CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms

Size: px
Start display at page:

Download "CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms"

Transcription

1 CSC 1700 Analysis of Algorithms: Warshall s and Floyd s algorithms Professor Henry Carter Fall 2016

2 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity overhead Dynamic programming achieves this by saving the result of overlapping subproblems Can be executed bottom-up or top-down (using memory functions) 2

3 Digraphs Revisited Recall: directed graphs New feature: edge weights Applications: scheduling, process flow, revision history 3

4 Transitive Closure Is node b reachable from node a? Consider all pairs (a,b) Store results in an n x n matrix of {0,1} 4

5 Example Graph A B a a b b C D c d c d

6 BFS/DFS Approach The transitive closure from a to any other node can be found through graph traversal Repeating for all nodes yields the complete closure matrix How could we apply dynamic programming? 6

7 Warshall s Algorithm Construct transitive closure using a series of matrices Matrix k considers paths through G traversing nodes 1,,k If a path exists from i to k and from k to j, mark a path from i to j R 0 is the paths between each vertex with no intermediate vertices (i.e., the adjacency matrix) 7

8 Rule for Changing 0 to 1 k j k 1 i 1 0 8

9 Example Application a b c d

10 Example Application a b c d

11 Example Application a b c d

12 Example Application a b c d

13 Example Application a b c d

14 Example Application a b c d

15 Algorithm Warshall(A[1,...,n,1,...,n]) input : The adjacency matrix A with n vertices. output: The transitive closure of the digraph. R (0) A for k 1 to n do for i 1 to n do for j 1 to n do R (k) [i, j] R (k 1) [i, j] or (R (k 1) [i, k] and R (k 1) [k, j]) end end end return R (n) 15

16 Speeding Things Up More efficient inner loop Treat rows as bit strings and apply boolean operations simultaneously Combine matrices into one 16

17 All-Pairs Shortest Paths Given a weighted digraph, find the shortest path from a to b Solve for all pairs (a,b) Stored in an n x n integer distance matrix 17

18 Example Graph A 2 B a 0 3 a C D b 2 0 c d 6 0 b c d

19 Floyd s Algorithm Construct the distance matrix using a series of matrices Matrix k considers paths through G that traverse any vertex numbered 1,,k If there is a path from i to k and from k to j, we compare it to the current shortest path and (possibly) update the distance R0 is the distance between each node with no intermediate vertices (i.e., the edge weight matrix) 19

20 Rule for Updating Distance k j k 3 i 2 20

21 Example Application a 0 3 b 2 0 c d

22 Example Application a 0 3 b 2 0 c d

23 Example Application a 0 3 b c d

24 Example Application a 0 3 b c d

25 Example Application a b c d

26 Example Application a b c d

27 Algorithm Floyd(W [1,...,n,1,...,n]) input : The weight matrix W. output: The distance matrix of the shortest paths lengths. D W for k 1 to n do for i 1 to n do for j 1 to n do D[i, j] min(d[i, j],d[i, k]+d[k, j]) end end end return D 27

28 Practice Apply Warshall s algorithm to the following adjacency matrix:

29 Recap Transitive closure and all-pairs shortest paths problems Warshall s and Floyd s algorithms use dynamic programming to store intermediate results in a series of matrices We will revisit shortest-paths in the next chapter 29

30 Next Time... Levitin Chapter Remember, you need to read it BEFORE you come to class! Homework: 8.4: 1, 2, 3, 6, 7 30

Chapter 8 Dynamic Programming

Chapter 8 Dynamic Programming Chapter 8 Dynamic Programming Copyright 2007 Pearson Addison-Wesley. All rights reserved. Dynamic Programming Dynamic Programming is a general algorithm design technique for solving problems defined by

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 22 All-Pairs Shortest Paths Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 All Pairs

More information

All-Pairs Shortest Paths

All-Pairs Shortest Paths All-Pairs Shortest Paths Version of October 28, 2016 Version of October 28, 2016 All-Pairs Shortest Paths 1 / 26 Outline Another example of dynamic programming Will see two different dynamic programming

More information

Chapter 8 Dynamic Programming

Chapter 8 Dynamic Programming Chapter 8 Dynamic Programming Copyright 007 Pearson Addison-Wesley. All rights reserved. Dynamic Programming Dynamic Programming is a general algorithm design technique for solving problems defined by

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

CS173 Lecture B, November 3, 2015

CS173 Lecture B, November 3, 2015 CS173 Lecture B, November 3, 2015 Tandy Warnow November 3, 2015 CS 173, Lecture B November 3, 2015 Tandy Warnow Announcements Examlet 7 is a take-home exam, and is due November 10, 11:05 AM, in class.

