, 128, DALE, A. (28). Raspberry production in greenhouses: Physiological aspects. Acta Horticulturae, 777, DALE, A., PIRGOZLIEV, S., KING, E. M. and SAMPLE, A. (2). Scheduling primocane fruiting raspberries (Rubus idaeus L.) for year-round production in greenhouses by chilling and Summer-pruning of canes. Journal of Horticultural Science & iotechnology, 8, DANEK, J. (22). Polka and Pokusa New primocane fruiting raspberry cultivars from Poland. Acta Horticulturae, 8, HALTVICK, E. T. and STRUCKMEYER,. E. (196). lossom bud differentiation in red raspberry. Proceedings of the American Society for Horticultural Science, 87, HEIERG, N. (26). Sortsforsøk i bringebær og bjørnebær inkludert høstbærende sorter. Nordic Fruit and erry Conference, Sandefjord, Norway January, 26. ioforsk FOKUS, 1, (In Norwegian). HUDSON, J. P. (199). Effects of environment on Rubus idaeus L. I. Morphology and development of the raspberry plant. Journal of Horticultural Science, 34, KEEP, E. (1988). Primocane (autumn)-fruiting raspberries: a review with particular reference to progress in breeding. Journal of Horticultural Science, 63, LOCKSHIN, L. S. and ELFVING, D. C. (1981). Flowering response of Heritage red raspberry to temperature and nitrogen. HortScience, 16, OLIVEIRA, P.. and DALE, A. (27). Light effects on flower bud initiation in red raspberries (Rubus idaeus L.). COST 863 SGM on Small Fruit Production Systems, 8. ( it/documents/wgm7/cost863%2sgm%2on%2small%2 fruit%2production%2systems.pdf) OLIVEIRA, P.., OLIVEIRA, C. M., LOPES-DA-FONSECA, L. and MONTEIRO, A. A. (1996). Off-season production of primocanefruiting red raspberry using summer pruning and polyethylene tunnels. HortScience, 31, OLIVEIRA, P.., LOPES-DA-FONSECA, L. and MONTEIRO, A.A. (21). Combining different growth techniques for all-yearround red raspberry production in Portugal. Acta Horticulturae, 8, 4 3. SØNSTEY, A. and HEIDE, O. M. (28). Environmental control of growth and flowering of Rubus idaeus L. cv. Glen Ample. Scientia Horticulturae, 117, VASILAKAKIS, M. D., MCCOWN,. H. and DANA, M. N. (198). Low temperature and flowering of primocane-fruiting red raspberry. HortScience,, WILLIAMS, I. H. (199a). Effects of environment on Rubus idaeus L. III. Growth and dormancy of young shoots. Journal of Horticultural Science, 34, WILLIAMS, I. H. (199b). Effects of environment on Rubus idaeus L. IV. Flower initiation and development of the inflorescence. Journal of Horticultural Science, 34, WILLIAMS, I. H. (196). Effects of environment on Rubus idaeus L. V. Dormancy and flowering of the mature shoot. Journal of Horticultural Science, 3,

Critical photoperiod for short-day induction of flowering in black currant (Ribes nigrum L.)

Critical photoperiod for short-day induction of flowering in black currant (Ribes nigrum L.) Journal of Horticultural Science & Biotechnology (11) 86 (2) 128 134 Critical photoperiod for short-day induction of flowering in black currant (Ribes nigrum L.) By O. M. HEIDE 1 and A. SØNSTEBY 2 * 1

More information

Elevated Autumn temperature promotes growth cessation and flower formation in black currant cultivars (Ribes nigrum L.)

Elevated Autumn temperature promotes growth cessation and flower formation in black currant cultivars (Ribes nigrum L.) Journal of Horticultural Science & Biotechnology (11) 6 (2) 1 127 Elevated Autumn temperature promotes growth cessation and flower formation in black currant cultivars (Ribes nigrum L.) By A. SØNSTEBY

More information

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida Meriam G. Karlsson Associate Professor of Horticulture Agricultural and Forestry Experiment Station

More information

Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear

Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear Tree Physiology 25, 109 114 2005 Heron Publishing Victoria, Canada Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear O. M. HEIDE 1,2 and

More information

DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA

DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA Reprinted for private circulation from the Botanical Gazette, Vol. 104, No. 2, December, 1942. DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA PHILIP C. REECE 1 (WITH THIRTEEN FIGURES) Subtropical Fruit

More information

Improving Product Quality and Timing of Kalanchoe: Model Development and Validation

