Structural measures for multiplex networks

Size: px
Start display at page:

Download "Structural measures for multiplex networks"

Transcription

1 Structural measures for multiplex networks Federico Battiston, Vincenzo Nicosia and Vito Latora School of Mathematical Sciences, Queen Mary University of London Mathematics of Networks Imperial College London, Sept. 10, 2014 EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 1/21

2 Outline General formalism for multiplex networks Measures to characterise the multiplexity of a system 1 Basic node and link properties 2 Local properties (clustering) 3 Global properties (transitivity, reachability, centrality) Validation of all measures on a genuine multi-layer dataset of Indonesian terrorists EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 2/21

3 General formalism for multiplex networks A multiplex is a system whose basic units are connected through a variety of different relationships. Links of different kind are embedded in different layers. Node index Layer index i = 1,..., N α = 1,..., M EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 3/21

4 General formalism for multiplex networks A multiplex is a system whose basic units are connected through a variety of different relationships. Links of different kind are embedded in different layers. Node index Layer index i = 1,..., N α = 1,..., M For each layer α: adjacency matrix A [α] = {a [α] ij } node degree k [α] i = j a[α] ij i k[α] i = 2K [α] K [α] is the size of layer α EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 3/21

5 General formalism for multiplex networks A multiplex is a system whose basic units are connected through a variety of different relationships. Links of different kind are embedded in different layers. Node index Layer index i = 1,..., N α = 1,..., M For each layer α: adjacency matrix A [α] = {a [α] ij } node degree k [α] i = j a[α] ij i k[α] i = 2K [α] K [α] is the size of layer α For the multiplex: vector of adjacency matrices A = {A [1],..., A [M] }. vector of degrees k i = (k [1] i,..., k [M] i ). Vectorial variables are necessary to store all the richness of multiplexes. EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 3/21

6 General formalism: aggregated matrices Aggregated topological network: adjacency matrix A = {a ij }: a ij = { 1 if α : a [α] ij = 1 0 otherwise (1) node degree k i = j a ij i k i = 2K EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 4/21

7 General formalism: aggregated matrices Aggregated topological network: adjacency matrix A = {a ij }: a ij = { 1 if α : a [α] ij = 1 0 otherwise (1) node degree k i = j a ij i k i = 2K Aggregated overlapping network: adjacency matrix O = {o ij }: o ij = α a [α] ij edge overlap (2) node degree o i = j o ij = α k[α] i, o i k i i o i = 2O EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 4/21

8 General formalism: aggregated matrices Aggregated topological network: adjacency matrix A = {a ij }: a ij = { 1 if α : a [α] ij = 1 0 otherwise (1) node degree k i = j a ij i k i = 2K Aggregated overlapping network: adjacency matrix O = {o ij }: o ij = α a [α] ij edge overlap (2) node degree o i = j o ij = α k[α] i, o i k i i o i = 2O Scalar variables describing system s multiplexity cannot disregard the layer index [α]. Generalisation to the case of weighted layers: a [α] ij w [α] ij k [α] i s [α] i o ij oij w EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 4/21

9 The multi-layer network of Indonesian terrorists 78 nodes 911 edges representing 4 social relationships: 1 Trust (weighted edges) 2 Operations (weighted edges) 3 Communications 4 Businness (only few information) EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 5/21

10 The multi-layer network of Indonesian terrorists LAYER CODE N act K S O O w MULTIPLEX M / Trust T / / Operations O / / Communications C / / Businness B / / Figure : Coloured-edge representation of a subset of 10 nodes for the multiplex network of Indonesian terrorist: green edges represent trust, red edges communications and blue edges common operations. EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 6/21

11 The multi-layer network of Indonesian terrorists LAYER CODE N act K S O O w MULTIPLEX M / Trust T / / Operations O / / Communications C / / Businness B / / EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 6/21

12 Basic node properties A layer-by-layer exploration of node properties: the case of the degree distribution. Different layers show different patterns. EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 7/21

13 Basic node properties: cartography of a multiplex Participation coefficient: P i = 1 ( ) M k [α] 2 i α=1 oi 1 Focused nodes 0 P i Mixed-pattern nodes 0.3 < P i Truly multiplex nodes P i > 0.6 Z-score of the overlapping degree: z i (o) = o i <o> σ o 1 Simple nodes 2 z i (o) 2 2 Hubs z i (o) > 2 EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 8/21

14 Basic node properties: cartography of a multiplex EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 9/21

15 Edge overlap and social reinforcement o ij Percentage of edges (%) EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 10/21