More information

Analysis of Algorithms I: All-Pairs Shortest Paths

Analysis of Algorithms I: All-Pairs Shortest Paths Analysis of Algorithms I: All-Pairs Shortest Paths Xi Chen Columbia University The All-Pairs Shortest Paths Problem. Input: A directed weighted graph G = (V, E) with an edge-weight function w : E R. Output:

More information

CSE 431/531: Analysis of Algorithms. Dynamic Programming. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo

CSE 431/531: Analysis of Algorithms. Dynamic Programming. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo CSE 431/531: Analysis of Algorithms Dynamic Programming Lecturer: Shi Li Department of Computer Science and Engineering University at Buffalo Paradigms for Designing Algorithms Greedy algorithm Make a

More information

Single Source Shortest Paths

Single Source Shortest Paths CMPS 00 Fall 017 Single Source Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 252: Data Structures and Algorithms Lecture 32 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati The All-Pairs Shortest Paths Problem

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 1: Introduction, Easy Examples Karl Bringmann and Sebastian Krinninger Audience no formal requirements, but: NP-hardness, satisfiability problem, how

More information

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y.

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y. Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.1, 7.3 7.5 of Rosen cse235@cse.unl.edu

More information

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk CMPS 6610 Fall 018 Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight function w

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Analysis of Algorithms Professor Eric Aaron Lecture T Th 9:00am Lecture Meeting Location: OLB 205 Business Grading updates: HW5 back today HW7 due Dec. 10 Reading: Ch. 22.1-22.3, Ch. 25.1-2, Ch.

More information

Universal Algebra and Computational Complexity Lecture 1

Universal Algebra and Computational Complexity Lecture 1 Universal Algebra and Computational Complexity Lecture 1 Ross Willard University of Waterloo, Canada Třešt, September 2008 Ross Willard (Waterloo) Algebra and Complexity Třešt, September 2008 1 / 23 Outline

More information

CSC 1700 Analysis of Algorithms: P and NP Problems

CSC 1700 Analysis of Algorithms: P and NP Problems CSC 1700 Analysis of Algorithms: P and NP Problems Professor Henry Carter Fall 2016 Recap Algorithmic power is broad but limited Lower bounds determine whether an algorithm can be improved by more than

More information

Math.3336: Discrete Mathematics. Chapter 9 Relations

Math.3336: Discrete Mathematics. Chapter 9 Relations Math.3336: Discrete Mathematics Chapter 9 Relations Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Based

More information

Dynamic Programming. p. 1/43

Dynamic Programming. p. 1/43 Dynamic Programming Formalized by Richard Bellman Programming relates to planning/use of tables, rather than computer programming. Solve smaller problems first, record solutions in a table; use solutions

More information

CSC 8301 Design & Analysis of Algorithms: Lower Bounds

CSC 8301 Design & Analysis of Algorithms: Lower Bounds CSC 8301 Design & Analysis of Algorithms: Lower Bounds Professor Henry Carter Fall 2016 Recap Iterative improvement algorithms take a feasible solution and iteratively improve it until optimized Simplex

More information

Lecture 11. Single-Source Shortest Paths All-Pairs Shortest Paths

Lecture 11. Single-Source Shortest Paths All-Pairs Shortest Paths Lecture. Single-Source Shortest Paths All-Pairs Shortest Paths T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to, rd Edition, MIT Press, 009 Sungkyunkwan University Hyunseung Choo choo@skku.edu

More information

CSCE 551 Final Exam, April 28, 2016 Answer Key

CSCE 551 Final Exam, April 28, 2016 Answer Key CSCE 551 Final Exam, April 28, 2016 Answer Key 1. (15 points) Fix any alphabet Σ containing the symbol a. For any language L Σ, define the language a\l := {w Σ wa L}. Show that if L is regular, then a\l

More information

Computational Complexity for Algebraists

Computational Complexity for Algebraists Computational Complexity for Algebraists Ross Willard University of Waterloo, Canada January 20, 2009 Ross Willard (Waterloo) Complexity for Algebraists January 20, 2009 1 / 23 Outline First hour: Decision

More information

p 3 p 2 p 4 q 2 q 7 q 1 q 3 q 6 q 5

p 3 p 2 p 4 q 2 q 7 q 1 q 3 q 6 q 5 Discrete Fréchet distance Consider Professor Bille going for a walk with his personal dog. The professor follows a path of points p 1,..., p n and the dog follows a path of points q 1,..., q m. We assume