Improving Product Quality and Timing of Kalanchoe: Model Development and Validation Improving Product Quality and Timing of Kalanchoe: Model Development and Validation Susana M.P. Carvalho, Menno J. Bakker and Ep Heuvelink Wageningen University Horticultural Production Chains group Marijkeweg

More information

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING R. D. Heins and H. F. Wilkins Department of Horticultural Science University of

More information

Response Of Blueberry To Day Length During Propagation

Response Of Blueberry To Day Length During Propagation Response Of Blueberry To Day Length During Propagation Internal report for Young Plant Research Center Not for publication or reproduction in part or full without permission of the authors. Paul Fisher

More information

Evaluation of Chlormequat and Daminozide Products on Greenhouse Crops

Evaluation of Chlormequat and Daminozide Products on Greenhouse Crops Report Submitted to Fine Americas, Inc. Evaluation of Chlormequat and Daminozide Products on Greenhouse Crops Matthew Blanchard, Mike Olrich, and Erik Runkle Department of Horticulture Michigan State University

More information

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem Snapdragon Lighting Harrison Flint Department of Floriculture Cornell University One of the greatest problems in the commercial pro duction of winter snapdragons has been the expense brought about by extremely

More information

7. Summary of avocado tree architecture.

7. Summary of avocado tree architecture. 53 7. Summary of avocado tree architecture. Architectural tree models, defined by F. Hallé, R.A.A. Oldeman and P.B. Tomlinson (1978), are relatively new concepts in plant morphology that have gained wide

More information

Tuberous root development and flower induction of. Manipulating DAHLIAS. By Garry Legnani and William B. Miller. crop cultivation

Tuberous root development and flower induction of. Manipulating DAHLIAS. By Garry Legnani and William B. Miller. crop cultivation Manipulating DAHLIAS Photoperiod scheduling can inhibit tuberous root growth in Sunny Rose plugs and promote optimal flowering and height of Sunny Yellow pot plants. By Garry Legnani and William B. Miller

More information

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING.

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. 16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. Photoperiodic Induction The influence of the length of day and night on the initiation of flowering is called photoperiodic induction or photo induction.

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Plant Juvenility Text Pages: 15 18,

Plant Juvenility Text Pages: 15 18, 45 Plant Juvenility Text Pages: 15 18, 613 619. Objectives: 1. Be able to describe and explain terms related to plant aging. 2. Be able to explain how a woody plant contains tissue of different ontogenetic

More information

High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming

High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming Tree Physiology 23, 931 936 2003 Heron Publishing Victoria, Canada High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming O. M. HEIDE Department

More information

Effect of Ethephon on Easy Pot Freesia

Effect of Ethephon on Easy Pot Freesia Effect of Ethephon on Easy Pot Freesia Ludmila Startek and Piotr Zurawik Agricultural University Department of Ornamental Plants 71-424 Szczecin Poland Keywords: Popey, Suzy, Gompey, developmental stages,

More information

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands Control of Plant Height and Branching in Ornamentals Ep Heuvelink Horticulture and Product Physiology group, Wageningen University, the Netherlands Compact plants = desired external quality Currently often

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

PHYSIOLOGY AND MAINTENANCE Vol. V - Phenology of Trees and Other Plants in the Boreal Zone Under Climatic Warming - Heikki Hänninen

PHYSIOLOGY AND MAINTENANCE Vol. V - Phenology of Trees and Other Plants in the Boreal Zone Under Climatic Warming - Heikki Hänninen PHENOLOGY OF TREES AND OTHER PLANTS IN THE BOREAL ZONE UNDER CLIMATIC WARMING Heikki Hänninen Department of Ecology and Systematics, University of Helsinki, Finland Keywords: Bud burst, boreal zone, climatic

More information

Breeding and Genetics

Breeding and Genetics Breeding and Genetics I FLOWERING OF SUGARCANE WITH REFERENCE TO INDUCTION AND INHIBITION E. D. Paliatseas Louisiana Agricultural Experiment Station Baton Rouge, Louisiana ABSTRACT The minimum,time required

More information

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS HOS 6545 ADVANCED CITRICULTURE I Regulation of Vegetative Growth L. GENE ALBRIGO Smith, P.F. 1976. Collapse of Murcott tangerine trees. J. Amer. Soc.