16 Edge overlap and social reinforcement o ij Percentage of edges (%) Probability conditional overlap: F (a [α ] ij a [α] ij ) = ] ij a[α ij ij a[α] ij a [α] ij (3) EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 10/21

17 Edge overlap and social reinforcement F (a [α ] ij a [α] ij ) F w (a [α ] ij w [α] ij ) α = O α = C α = B F w (α w [T] ij ) w [T] ij The existence of strong connections in the Trust layer, which represents the strongest relationships between two people, actually fosters the creation of links in other layers. EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 11/21

18 Triads and triangles EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 12/21

19 Clustering C i,1 = α α α j i,m i (a[α] α a[α] mi ) j i,m i (a[α] ij a [α] (4) mi ) ij a [α ] jm EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 13/21

20 Clustering C i,1 = α α α j i,m i (a[α] α a[α] mi ) j i,m i (a[α] ij a [α] (4) mi ) ij a [α ] jm C i,2 = α α α α α,α j i,m i (a[α] α α α j i,m i (a[α] ij a [α ] mi ) ij a [α ] ] jm a[α mi ) (5) EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 13/21

21 Transitivity EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 14/21

22 Clustering C i,1 and C i,2 show different patterns of multi-clustering and are not correlated with o i. EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 15/21

23 Transitivity and clustering We call configuration model (CM) the set of multiplexes obtained from the original system by randomising edges and keeping fixed the sequence of degree vectors k 1, k 2,..., k N, i.e. keeping fixed the degree sequence at each layer α. Variable Real data Randomised data C C T T Measures of multi-clustering for real data are systematically higher than the ones obtained for randomised data, where edge correlations are washed out by randomisation EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 16/21

24 Navigability: shortest paths and interdependence The interdependence λ i of node i is defined as: λ i = j i ψ ij σ ij (6) where σ ij is the total number of shortest paths between i and j and ψ ij is the number of interdependent shortest paths between node i and node j λ λi Rank EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 17/21

25 Reachability: shortest paths and interdependence λi o i λi P i EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 18/21

26 Centrality For a duplex we can construct the following adjacency matrix: M(b) = ba [1] + (1 b)a [2], M(b = 0.5) = O (7) T - O T - C O - C τk(ei(o), Ei(M)) b The symmetry/asymmetry of the curves tell us about the interplay between the layers in determining the centrality of the multi-layer system. Both layers T and O dominate C in determining the centrality of the multiplex. EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 19/21

27 Summary We suggested a comprehensive formalism to deal with systems composed of several layers We also proposed a number of metrics to characterize multiplex systems with respect to: 1 Node degree 2 Node participation to different layers 3 Edge overlap 4 Clustering 5 Transitivity 6 Reachability 7 Eigenvector centrality 8 You can find more in the paper EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 20/21

28 Structural measures for multiplex networks, Phys. Rev. E (2014). F. Battiston, V. Nicosia and V. Latora, the LASAGNE team at Queen Mary University of London. Acknowledge financial support from the EU-FP7 LASAGNE Project Queen Mary University of London F. Battiston et al. Structural measures for multiplex networks 21/21

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Authoritative Sources in a Hyperlinked Enviroment

Authoritative Sources in a Hyperlinked Enviroment Authoritative Sources in a Hyperlinked Enviroment Dimitris Sakavalas June 15, 2010 Outline Introduction Problem description Authorities and Broad-topic queries Algorithm outline Construction of a Focused

More information

arxiv: v1 [physics.soc-ph] 18 Sep 2014

arxiv: v1 [physics.soc-ph] 18 Sep 2014 Multiplexity versus correlation: the role of local constraints in real multiplexes V. Gemmetto * and D. Garlaschelli * arxiv:1409.5253v1 [physics.soc-ph] 18 Sep 2014 * Instituut-Lorentz for Theoretical

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

α-kuramoto partitions: graph partitions from the frustrated Kuramoto model generalise equitable partitions

α-kuramoto partitions: graph partitions from the frustrated Kuramoto model generalise equitable partitions α-kuramoto partitions: graph partitions from the frustrated Kuramoto model generalise equitable partitions Stephen Kirkland 1 and Simone Severini 1 Hamilton Institute, National University of Ireland Maynooth,

More information

Applicable Analysis and Discrete Mathematics available online at FRUSTRATED KURAMOTO MODEL GENERALISE EQUITABLE PARTITIONS