More information

EE263 Review Session 1

EE263 Review Session 1 EE263 Review Session 1 October 5, 2018 0.1 Importing Variables from a MALAB.m file If you are importing variables given in file vars.m, use the following code at the beginning of your script. close a l

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 4

CS 410/584, Algorithm Design & Analysis, Lecture Notes 4 CS 0/58,, Biconnectivity Let G = (N,E) be a connected A node a N is an articulation point if there are v and w different from a such that every path from 0 9 8 3 5 7 6 David Maier Biconnected Component

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu What is an Algorithm?

More information

Rela%ons and Their Proper%es. Slides by A. Bloomfield

Rela%ons and Their Proper%es. Slides by A. Bloomfield Rela%ons and Their Proper%es Slides by A. Bloomfield What is a rela%on Let A and B be sets. A binary rela%on R is a subset of A B Example Let A be the students in a the CS major A = {Alice, Bob, Claire,

More information

Max-plus algebra. Max-plus algebra. Monika Molnárová. Technická univerzita Košice. Max-plus algebra.

Max-plus algebra. Max-plus algebra. Monika Molnárová. Technická univerzita Košice. Max-plus algebra. Technická univerzita Košice monika.molnarova@tuke.sk Outline 1 Digraphs Maximum cycle-mean and transitive closures of a matrix Reducible and irreducible matrices Definite matrices Digraphs Complete digraph

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

(c) Give a proof of or a counterexample to the following statement: (3n 2)= n(3n 1) 2

(c) Give a proof of or a counterexample to the following statement: (3n 2)= n(3n 1) 2 Question 1 (a) Suppose A is the set of distinct letters in the word elephant, B is the set of distinct letters in the word sycophant, C is the set of distinct letters in the word fantastic, and D is the

More information

Note that M i,j depends on two entries in row (i 1). If we proceed in a row major order, these two entries will be available when we are ready to comp

Note that M i,j depends on two entries in row (i 1). If we proceed in a row major order, these two entries will be available when we are ready to comp CSE 3500 Algorithms and Complexity Fall 2016 Lecture 18: October 27, 2016 Dynamic Programming Steps involved in a typical dynamic programming algorithm are: 1. Identify a function such that the solution

More information

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 20 Travelling Salesman Problem

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 20 Travelling Salesman Problem Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 20 Travelling Salesman Problem Today we are going to discuss the travelling salesman problem.

More information

Dynamic Programming. Prof. S.J. Soni

Dynamic Programming. Prof. S.J. Soni Dynamic Programming Prof. S.J. Soni Idea is Very Simple.. Introduction void calculating the same thing twice, usually by keeping a table of known results that fills up as subinstances are solved. Dynamic

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x).

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x). CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 4 February 3, 2010 Scribe: Jonathan Pines 1 Agenda P-/NP- Completeness NP-intermediate problems NP vs. co-np L, NL 2 Recap Last time, we

More information

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Matroids Shortest Paths Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Marc Uetz University of Twente m.uetz@utwente.nl Lecture 2: sheet 1 / 25 Marc Uetz Discrete Optimization Matroids

More information

Introduction to Kleene Algebras

Introduction to Kleene Algebras Introduction to Kleene Algebras Riccardo Pucella Basic Notions Seminar December 1, 2005 Introduction to Kleene Algebras p.1 Idempotent Semirings An idempotent semiring is a structure S = (S, +,, 1, 0)

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

Lecture 2: Divide and conquer and Dynamic programming

Lecture 2: Divide and conquer and Dynamic programming Chapter 2 Lecture 2: Divide and conquer and Dynamic programming 2.1 Divide and Conquer Idea: - divide the problem into subproblems in linear time - solve subproblems recursively - combine the results in

More information

Non-Interactive Zero Knowledge (II)

Non-Interactive Zero Knowledge (II) Non-Interactive Zero Knowledge (II) CS 601.442/642 Modern Cryptography Fall 2017 S 601.442/642 Modern CryptographyNon-Interactive Zero Knowledge (II) Fall 2017 1 / 18 NIZKs for NP: Roadmap Last-time: Transformation

More information

Discrete Structures, Final Exam

Discrete Structures, Final Exam Discrete Structures, Final Exam Monday, May 11, 2009 SOLUTIONS 1. (40 pts) Short answer. Put your answer in the box. No partial credit. [ ] 0 1 (a) If A = and B = 1 0 [ ] 0 0 1. 0 1 1 [ 0 1 1 0 0 1 ],

More information

University of Toronto Scarborough. Aids allowed: None... Duration: 3 hours.