More information

Studies on the Light Controlling Flower Initiation of Pharbitis Nil. VI. Effect of Natural Twilight. by Atsushi TAKIMOTO* and Katsuhiko IKEVA*

Studies on the Light Controlling Flower Initiation of Pharbitis Nil. VI. Effect of Natural Twilight. by Atsushi TAKIMOTO* and Katsuhiko IKEVA* Studies on the Light Controlling Flower Initiation of Pharbitis Nil. Received September 9, 1959 VI. Effect of Natural Twilight by Atsushi TAKIMOTO* and Katsuhiko IKEVA* Many investigators consider that

More information

Scientia Horticulturae 82 (1999) 217±226

Scientia Horticulturae 82 (1999) 217±226 Scientia Horticulturae 82 (1999) 217±226 Photoperiod and temperature effect on growth of strawberry plant (Fragaria ananassa Duch.): development of a morphological test to assess the dormancy induction

More information

Crop Development and Components of Seed Yield. Thomas G Chastain CSS 460/560 Seed Production

Crop Development and Components of Seed Yield. Thomas G Chastain CSS 460/560 Seed Production Crop Development and Components of Seed Yield Thomas G Chastain CSS 460/560 Seed Production White clover seed field Seed Yield Seed yield results from the interaction of the following factors: 1. Genetic

More information

Lanthanum Effects on Gravitropic Response of Cut Tulip Flowers

Lanthanum Effects on Gravitropic Response of Cut Tulip Flowers Lanthanum Effects on Gravitropic Response of Cut Tulip Flowers Hye-Ji Kim, E. Jay Holcomb and Kathleen M. Brown Department of Horticulture, Penn State University, University Park, PA 16802 USA Keywords:

More information

SCANNING ELECTRON MICROSCOPY OF FLORAL INITIATION AND DEVELOPMENTAL STAGES IN SWEET CHERRY (PRUNUS AVIUM) UNDER WATER DEFICITS HAKAN ENGIN

SCANNING ELECTRON MICROSCOPY OF FLORAL INITIATION AND DEVELOPMENTAL STAGES IN SWEET CHERRY (PRUNUS AVIUM) UNDER WATER DEFICITS HAKAN ENGIN Bangladesh J. Bot. 37(1): 15-19, 2008 (June) SCANNING ELECTRON MICROSCOPY OF FLORAL INITIATION AND DEVELOPMENTAL STAGES IN SWEET CHERRY (PRUNUS AVIUM) UNDER WATER DEFICITS HAKAN ENGIN Department of Horticulture,

More information

Reproductive Bud Development of Pears (Pyrus communis L.) with Emphasis on the Bourse Shoot

Reproductive Bud Development of Pears (Pyrus communis L.) with Emphasis on the Bourse Shoot Reproductive Bud Development of Pears (Pyrus communis L.) with Emphasis on the Bourse Shoot L.P. Reynolds, G. Jacobs and K.I. Theron Department of Horticultural Science University of Stellenbosch Private

More information

UNIVERSITY OF CALIFORNIA, RIVERSIDE. Botany. Department of. and. Plant Sciences.

UNIVERSITY OF CALIFORNIA, RIVERSIDE. Botany. Department of. and. Plant Sciences. UNIVERSITY OF CALIFORNIA, RIVERSIDE Department of Botany and Plant Sciences www.ucr.edu $Plant Growth Regulator $ Strategies and Avocado Phenology and Physiology $ $ Carol Lovatt Professor of Plant Physiology

More information

prgperly cooled lily bulbs from potting to flowering was a 70 F. day temp (DT)/

prgperly cooled lily bulbs from potting to flowering was a 70 F. day temp (DT)/ INFLUENCE OF FORCING TEMPERATURE ON THE DEVELOPMENT OF FLOWER BUDS FROM THE VISIBLE BUD STAGE TO 1 FIRST OPEN FLOWER OF THE 'ACE' EASTER LILY S. M. Ron and H. F. Wilkins2 University of Minnesota, St# Paul

More information

MY BACKGROUND. Saeid since 1998

MY BACKGROUND. Saeid since 1998 Plant Productivity in Response to LEDs Light Quality Saeid H. Mobini, Ph.D. (saeid.mobini@gov.ab.ca) Greenhouse Research Scientist, Crop Research and Extension Branch, AF MY BACKGROUND Saeid since 1998

More information

A Review of Winter Chilling Requirements in Pecan. Eric T. Stafne Associate Extension and Research Professor Mississippi State University

A Review of Winter Chilling Requirements in Pecan. Eric T. Stafne Associate Extension and Research Professor Mississippi State University A Review of Winter Chilling Requirements in Pecan Eric T. Stafne Associate Extension and Research Professor Mississippi State University What is Chilling? A physiologically mandated rest period Also called

More information

Ethephon in Sugarcane Cultivation

Ethephon in Sugarcane Cultivation Ethephon in Sugarcane Cultivation by M. Edmond Lewis Sugar Industry Research Institute ABSTRACT Sugarcane remains an important commercial crop in Jamaica, and in spite of improved technology in production,

More information

E#ect of Daylength on the Flower Bud Di#erentiation and Development in Coriander (Coriandrum sativum L.)

