There should be nothing new for you in this lecture. If there is, stay for office hours and / or ask for help from the TAs.

Size: px
Start display at page:

Download "There should be nothing new for you in this lecture. If there is, stay for office hours and / or ask for help from the TAs."

Transcription

1 Membranes 02 The goal of this lecture is to review pre-requisite material related to the structure and function of biological membranes and to provide students a further overview of material to be covered in the course. The sections for this lecture are: Structure of biological membranes Function of biological membranes Examples of biological membranes Life is a series of chemical reactions occurring in compartmentalized environments. The main purpose of life to kee itself alive Physiology, the study of how life works, is based on the simultaneous occurrence of the following three concepts: levels of organization structure / function relationship homeostatic regulation There should be nothing new for you in this lecture. If there is, stay for office hours and / or ask for help from the TAs. Course Outline Topic # Topic lecture Silverthorn Week 1 to week 2 Topic #1 Topic #2 Introduction (pre-requisite material) Membranes (pre-requisite material) Pre-requisite Material (chapter # 5) Topic #3 Homeostasis and Signal Transduction 6 lectures, Topic #4 Endocrine Communication and the Endocrine System 7 recitations, Topic #5 Neural Communication and the Sensory System 8-11 office hours, review, Topic #6 Muscle, Muscle Contraction and their Regulation exam1 (chapter # 8) REVIEW #1 material from topic #01 #06 EXAM #1 material from topic #01 #06 (33%) Week 3 to week 4 Topic #7 Topic #8 Basic Physiology of the Cardiovascular System Basic Physiology of the Respiratory System lectures, recitations, review, exam2 Topic #9 Basic Physiology of the Renal System (chapter # 7) REVIEW #2 material from topic #01 #09 EXAM #2 material from topic #01 #09 (33%) Week 5 to week 6 Topic #10 Topic #11 Basic Physiology of the Gastrointestinal System Food Intake, Metabolism, Energy Balance and Exercise lectures, recitations, review, exam3 Topic #12 From Sexual Differentiation to Adult Reproduction 26 (chapter # 6) REVIEW #3 material from topic #01 #12 EXAM #3 material from topic #01 #12 (33%) (all tests are cumulative) 1

2 Physiology ( how to study ) The following slides show how to review prerequisite material for this course. Slides are only an attempt to guide students to important aspects of each topic. UNDERSTANDING these topics will depend on your background linked to this course prerequisite material (e.g. its biology, physics and chemistry). The course material will be presented in a similar fashion. You will need to read ahead each lecture material in your textbook and any extra sources you may use, and my lectures will only highlight the most important concepts you must attempt to UNDERSTAND. Since there is so much material in this course, it will be impossible for you to memorize all of it. Thus, you need to UNDERSTAND each important topic and rank its importance in relation to the overall course material. Membranes ( functions ) Functions of Cell Membranes (membranes are phospholipids bilayes interspersed with proteins) 2

3 Membranes ( structure ) (membranes are phospholipids bilayes interspersed with proteins) Membranes ( structure ) membranes are phospholipid bilayers interspersed with associated proteins having transmembrane hydrophobic domains (liposoluble domains) some of these proteins are ion channels (e.g. Na, K, Cl, Ca) some of these proteins are transporters (e.g. GLUT 1-5) (membranes are phospholipids bilayes interspersed with proteins) 3

4 Membranes ( structure ) (membranes are phospholipids bilayes interspersed with proteins) Membranes ( structure ) (membranes are phospholipids bilayes interspersed with proteins) 4

5 Membranes ( structure ) (membranes are phospholipids bilayes interspersed with proteins) Membranes ( structure ) (membranes are phospholipids bilayes interspersed with proteins) 5

6 Membranes ( structure ) (membranes are phospholipids bilayer interspersed with proteins) Membranes ( phospholipids ) (examples of products derived from membrane phospholipids) (membranes are phospholipids bilayes interspersed with proteins) 6

7 Membranes ( proteins ) Membranes ( channels ) some proteins are ion channels 7

8 Membranes ( channels ) some proteins are ion channels Membranes ( transporters ) some proteins are transporters 8

9 Membranes ( transporters ) Membranes ( structure ) some proteins are - ion channels - transporters 9

10 Membranes ( receptors ) membranes are phospholipid bilayers interspersed with associated proteins having transmembrane hydrophobic domains (liposoluble domains) other proteins are receptors (e.g. G protein-linked receptors) other proteins are enzymes and / or receptors (e.g. adenyl-cyclase enzyme / tyrosine-kinase receptors) seven - transmembrane domain receptors ECF plasma memb. ICF COOH ß - adrenergic and glucagon receptors among many others N H 2 G Membranes ( receptors ) other proteins are receptors 10