University of Toronto Scarborough. Aids allowed: None... Duration: 3 hours. University of Toronto Scarborough CSC B36 Final Examination 12 December 2017 NAME: (circle your last name) STUDENT NUMBER: Do not begin until you are told to do so. In the meantime, put your name and student

More information

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states.

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states. Chapter 8 Finite Markov Chains A discrete system is characterized by a set V of states and transitions between the states. V is referred to as the state space. We think of the transitions as occurring

More information

Algorithm Design Strategies V

Algorithm Design Strategies V Algorithm Design Strategies V Joaquim Madeira Version 0.0 October 2016 U. Aveiro, October 2016 1 Overview The 0-1 Knapsack Problem Revisited The Fractional Knapsack Problem Greedy Algorithms Example Coin

More information

Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs

Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs Krishnendu Chatterjee Rasmus Ibsen-Jensen Andreas Pavlogiannis IST Austria Abstract. We consider graphs with n nodes together

More information

Dynamic Programming: Shortest Paths and DFA to Reg Exps

Dynamic Programming: Shortest Paths and DFA to Reg Exps CS 374: Algorithms & Models of Computation, Spring 207 Dynamic Programming: Shortest Paths and DFA to Reg Exps Lecture 8 March 28, 207 Chandra Chekuri (UIUC) CS374 Spring 207 / 56 Part I Shortest Paths

More information

Mathematics for Decision Making: An Introduction. Lecture 8

Mathematics for Decision Making: An Introduction. Lecture 8 Mathematics for Decision Making: An Introduction Lecture 8 Matthias Köppe UC Davis, Mathematics January 29, 2009 8 1 Shortest Paths and Feasible Potentials Feasible Potentials Suppose for all v V, there

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Exam

CMPSCI 311: Introduction to Algorithms Second Midterm Exam CMPSCI 311: Introduction to Algorithms Second Midterm Exam April 11, 2018. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more

More information

CSE200: Computability and complexity Space Complexity

CSE200: Computability and complexity Space Complexity CSE200: Computability and complexity Space Complexity Shachar Lovett January 29, 2018 1 Space complexity We would like to discuss languages that may be determined in sub-linear space. Lets first recall

More information

CIS (More Propositional Calculus - 6 points)

CIS (More Propositional Calculus - 6 points) 1 CIS6333 Homework 1 (due Friday, February 1) 1. (Propositional Calculus - 10 points) --------------------------------------- Let P, Q, R range over state predicates of some program. Prove or disprove

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

CS 470/570 Dynamic Programming. Format of Dynamic Programming algorithms:

CS 470/570 Dynamic Programming. Format of Dynamic Programming algorithms: CS 470/570 Dynamic Programming Format of Dynamic Programming algorithms: Use a recursive formula But recursion can be inefficient because it might repeat the same computations multiple times So use an

More information

iretilp : An efficient incremental algorithm for min-period retiming under general delay model

iretilp : An efficient incremental algorithm for min-period retiming under general delay model iretilp : An efficient incremental algorithm for min-period retiming under general delay model Debasish Das, Jia Wang and Hai Zhou EECS, Northwestern University, Evanston, IL 60201 Place and Route Group,

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

R ij = 2. Using all of these facts together, you can solve problem number 9.

R ij = 2. Using all of these facts together, you can solve problem number 9. Help for Homework Problem #9 Let G(V,E) be any undirected graph We want to calculate the travel time across the graph. Think of each edge as one resistor of 1 Ohm. Say we have two nodes: i and j Let the

More information

Lecture 7: Shortest Paths in Graphs with Negative Arc Lengths. Reading: AM&O Chapter 5

Lecture 7: Shortest Paths in Graphs with Negative Arc Lengths. Reading: AM&O Chapter 5 Lecture 7: Shortest Paths in Graphs with Negative Arc Lengths Reading: AM&O Chapter Label Correcting Methods Assume the network G is allowed to have negative arc lengths but no directed negativelyweighted

More information

Ngày 20 tháng 7 năm Discrete Optimization Graphs

Ngày 20 tháng 7 năm Discrete Optimization Graphs Discrete Optimization Graphs Ngày 20 tháng 7 năm 2011 Lecture 6: Graphs In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations. Lecture 6: Graphs