E#ect of Daylength on the Flower Bud Di#erentiation and Development in Coriander (Coriandrum sativum L.) Jour. Agri. Sci., Tokyo Univ. of Agric.,.0 (-), +30,** (,**+).0 - +30,**,**+ E#ect of Daylength on the Flower Bud Di#erentiation and Development in Coriander (Coriandrum sativum L.) By Yaichibe TOMITAKA*,

More information

Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry

Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry Scientia Horticulturae 87 (2001) 77±84 Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry Kenji Beppu *, Takayuki Ikeda,

More information

Let light motivate your flowers

Let light motivate your flowers Let light motivate your flowers LightDec Horticulture Light recipes from LEDIG are the best in this market. Their recommendations increased my profits in year one by 23% LED Solutions from LEDIG LED Industrial

More information

QUANTITATIVE ANALYSIS OF PHOTOPERIODISM OF TEXAS 86, GOSSYPIUM HIRSUTUM RACE LATIFOLIUM, IN A CROSS AMERICAN UPLAND COTTON' Received June 21, 1962

QUANTITATIVE ANALYSIS OF PHOTOPERIODISM OF TEXAS 86, GOSSYPIUM HIRSUTUM RACE LATIFOLIUM, IN A CROSS AMERICAN UPLAND COTTON' Received June 21, 1962 THE GENETICS OF FLOWERING RESPONSE IN COTTON. IV. QUANTITATIVE ANALYSIS OF PHOTOPERIODISM OF TEXAS 86, GOSSYPIUM HIRSUTUM RACE LATIFOLIUM, IN A CROSS WITH AN INBRED LINE OF CULTIVATED AMERICAN UPLAND COTTON'

More information

Effects of high plant populations on the growth and yield of winter oilseed rape (Brassica napus)

Effects of high plant populations on the growth and yield of winter oilseed rape (Brassica napus) Journal of Agricultural Science, Cambridge (1999), 132, 173 180. 1999 Cambridge University Press Printed in the United Kingdom 173 Effects of high plant populations on the growth and yield of winter oilseed

More information

1. Bud or node: Out of this either a leaf or a fruit-bearing shoot will develop.

1. Bud or node: Out of this either a leaf or a fruit-bearing shoot will develop. 8 2 0 4 Bud Bud or or node: node: Out Out of of this this either either a leaf leaf or or a fruit-bearing fruit-bearing shoot shoot will will develop. develop. 2 Inflorescence: The flowers of the grapevine.

More information

Cytokinin treatment and flower quality in Phalaenopsis orchids: Comparing N-6-benzyladenine, kinetin and 2- isopentenyl adenine

Cytokinin treatment and flower quality in Phalaenopsis orchids: Comparing N-6-benzyladenine, kinetin and 2- isopentenyl adenine African Journal of Biotechnology Vol. 11(7), pp. 1592-1596, 24 January, 2012 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB11.2472 ISSN 1684 5315 2012 Academic Journals Full Length

More information

The Effect of Night Temperature on Cotton Reproductive Development

The Effect of Night Temperature on Cotton Reproductive Development The Effect of Night Temperature on Cotton Reproductive Development Item Type text; Article Authors Zeiher, Carolyn A.; Brown, Paul W.; Silvertooth, Jeffrey C.; Matumba, Nkonko; Mitton, Nancy Publisher

More information

Flower-Bud Formation of Cryptomeria under. Hiroshi MIYAJIMA and San-Keun CRON

Flower-Bud Formation of Cryptomeria under. Hiroshi MIYAJIMA and San-Keun CRON Flower-Bud Formation of Cryptomeria under Controlled Environment* Hiroshi MIYAJIMA and San-Keun CRON Summary In order to elucidate the correlation of temperature and the effect of gibberellin spray on

More information

those in Arizona. This period would extend through the fall equinox (September 23, 1993). Thus, pending variation due to cloudiness, total light flux

those in Arizona. This period would extend through the fall equinox (September 23, 1993). Thus, pending variation due to cloudiness, total light flux PERFORMANCE OF KENTUCKY BLUEGRASS SEED TREATED WITH METHANOL Fred J. Crowe, D. Dale Coats, and Marvin D. Butler, Central Oregon Agricultural Research Center Abstract Foliar-applied methanol was purported