Applicable Analysis and Discrete Mathematics available online at   FRUSTRATED KURAMOTO MODEL GENERALISE EQUITABLE PARTITIONS Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs Appl. Anal. Discrete Math. x (xxxx), xxx xxx. doi:10.98/aadmxxxxxxxx α-kuramoto PARTITIONS FROM THE FRUSTRATED KURAMOTO

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize/navigate it? First try: Human curated Web directories Yahoo, DMOZ, LookSmart

More information

Introduction to Kleene Algebras

Introduction to Kleene Algebras Introduction to Kleene Algebras Riccardo Pucella Basic Notions Seminar December 1, 2005 Introduction to Kleene Algebras p.1 Idempotent Semirings An idempotent semiring is a structure S = (S, +,, 1, 0)

More information

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS LINK ANALYSIS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Retrieval evaluation Link analysis Models

More information

Introduction to Social Network Analysis PSU Quantitative Methods Seminar, June 15

Introduction to Social Network Analysis PSU Quantitative Methods Seminar, June 15 Introduction to Social Network Analysis PSU Quantitative Methods Seminar, June 15 Jeffrey A. Smith University of Nebraska-Lincoln Department of Sociology Course Website https://sites.google.com/site/socjasmith/teaching2/psu_social_networks_seminar

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

Data science with multilayer networks: Mathematical foundations and applications

Data science with multilayer networks: Mathematical foundations and applications Data science with multilayer networks: Mathematical foundations and applications CDSE Days University at Buffalo, State University of New York Monday April 9, 2018 Dane Taylor Assistant Professor of Mathematics

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is

More information

Applying block intersection polynomials to study graphs and designs

Applying block intersection polynomials to study graphs and designs Applying block intersection polynomials to study graphs and designs Leonard Soicher Queen Mary University of London CoCoA15, Colorado State University, Fort Collins, July 2015 Leonard Soicher (QMUL) Block

More information

Link Analysis and Web Search

Link Analysis and Web Search Link Analysis and Web Search Episode 11 Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto Link Analysis and Web Search (Chapter 13, 14) Information networks and

More information

Differential Modeling for Cancer Microarray Data

Differential Modeling for Cancer Microarray Data Differential Modeling for Cancer Microarray Data Omar Odibat Department of Computer Science Feb, 01, 2011 1 Outline Introduction Cancer Microarray data Problem Definition Differential analysis Existing

More information

Kristina Lerman USC Information Sciences Institute

Kristina Lerman USC Information Sciences Institute Rethinking Network Structure Kristina Lerman USC Information Sciences Institute Università della Svizzera Italiana, December 16, 2011 Measuring network structure Central nodes Community structure Strength

More information

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Reputation Systems I HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Yury Lifshits Wiki Definition Reputation is the opinion (more technically, a social evaluation) of the public toward a person, a

More information

Network Analysis using Stata

Network Analysis using Stata Introduction nwcommands Contribution Application Conclusion Network Analysis using Stata Nwcommands, extensions and applications. Charlie Joyez Université Cote d Azur (UCA), GREDEG, Université de Nice

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and

More information

Structural properties of urban street patterns and the Multiple Centrality Assessment

Structural properties of urban street patterns and the Multiple Centrality Assessment Structural properties of urban street patterns and the Multiple Centrality Assessment Alessio Cardillo Department of Physics and Astronomy Università degli studi di Catania Complex Networks - Equilibrium

More information

Geographical Inequalities and Population Change in Britain,

Geographical Inequalities and Population Change in Britain, Geographical Inequalities and Population Change in Britain, 1971-2011 Chris Lloyd, Nick Bearman, Gemma Catney Centre for Spatial Demographics Research, University of Liverpool, UK Email: c.d.lloyd@liverpool.ac.uk

More information

Blog Community Discovery and Evolution

Blog Community Discovery and Evolution Blog Community Discovery and Evolution Mutual Awareness, Interactions and Community Stories Yu-Ru Lin, Hari Sundaram, Yun Chi, Junichi Tatemura and Belle Tseng What do people feel about Hurricane Katrina?

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

Ranking using Matrices.

Ranking using Matrices. Anjela Govan, Amy Langville, Carl D. Meyer Northrop Grumman, College of Charleston, North Carolina State University June 2009 Outline Introduction Offense-Defense Model Generalized Markov Model Data Game

More information

Eugene Wigner [4]: in the natural sciences, Communications in Pure and Applied Mathematics, XIII, (1960), 1 14.

Eugene Wigner [4]: in the natural sciences, Communications in Pure and Applied Mathematics, XIII, (1960), 1 14. Introduction Eugene Wigner [4]: The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.