More information

Design and Analysis of Algorithms April 16, 2015 Massachusetts Institute of Technology Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Quiz 2

Design and Analysis of Algorithms April 16, 2015 Massachusetts Institute of Technology Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Quiz 2 Design and Analysis of Algorithms April 16, 2015 Massachusetts Institute of Technology 6.046J/18.410J Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Quiz 2 Quiz 2 Do not open this quiz booklet until

More information

Query Optimization: Exercise

Query Optimization: Exercise Query Optimization: Exercise Session 6 Bernhard Radke November 27, 2017 Maximum Value Precedence (MVP) [1] Weighted Directed Join Graph (WDJG) Weighted Directed Join Graph (WDJG) 1000 0.05 R 1 0.005 R

More information

Breadth First Search, Dijkstra s Algorithm for Shortest Paths

Breadth First Search, Dijkstra s Algorithm for Shortest Paths CS 374: Algorithms & Models of Computation, Spring 2017 Breadth First Search, Dijkstra s Algorithm for Shortest Paths Lecture 17 March 1, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 42 Part I Breadth

More information

8.5 Sequencing Problems

8.5 Sequencing Problems 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

Find: a multiset M { 1,..., n } so that. i M w i W and. i M v i is maximized. Find: a set S { 1,..., n } so that. i S w i W and. i S v i is maximized.

Find: a multiset M { 1,..., n } so that. i M w i W and. i M v i is maximized. Find: a set S { 1,..., n } so that. i S w i W and. i S v i is maximized. Knapsack gain Slides for IS 675 PV hapter 6: ynamic Programming, Part 2 Jim Royer EES October 28, 2009 The Knapsack Problem (KP) knapsack with weight capacity W. Items 1,..., n where item i has weight

More information

Theory of Computation Time Complexity

Theory of Computation Time Complexity Theory of Computation Time Complexity Bow-Yaw Wang Academia Sinica Spring 2012 Bow-Yaw Wang (Academia Sinica) Time Complexity Spring 2012 1 / 59 Time for Deciding a Language Let us consider A = {0 n 1

More information

12. Cholesky factorization

12. Cholesky factorization L. Vandenberghe ECE133A (Winter 2018) 12. Cholesky factorization positive definite matrices examples Cholesky factorization complex positive definite matrices kernel methods 12-1 Definitions a symmetric

More information

Calculating Frobenius Numbers with Boolean Toeplitz Matrix Multiplication

Calculating Frobenius Numbers with Boolean Toeplitz Matrix Multiplication Calculating Frobenius Numbers with Boolean Toeplitz Matrix Multiplication For Dr. Cull, CS 523, March 17, 2009 Christopher Bogart bogart@eecs.oregonstate.edu ABSTRACT I consider a class of algorithms that

More information

Regular Expressions and Language Properties

Regular Expressions and Language Properties Regular Expressions and Language Properties Mridul Aanjaneya Stanford University July 3, 2012 Mridul Aanjaneya Automata Theory 1/ 47 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Efficient Enumeration of Regular Languages

Efficient Enumeration of Regular Languages Efficient Enumeration of Regular Languages Margareta Ackerman and Jeffrey Shallit University of Waterloo, Waterloo ON, Canada mackerma@uwaterloo.ca, shallit@graceland.uwaterloo.ca Abstract. The cross-section

More information

Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Informatique Fondamentale IMA S8 Cours 4 : graphs, problems and algorithms on graphs, (notions of) NP completeness Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information

Announcements. CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis. Today. Mathematical induction. Dan Grossman Spring 2010

Announcements. CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis. Today. Mathematical induction. Dan Grossman Spring 2010 Announcements CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis Dan Grossman Spring 2010 Project 1 posted Section materials on using Eclipse will be very useful if you have never used

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms REVIEW QUESTIONS Chapter 1: Foundations: Sets, Logic, and Algorithms 1. Why can t a Venn diagram be used to prove a statement about sets? 2. Suppose S is a set with n elements. Explain why the power set

More information

On the Exponent of the All Pairs Shortest Path Problem

On the Exponent of the All Pairs Shortest Path Problem On the Exponent of the All Pairs Shortest Path Problem Noga Alon Department of Mathematics Sackler Faculty of Exact Sciences Tel Aviv University Zvi Galil Department of Computer Science Sackler Faculty

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Lecture 13. More dynamic programming! Longest Common Subsequences, Knapsack, and (if time) independent sets in trees.