More information

FOREST TREE PHYSIOLOGY RESEARCH AT THE OHIO AGRICULTURAL EXPERIMENT STATION

FOREST TREE PHYSIOLOGY RESEARCH AT THE OHIO AGRICULTURAL EXPERIMENT STATION FOREST TREE PHYSIOLOGY RESEARCH AT THE OHIO AGRICULTURAL EXPERIMENT STATION JOHN HACSKAYLO AND WILLIAM E. GOSLIN Department of Forestry, Ohio Agricultural Experiment Station, Wooster The research in tree

More information

IPC 24th Session, Dehradun Nov 2012

IPC 24th Session, Dehradun Nov 2012 Tree species that occupy large ranges at high latitude must adapt to widely variable growing periods associated with geography and climate. Climate driven adaptive traits in phenology and ecophysiology

More information

Plant Growth and Development

Plant Growth and Development 1. Define plasticity. Give an example? A: Plant Growth and Development The ability of the plants to follow different pathways in response to the environment or phases of life to form different kinds of

More information

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis - Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Photosynthesis and Environment Leaf and Canopy Aging Goals and Learning Objectives: To

More information

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing BASIC TREE BIOLOGY Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing Roots: absorb water and minerals store energy support and anchor

More information

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis and Environment Leaf and Canopy Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Goals and Learning Objectives: To understand the effects

More information

CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH

CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH H. KAMEMOTO AND H. Y. NAKASONE Although chrysanthemums are popular in Hawaii, their production has never reached major proportions. This is primarily

More information

Effect of gibberellic acid treatments on flowering of avocado

Effect of gibberellic acid treatments on flowering of avocado South African Avocado Growers Association Yearbook 2000. 23:43-45 Effect of gibberellic acid treatments on flowering of avocado T Rossouw 1,2, PJ Robbertse 2, S Kremer-Köhne 1 and JS Köhne 1 1 Merensky

More information

Effect of Temperature and Pseudobulb Maturity on Flowering of the Orchid Miltoniopsis Augres Trinity

Effect of Temperature and Pseudobulb Maturity on Flowering of the Orchid Miltoniopsis Augres Trinity Effect of Temperature and Pseudobulb Maturity on Flowering of the Orchid Miltoniopsis Augres Trinity R.G. Lopez and E.S. Runkle Department of Horticulture, Michigan State University East Lansing, Michigan

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

EFFECT OF COLD NIGHT TEMPERATURE ON FLOWERING OF Kalanchoë SPECIES

EFFECT OF COLD NIGHT TEMPERATURE ON FLOWERING OF Kalanchoë SPECIES Fig www.acta.media.pl ORIGINAL PAPER Acta Sci. Pol. Hortorum Cultus, 17(3) 2018, 121 125 ISSN 1644-0692 e-issn 2545-1405 DOI: 10.24326/asphc.2018.3.12 Accepted: 1.12.2017 EFFECT OF COLD NIGHT TEMPERATURE

More information

A. Stimulus Response:

A. Stimulus Response: Plant Hormones A. Stimulus Response: A house plant on a windowsill grows light. If you rotate the plant, it reorients its growth until its leaves face the window again. The growth of a shoot towards light

More information

Flower Formation in the Saffron Crocus (Crocus sativus L). The Role of Temperature

Flower Formation in the Saffron Crocus (Crocus sativus L). The Role of Temperature Flower Formation in the Saffron Crocus (Crocus sativus L). The Role of Temperature Rosa V. Molina, Amparo García-Luis, Virginia Coll, Carla Ferrer, Miguel Valero, Yolanda Navarro and José L. Guardiola

More information

Understanding Plant Life Cycles

Understanding Plant Life Cycles Lesson C3 2 Understanding Plant Life Cycles Unit C. Plant and Soil Science Problem Area 3. Seed Germination, Growth, and Development Lesson 2. Understanding Plant Life Cycles New Mexico Content Standard:

More information

Flowering performance of Polianthes tuberosa Linn. cv. ëcalcutta Doubleí as influenced by thermal regime

Flowering performance of Polianthes tuberosa Linn. cv. ëcalcutta Doubleí as influenced by thermal regime , Vol. 6(4), 2007, pp.322-326 Flowering performance of Polianthes tuberosa Linn. cv. ëcalcutta Doubleí as influenced by thermal regime Introduction Tuberose (Polianthes tuberosa Linn.) cv. Calcutta Double,