More information

Implementing Visual Analytics Methods for Massive Collections of Movement Data

Implementing Visual Analytics Methods for Massive Collections of Movement Data Implementing Visual Analytics Methods for Massive Collections of Movement Data G. Andrienko, N. Andrienko Fraunhofer Institute Intelligent Analysis and Information Systems Schloss Birlinghoven, D-53754

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Networks of Foreign Value Added in Exports

Networks of Foreign Value Added in Exports Networks of Foreign Value Added in Exports J. Amador 1 S. Cabral 2 R. Mastrandrea 3 F. Ruzzenenti 4 1 Banco de Portugal & Nova SBE 2 Banco de Portugal 3 IMT School for Advanced Studies 4 University of

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Probability and Samples. Sampling. Point Estimates

Probability and Samples. Sampling. Point Estimates Probability and Samples Sampling We want the results from our sample to be true for the population and not just the sample But our sample may or may not be representative of the population Sampling error

More information

M. Saraiva* 1 and J. Barros 1. * Keywords: Agent-Based Models, Urban Flows, Accessibility, Centrality.

M. Saraiva* 1 and J. Barros 1. *  Keywords: Agent-Based Models, Urban Flows, Accessibility, Centrality. The AXS Model: an agent-based simulation model for urban flows M. Saraiva* 1 and J. Barros 1 1 Department of Geography, Birkbeck, University of London, 32 Tavistock Square, London, WC1H 9EZ *Email: m.saraiva@mail.bbk.ac.uk

More information

Network Flows. 4. Maximum Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 4. Maximum Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 4. Maximum Flows Problems 4.1 Introduction Fall 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction The maximum flow problem In a capacitated network, we wish

More information

EE263 Review Session 1

EE263 Review Session 1 EE263 Review Session 1 October 5, 2018 0.1 Importing Variables from a MALAB.m file If you are importing variables given in file vars.m, use the following code at the beginning of your script. close a l

More information

CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms

CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity overhead Dynamic

More information

Gene expression microarray technology measures the expression levels of thousands of genes. Research Article

Gene expression microarray technology measures the expression levels of thousands of genes. Research Article JOURNAL OF COMPUTATIONAL BIOLOGY Volume 7, Number 2, 2 # Mary Ann Liebert, Inc. Pp. 8 DOI:.89/cmb.29.52 Research Article Reducing the Computational Complexity of Information Theoretic Approaches for Reconstructing

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

2.2. Show that U 0 is a vector space. For each α 0 in F, show by example that U α does not satisfy closure.

2.2. Show that U 0 is a vector space. For each α 0 in F, show by example that U α does not satisfy closure. Hints for Exercises 1.3. This diagram says that f α = β g. I will prove f injective g injective. You should show g injective f injective. Assume f is injective. Now suppose g(x) = g(y) for some x, y A.

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

MAE 298, Lecture 8 Feb 4, Web search and decentralized search on small-worlds

MAE 298, Lecture 8 Feb 4, Web search and decentralized search on small-worlds MAE 298, Lecture 8 Feb 4, 2008 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in a file-sharing

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

Lecture 5: November 19, Minimizing the maximum intracluster distance

Lecture 5: November 19, Minimizing the maximum intracluster distance Analysis of DNA Chips and Gene Networks Spring Semester, 2009 Lecture 5: November 19, 2009 Lecturer: Ron Shamir Scribe: Renana Meller 5.1 Minimizing the maximum intracluster distance 5.1.1 Introduction

More information

Lecture 1 and 2: Introduction and Graph theory basics. Spring EE 194, Networked estimation and control (Prof. Khan) January 23, 2012

Lecture 1 and 2: Introduction and Graph theory basics. Spring EE 194, Networked estimation and control (Prof. Khan) January 23, 2012 Lecture 1 and 2: Introduction and Graph theory basics Spring 2012 - EE 194, Networked estimation and control (Prof. Khan) January 23, 2012 Spring 2012: EE-194-02 Networked estimation and control Schedule

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

LAPLACIAN MATRIX AND APPLICATIONS

LAPLACIAN MATRIX AND APPLICATIONS LAPLACIAN MATRIX AND APPLICATIONS Alice Nanyanzi Supervisors: Dr. Franck Kalala Mutombo & Dr. Simukai Utete alicenanyanzi@aims.ac.za August 24, 2017 1 Complex systems & Complex Networks 2 Networks Overview