Lecture 13. More dynamic programming! Longest Common Subsequences, Knapsack, and (if time) independent sets in trees. Lecture 13 More dynamic programming! Longest Common Subsequences, Knapsack, and (if time) independent sets in trees. Announcements HW5 due Friday! HW6 released Friday! Last time Not coding in an action

More information

Dynamic Programming: Shortest Paths and DFA to Reg Exps

Dynamic Programming: Shortest Paths and DFA to Reg Exps CS 374: Algorithms & Models of Computation, Fall 205 Dynamic Programming: Shortest Paths and DFA to Reg Exps Lecture 7 October 22, 205 Chandra & Manoj (UIUC) CS374 Fall 205 / 54 Part I Shortest Paths with

More information

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes Analysis of Algorithms Single Source Shortest Path Andres Mendez-Vazquez November 9, 01 1 / 108 Outline 1 Introduction Introduction and Similar Problems General Results Optimal Substructure Properties

More information

Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Lecture Notes for Chapter 25: All-Pairs Shortest Paths Lecture Notes for Chapter 25: All-Pairs Shortest Paths Chapter 25 overview Given a directed graph G (V, E), weight function w : E R, V n. Goal: create an n n matrix of shortest-path distances δ(u,v). Could

More information

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional) Section 2.4 Section Summary Sequences. o Examples: Geometric Progression, Arithmetic Progression Recurrence Relations o Example: Fibonacci Sequence Summations Special Integer Sequences (optional) Sequences

More information

Combinatorial optimization problems

Combinatorial optimization problems Combinatorial optimization problems Heuristic Algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Optimization In general an optimization problem can be formulated as:

More information

Space-Bounded Communication Complexity

Space-Bounded Communication Complexity Space-Bounded Communication Complexity Joshua Brody 1, Shiteng Chen 2, Periklis A. Papakonstantinou 2, Hao Song 2, and Xiaoming Sun 3 1 Computer Science Department, Aarhus University, Denmark 2 Institute

More information

Generalized Splines. Madeline Handschy, Julie Melnick, Stephanie Reinders. Smith College. April 1, 2013

Generalized Splines. Madeline Handschy, Julie Melnick, Stephanie Reinders. Smith College. April 1, 2013 Smith College April 1, 213 What is a Spline? What is a Spline? are used in engineering to represent objects. What is a Spline? are used in engineering to represent objects. What is a Spline? are used

More information

CSC Design and Analysis of Algorithms. Lecture 1

CSC Design and Analysis of Algorithms. Lecture 1 CSC 8301- Design and Analysis of Algorithms Lecture 1 Introduction Analysis framework and asymptotic notations What is an algorithm? An algorithm is a finite sequence of unambiguous instructions for solving

More information

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata. Finite Automata Automata (singular: automation) are a particularly simple, but useful, model of computation. They were initially proposed as a simple model for the behavior of neurons. The concept of a

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

C241 Homework Assignment 7

C241 Homework Assignment 7 C24 Homework Assignment 7. Prove that for all whole numbers n, n i 2 = n(n + (2n + The proof is by induction on k with hypothesis H(k i 2 = k(k + (2k + base case: To prove H(, i 2 = = = 2 3 = ( + (2 +

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

Dynamic Programming. Data Structures and Algorithms Andrei Bulatov

Dynamic Programming. Data Structures and Algorithms Andrei Bulatov Dynamic Programming Data Structures and Algorithms Andrei Bulatov Algorithms Dynamic Programming 18-2 Weighted Interval Scheduling Weighted interval scheduling problem. Instance A set of n jobs. Job j

More information

Notes for Lecture 14

Notes for Lecture 14 U.C. Berkeley CS278: Computational Complexity Handout N4 Professor Luca Trevisan 3/3/2008 Notes for Lecture 4 In the last lecture, we saw how a series of alternated squaring and zig-zag products can turn

More information

Dynamic Programming( Weighted Interval Scheduling)

Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) 17 November, 2016 Dynamic Programming 1 Dynamic programming algorithms are used for optimization (for example, finding the shortest path between two points,

More information

Problem One: Order Relations i. What three properties does a binary relation have to have to be a partial order?

Problem One: Order Relations i. What three properties does a binary relation have to have to be a partial order? CS103 Handout 16 Fall 2011 November 4, 2011 Extra Practice Problems Many of you have expressed interest in additional practice problems to review the material from the first four weeks of CS103. This handout

More information

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations Lab 2 Worksheet Problems Problem : Geometry and Linear Equations Linear algebra is, first and foremost, the study of systems of linear equations. You are going to encounter linear systems frequently in

More information

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information