More information

THE INFLUENCE OF TIMING AND DURATION OF PHOTOPERIODIC LIGHTING ON THE WINTER FLOWERING OF CARNATIONS

THE INFLUENCE OF TIMING AND DURATION OF PHOTOPERIODIC LIGHTING ON THE WINTER FLOWERING OF CARNATIONS THE INFLUENCE OF TIMING AND DURATION OF PHOTOPERIODIC LIGHTING ON THE WINTER FLOWERING OF CARNATIONS E. Kaukovirta Department of Horticulture, University of Helsinki 00710 Helsinki 71, Finland Abstract

More information

Title. Author(s)SAITO, Yuichi. Issue Date Doc URL. Type. File Information LONG-DAY AND SHORT-DAY TREE SPECIES AMONGST CONIFERA

Title. Author(s)SAITO, Yuichi. Issue Date Doc URL. Type. File Information LONG-DAY AND SHORT-DAY TREE SPECIES AMONGST CONIFERA Title LONG-DAY AND SHORT-DAY TREE SPECIES AMONGST CONIFERA Author(s)SAITO, Yuichi 北海道大學農學部演習林研究報告 = RESEARCH BULLETINS OF THE COLLEGE CitationHOKKAIDO UNIVERSITY, 21(2): 373-376 Issue Date 1962-09 Doc

More information

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 1) Which of the following is the naturally occurring auxin in plants? a) indolebutyric acid b) naphthaleneacetic acid c) indoleacetic acid d) zeatin e) kinetin

More information

Papaver Alboroseum Portage Poppy. Katie Shields Hort 5051 May 4, 2005

Papaver Alboroseum Portage Poppy. Katie Shields Hort 5051 May 4, 2005 Papaver Alboroseum Portage Poppy Katie Shields Hort 5051 May 4, 2005 Taxonomy Scientific Name: Papaver alboroseum Synonyms: None Common Names: Portage Poppy, Pale Poppy, Pink Poppy Family: Papaveraceae

More information

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy Dr.Hamidah Ahmad Plant Classifications is based on : Purpose of classifying plants: 1. botanical type 2. values or geographical

More information

Other funding Sources Agency Name: MSU Agricultural Experiment Station /Project GREEEN Amount requested or awarded: 30,000

Other funding Sources Agency Name: MSU Agricultural Experiment Station /Project GREEEN Amount requested or awarded: 30,000 FINAL PROJECT REPORT Project Title: Functional genomics of flowering in apple PI: Herb Aldwinckle Co-PI(2): Steve VanNocker Organization: Cornell University Organization: Michigan State University Telephone/email:

More information

Growth Regulator Effects on Flowering in Maize

Growth Regulator Effects on Flowering in Maize Growth Regulator Effects on Flowering in Maize Eric Bumann July 14, 2008 My Background Research Associate at Pioneer Hi-Bred in Johnston, IA Production research 5 years in greenhouse research B.S. in Horticulture

More information

Breeding and Genetics

Breeding and Genetics Breeding and Genetics THE PHOTOPERIODIC CONTROL OF FLOWERING IN SACCHARUM M. H. R. Julien Mauritius Sugar Industry Research Institute RCduit, Mauritius ABSTRACT Flowering in 2 clones of Saccharum spontaneum

More information

Turf Growth and Development

Turf Growth and Development Turf Growth and Development Germination and Seedling Development Spikelet borne in Inflorescence Germination and Seedling Development Leaf and Stem Formation Inflorescence Roots Spikelet s Apex Caryopsis

More information

Research Notes: Inheritance of photoperiod insensitivity to flowering in Glycine max

Research Notes: Inheritance of photoperiod insensitivity to flowering in Glycine max Volume 4 Article 6 4-1-1977 Research Notes: Inheritance of photoperiod insensitivity to flowering in Glycine max S. Shanmugasundaram Asian Vegetable Research and Development Center Follow this and additional

More information

The Problem ADVANCED TECHNIQUES IN CUT FLOWER PRODUCTION: INCREASING STEM LENGTH AND STRENGTH. Where Are You Growing It? What Can I Do About It?

The Problem ADVANCED TECHNIQUES IN CUT FLOWER PRODUCTION: INCREASING STEM LENGTH AND STRENGTH. Where Are You Growing It? What Can I Do About It? ADVANCED TECHNIQUES IN CUT FLOWER PRODUCTION: INCREASING STEM LENGTH AND STRENGTH John Dole The Problem It has a great flower, produces a lot, and lasts a long time, but.. Its too short! Its too weak!