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Linear Algebra U Kang Seoul National University U Kang 1 In This Lecture Overview of linear algebra (but, not a comprehensive survey) Focused on the subset

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

The Strength of Indirect Relations in Social Networks

The Strength of Indirect Relations in Social Networks The Strength of in Social Networks Department of Mathematics University of Patras Greece Moses.Boudourides@gmail.com Draft paper available at: http://nicomedia.math.upatras.gr/sn/dirisn_0.pdf May 28, 2011

More information

Bargaining, Information Networks and Interstate

Bargaining, Information Networks and Interstate Bargaining, Information Networks and Interstate Conflict Erik Gartzke Oliver Westerwinter UC, San Diego Department of Political Sciene egartzke@ucsd.edu European University Institute Department of Political

More information

Intelligent Data Analysis. PageRank. School of Computer Science University of Birmingham

Intelligent Data Analysis. PageRank. School of Computer Science University of Birmingham Intelligent Data Analysis PageRank Peter Tiňo School of Computer Science University of Birmingham Information Retrieval on the Web Most scoring methods on the Web have been derived in the context of Information

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Regional cooperation: evidence from European cooperative innovation networks

Regional cooperation: evidence from European cooperative innovation networks Regional cooperation: evidence from European cooperative innovation networks Sara Amoroso Alex Coad Nicola Grassano European Commission, JRC, B.3 September 29, 2016 Motivation of the study Regional innovation

More information

Lecture 3: Analysis of Variance II

Lecture 3: Analysis of Variance II Lecture 3: Analysis of Variance II http://www.stats.ox.ac.uk/ winkel/phs.html Dr Matthias Winkel 1 Outline I. A second introduction to two-way ANOVA II. Repeated measures design III. Independent versus

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

(Quantum) Fields on Causal Sets

(Quantum) Fields on Causal Sets (Quantum) Fields on Causal Sets Michel Buck Imperial College London July 31, 2013 1 / 32 Outline 1. Causal Sets: discrete gravity 2. Continuum-Discrete correspondence: sprinklings 3. Relativistic fields

More information

The Efficiency and Evolution of R&D Networks

The Efficiency and Evolution of R&D Networks The Efficiency and Evolution of R&D Networks DRAFT Please do not distribute nor quote without permission of the authors. M.D. König a S. Battiston a M. Napoletano a,b F. Schweitzer a a Chair of Systems

More information

Ma/CS 6b Class 12: Graphs and Matrices

Ma/CS 6b Class 12: Graphs and Matrices Ma/CS 6b Class 2: Graphs and Matrices 3 3 v 5 v 4 v By Adam Sheffer Non-simple Graphs In this class we allow graphs to be nonsimple. We allow parallel edges, but not loops. Incidence Matrix Consider a

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

Spectral Graph Theory Tools. Analysis of Complex Networks

Spectral Graph Theory Tools. Analysis of Complex Networks Spectral Graph Theory Tools for the Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA Acknowledgments Christine Klymko (Emory) Ernesto Estrada (Strathclyde, UK) Support:

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Lecture 4. Spatial Statistics

Lecture 4. Spatial Statistics Lecture 4 Spatial Statistics Lecture 4 Outline Statistics in GIS Spatial Metrics Cell Statistics Neighborhood Functions Neighborhood and Zonal Statistics Mapping Density (Density surfaces) Hot Spot Analysis

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224w: Social and Information Network Analysis Fall 2012 Yu Wayne Wu Based on Borja Pelato s version in Fall 2011 Matrices and Vectors Matrix: A rectangular

More information

Weighted Network Analysis for Groups:

Weighted Network Analysis for Groups: Weighted Network Analysis for Groups: Separating Differences in Cost from Differences in Topology Cedric E. Ginestet Department of Neuroimaging, King s College London Cedric E. Ginestet (KCL) Weighted

More information

Teaching Research Methods: Resources for HE Social Sciences Practitioners. Sampling

Teaching Research Methods: Resources for HE Social Sciences Practitioners. Sampling Sampling Session Objectives By the end of the session you will be able to: Explain what sampling means in research List the different sampling methods available Have had an introduction to confidence levels

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

Class President: A Network Approach to Popularity. Due July 18, 2014

Class President: A Network Approach to Popularity. Due July 18, 2014 Class President: A Network Approach to Popularity Due July 8, 24 Instructions. Due Fri, July 8 at :59 PM 2. Work in groups of up to 3 3. Type up the report, and submit as a pdf on D2L 4. Attach the code

More information

Data preprocessing. DataBase and Data Mining Group 1. Data set types. Tabular Data. Document Data. Transaction Data. Ordered Data

Data preprocessing. DataBase and Data Mining Group 1. Data set types. Tabular Data. Document Data. Transaction Data. Ordered Data Elena Baralis and Tania Cerquitelli Politecnico di Torino Data set types Record Tables Document Data Transaction Data Graph World Wide Web Molecular Structures Ordered Spatial Data Temporal Data Sequential

More information

(K + L)(c x) = K(c x) + L(c x) (def of K + L) = K( x) + K( y) + L( x) + L( y) (K, L are linear) = (K L)( x) + (K L)( y).