More information

By the time you read this article, Easter lilies will have been planted, Easter Lilies: Easter Lilies: A Challenge You Can Master

By the time you read this article, Easter lilies will have been planted, Easter Lilies: Easter Lilies: A Challenge You Can Master new crop varieties cultivation Easter Lilies: Easter Lilies: A Challenge You Can Master When it comes to controlling flowering and height of your Easter lily crop, precision is key. Temperature manipulation,

More information

Plant Growth and Development Part I. Levels of Organization

Plant Growth and Development Part I. Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules 1

More information

Catasetum and Cycnoches Part 5 Growth Cycle

Catasetum and Cycnoches Part 5 Growth Cycle BEGINNER'S SERIES 29 Catasetum and Cycnoches Part 5 Growth Cycle STEPHEN R. BATCHELOR AUTUMN is a season of dramatic changes, both out-of-doors and in a collection of catasetums and cycnoches. After flowering,

More information

Grower Summary PC 296. Protected ornamentals: assessing the suitability of energy saving bulbs for day extension and night break lighting.

Grower Summary PC 296. Protected ornamentals: assessing the suitability of energy saving bulbs for day extension and night break lighting. Grower Summary PC 296 Protected ornamentals: assessing the suitability of energy saving bulbs for day extension and night break lighting Annual 2010 Disclaimer AHDB, operating through its HDC division

More information

Alert. Flowering of Begonias Sponsors

Alert. Flowering of Begonias Sponsors Alert Volume 4, Number 34 May 2015 by Christopher J. Currey ccurrey@iastate.edu Flowering of Begonias 2015 Sponsors What begonias are you growing? Are your plants flowering too early or too late? This

More information

Patterns of Floral Bud Development in Canes of Erect and Trailing Blackberries

Patterns of Floral Bud Development in Canes of Erect and Trailing Blackberries Patterns of Floral Bud Development in Canes of Erect and Trailing Blackberries Fumiomi Takeda 1 U.S. Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, 45 Wiltshire

More information

Plants can be either herbaceous or woody.

Plants can be either herbaceous or woody. Plant Structure Plants can be either herbaceous or woody. Herbaceous plants are plants with growth which dies back to the ground each year, in contrast with woody plants Most herbaceous plants have stems

More information

While entry is at the discretion of the centre, candidates would normally be expected to have attained one of the following, or equivalent:

While entry is at the discretion of the centre, candidates would normally be expected to have attained one of the following, or equivalent: National Unit specification: general information Unit code: H1JB 11 Superclass: SE Publication date: May 2012 Source: Scottish Qualifications Authority Version: 01 Summary This Unit is designed to meet

More information

Effect of bulb size on growth, flowering and bulb formation in lachenalia cultivars

Effect of bulb size on growth, flowering and bulb formation in lachenalia cultivars Hort. Sci. (Prague) Vol. 41, 214, No. 2: 89 94 Effect of bulb size on growth, flowering and bulb formation in lachenalia cultivars A. Kapczyńska Department of Ornamentals, Faculty of Horticulture, University

More information

Regulatory Systems in Plants (Ch 39)

Regulatory Systems in Plants (Ch 39) Regulatory Systems in Plants (Ch 39) Plants show complex responses to environmental stimuli Problem: no nervous system (detection) & no muscular system (response) Various mechanisms for detecting stimuli

More information

Plant Growth & Development. Growth Processes Photosynthesis. Plant Growth & Development

Plant Growth & Development. Growth Processes Photosynthesis. Plant Growth & Development Plant Growth & Development Growth Processes Growth Requirements Types of Growth & Development Factors Growth Processes Photosynthesis Creating carbohydrates (stored energy) from CO 2 + water + sunlight

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

CAMBIUM, meristem, heartwood, and lenticel are

CAMBIUM, meristem, heartwood, and lenticel are Examining the Structures of a Tree CAMBIUM, meristem, heartwood, and lenticel are some terms that may be new to you. These terms are used to describe various tree structures. Not surprisingly, many terms

More information

CONTROL SYSTEMS IN PLANTS

CONTROL SYSTEMS IN PLANTS AP BIOLOGY PLANTS FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROL SYSTEMS IN PLANTS HORMONES MECHANISM FOR HORMONE ACTION Plant Form and Function Activity #5 page 1 CONTROL OF CELL ELONGATION Plant

More information

PLANT GROWTH AND DEVELOPMENT

PLANT GROWTH AND DEVELOPMENT 84 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 15 PLANT GROWTH AND DEVELOPMENT MULTIPLE CHOICE QUESTIONS 1. Ethylene is used for a. Retarding ripening of tomatoes b. Hastening of ripening of fruits c. Slowing down

More information

Shoot Apex Development at Various Stages of Flowering in Sugarcane (Saccharum spp. hybrid)

Shoot Apex Development at Various Stages of Flowering in Sugarcane (Saccharum spp. hybrid) 2008 The Japan Mendel Society Cytologia 73(2): 173 177, 2008 Shoot Apex Development at Various Stages of Flowering in Sugarcane (Saccharum spp. hybrid) M. Swapna* and Praveen Kumer Singh Division of Crop

More information

Commercial Greenhouse and Nursery Production

Commercial Greenhouse and Nursery Production Commercial Greenhouse and Nursery Production Purdue Department of Horticulture and Landscape Architecture www.ag.purdue.edu/hla Purdue Floriculture flowers.hort.purdue.edu Michigan State University Department

More information

ORNAMENTALS NORTHWEST ARCHIVES

ORNAMENTALS NORTHWEST ARCHIVES ORNAMENTALS NORTHWEST ARCHIVES Jan.-Feb.-Mar 1982 Vol.6, Issue 1 Pages 10-12 James L. Green (Extension Ornamentals Specialist) and C.J. Weiser (Head, Horticulture Department), Oregon State University.

More information

Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation

Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation Haley Bishoff - Smart Grow Systems Research Team 1. Bachelors of Science in Nutrition and Dietetics, Oregon State University

More information

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL Kelsey Hoth 1 Dr. Maria Ivanchenko 2 Bioresourse Research 1, Department of Botany and Plant Physiology 2, Oregon State University, Corvallis,

More information

Cutting Propagation. Is the clonal multiplication of plants with propagules of stems, leaves or roots.

Cutting Propagation. Is the clonal multiplication of plants with propagules of stems, leaves or roots. Principles of Propagation by Cuttings Dr. Fred Davies Department of Horticultural Sciences Texas A&M University College Station, Texas Cutting Propagation Shoot Adventitious Buds & Shoots Bud Is the clonal

More information

Garden Mum Crop Scheduling October 3, 2018 Mark Smith

Garden Mum Crop Scheduling October 3, 2018 Mark Smith Garden Mum Crop Scheduling October 3, 2018 Mark Smith mark.a.smith@syngenta.com 2018 Syngenta. Some or all of the varieties may be protected under one or more of the following: Plant Variety Protection,

More information

Reprinted from Vol. 107(2), March 1982 Journal of the American Society for Horticultural Science Alexandria, Virginia 22314, USA

Reprinted from Vol. 107(2), March 1982 Journal of the American Society for Horticultural Science Alexandria, Virginia 22314, USA Reprinted from Vol. 107(2), March 1982 Journal of the American Society for Horticultural Science Alexandria, Virginia 22314, USA J. Amer. Soc. Hort. Sci. 107(2):330-335. 1982. The Influence of Light on

More information

Peter Hirst Organization: Purdue University Telephone/ / Department of Horticulture and Landscape Architecture

Peter Hirst Organization: Purdue University Telephone/ / Department of Horticulture and Landscape Architecture FINAL PROJECT REPORT WTFRC Project Number: AP-06-601 Project Title: Flower bud development in apple PI: Peter Hirst Organization: Purdue University Telephone/email: 765-494-1323 / hirst@purdue.edu Address:

More information

Effects of bulb temperature on development of Hippeastrum

Effects of bulb temperature on development of Hippeastrum Effects of bulb temperature on development of Hippeastrum J.C. Doorduin and W. Verkerke Research Station for Floriculture and Glasshouse Vegetables PBG Kruisbroekweg 5 2670 AA Naaldwijk The Netherlands

More information

What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation. Fig. 35.

What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation. Fig. 35. What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation Fig. 35.18 Copyright 2002 Pearson Education, Inc., publishing as Benjamin

More information

Levels of Organization

Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Plant

More information

Is that artificial turf or real grass? Its thicker than Bermuda!

Is that artificial turf or real grass? Its thicker than Bermuda! Is that artificial turf or real grass? Its thicker than Bermuda! 1 Using Plant Growth Regulators Growth regulators DO NOT interfere with plant respiration, photosynthesis, or other internal plant functions

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

Influence of Temperature between Floral Initiation and Flag Leaf Emergence on Grain Number in Wheat

Influence of Temperature between Floral Initiation and Flag Leaf Emergence on Grain Number in Wheat Influence of Temperature between Floral Initiation and Flag Leaf Emergence on Grain Number in Wheat H. M. ~awson* and A. K. Bagga A Division of Plant Industry, CSIRO, P.O. Box 1600, Canberra City, A.C.T.

More information