(K + L)(c x) = K(c x) + L(c x) (def of K + L) = K( x) + K( y) + L( x) + L( y) (K, L are linear) = (K L)( x) + (K L)( y). Exercise 71 We have L( x) = x 1 L( v 1 ) + x 2 L( v 2 ) + + x n L( v n ) n = x i (a 1i w 1 + a 2i w 2 + + a mi w m ) i=1 ( n ) ( n ) ( n ) = x i a 1i w 1 + x i a 2i w 2 + + x i a mi w m i=1 Therefore y

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

Math 304 Handout: Linear algebra, graphs, and networks.

Math 304 Handout: Linear algebra, graphs, and networks. Math 30 Handout: Linear algebra, graphs, and networks. December, 006. GRAPHS AND ADJACENCY MATRICES. Definition. A graph is a collection of vertices connected by edges. A directed graph is a graph all

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

From Sentiment Analysis to Preference Aggregation

From Sentiment Analysis to Preference Aggregation From Sentiment Analysis to Preference Aggregation Umberto Grandi Department of Mathematics University of Padova 22 November 2013 [Joint work with Andrea Loreggia, Francesca Rossi and Vijay Saraswat] What

More information

2.1 Laplacian Variants

2.1 Laplacian Variants -3 MS&E 337: Spectral Graph heory and Algorithmic Applications Spring 2015 Lecturer: Prof. Amin Saberi Lecture 2-3: 4/7/2015 Scribe: Simon Anastasiadis and Nolan Skochdopole Disclaimer: hese notes have

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Inventor collaboration and its' persistence across European regions

Inventor collaboration and its' persistence across European regions Inventor collaboration and its' persistence across European regions Gergő Tóth 1,2 - Sándor Juhász 1,3 - Zoltán Elekes 1,3 - Balázs Lengyel 1,4 1 Agglomeration and Social Networks Lendület Research Group,

More information

Posets, homomorphisms and homogeneity

Posets, homomorphisms and homogeneity Posets, homomorphisms and homogeneity Peter J. Cameron and D. Lockett School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, U.K. Abstract Jarik Nešetřil suggested

More information

Proximity data visualization with h-plots

Proximity data visualization with h-plots The fifth international conference user! 2009 Proximity data visualization with h-plots Irene Epifanio Dpt. Matemàtiques, Univ. Jaume I (SPAIN) epifanio@uji.es; http://www3.uji.es/~epifanio Outline Motivating

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge.

The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge. The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge. A graph metric: motivation. Graph theory statistical modelling Data

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

Combinatorial semigroups and induced/deduced operators

Combinatorial semigroups and induced/deduced operators Combinatorial semigroups and induced/deduced operators G. Stacey Staples Department of Mathematics and Statistics Southern Illinois University Edwardsville Modified Hypercubes Particular groups & semigroups

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 6: Numerical Linear Algebra: Applications in Machine Learning Cho-Jui Hsieh UC Davis April 27, 2017 Principal Component Analysis Principal

More information

Hyperlinked-Induced Topic Search (HITS) identifies. authorities as good content sources (~high indegree) HITS [Kleinberg 99] considers a web page

Hyperlinked-Induced Topic Search (HITS) identifies. authorities as good content sources (~high indegree) HITS [Kleinberg 99] considers a web page IV.3 HITS Hyperlinked-Induced Topic Search (HITS) identifies authorities as good content sources (~high indegree) hubs as good link sources (~high outdegree) HITS [Kleinberg 99] considers a web page a

More information

ITTC Science of Communication Networks The University of Kansas EECS SCN Graph Spectra

ITTC Science of Communication Networks The University of Kansas EECS SCN Graph Spectra Science of Communication Networks The University of Kansas EECS SCN Graph Spectra Egemen K. Çetinkaya and James P.G. Sterbenz Department of Electrical Engineering & Computer Science Information Technology

More information