11 Membranes ( receptors ) kinase Cys rich Cys residues hydrophobic aa N H2 ECF other proteins are enzymes and / or receptors EGF insulin single - tm PDGF domain receptors ANP ICF JAK2 GH, Prl, cytokines COOH Membranes ( functions ) 11

12 Membranes ( functions ) Membranes ( functions ) simple diffusion, diffusion of solutes if membrane is permeable, Fick's first law of diffusion J= -DA dc/dx J= net rate diffusion, moles or grs per unit time A= area of the plane dc/dx= concentration gradient across plane D= diffusion coefficient (proportionality cte) osmosis, water diffusion through memb. impermeable to ions, van't Hoff's law for osmotic pressure p= irtm p= osmotic pressure i= # of ions formed by dissociation of a solute R= ideal gas constant T= absolute temperature m= solute molal conc (moles solute / kg water) facilitated diffusion, diffusion of solutes through a transporter Michelis-Menten (influx / efflux are symetrical) V= Vmax [S] / Km + [S], V= rate of transport [S]= substrate concentration Vmax= max. rate of transport (influx=efflux) Km= substrate concentration for half Vmax e.g., when Km for influx = Km for efflux, equilibrium is reached at an internal concentration equal to that of the external concentration active transport, transport against concentration / electrical gradient Michelis-Menten (influx / efflux are asymetrical) V= Vmax [S] / Km + [S], V= rate of transport [S]= substrate concentration Vmax= max. rate of transport (influx efflux) Km= substrate concentration of for half Vmax e.g., when Km for influx= 0.5 mm and Km for efflux= 5 mm, equilibrium is reached at an internal concentration 10x that of the external concentration electrochemical equilibrium across a semi-permeable membrane Nernst equation Ea-Eb= -60 mv/z log10 [x]a/[x]b, Ea-Eb= ion electrochemical potential in mv z= valence of the ion (e,g., K=Na=1) [x]a= internal concentration [x]b= external concentration an electrical potential difference of about 60mV is needed to balance a 10 fold concentration difference of a univalent ion electrochemical equilibrium across a semi-permeable membrane chord conductance equation Em= gk EK/gT + gna ENa/gT + gca ECa/gT Em= membrane potential gk, gna, gca= ion conductances involved EK, ENa, ECa= ion potential equilibrium involved gt= total conductance of all ions involved expresses transmembrane electrical potential difference as a weighted average of permeable ions' equilibrium potentials involved Gibbs - Donnan equilibrium steady-state properties of a mixture of permeant (e.g., initial KCl solution inside B) and impermeant ions (e.g., initial KY solution in side A, where Y is an anion to which the plasma membrane is completely impermeable) across a semi permeable membrane Under this condition, equilibrium between the A and B sides will be reached when the product of the concentration of the permeant cation K and the permeant anion Cl is equal in side A and side B. 12

13 Membranes ( functions ) What follows is an attempt to remind you of how the physical formulas from the previous slide can be visualized under physiological conditions. All material from the next slides is prerequisite material, and is included in the first six chapters of your textbook. If you have problems with this material stay for recitation and/or talk with a TA. The specific course material starts tomorrow. Make sure that you read the assigned chapters in your textbook before tomorrow s lecture. Functions ( diffusion ) Diffusion Fick's first law of diffusion J= -DA dc/dx J= net rate diffusion, moles or grs per unit time A= area of the plane dc/dx= concentration gradient across plane D= diffusion coefficient (proportionality cte) 13

14 Functions ( osmosis ) osmosis, water diffusion through a membrane impermeable to ions, van't Hoff's law for osmotic pressure p= irtm p= osmotic pressure i= # of ions formed by dissociation of a solute R= ideal gas constant T= absolute temperature m= solute molal conc (moles solute / kg water) Functions ( osmosis ) osmosis, water diffusion through a membrane impermeable to ions, van't Hoff's law for osmotic pressure p= irtm p= osmotic pressure i= # of ions formed by dissociation of a solute R= ideal gas constant T= absolute temperature m= solute molal conc (moles solute / kg water) osmosis 14

15 Functions ( facilitated diffusion ) (e.g. Ca) (e.g. Glucose) facilitated diffusion, diffusion of solutes through a transporter Michelis - Menten (influx / efflux are symetrical) V= Vmax [S] / Km + [S], V= rate of transport [S]= substrate conc. Vmax= max. rate of transport (influx=efflux) Km= substrate conc. for half Vmax e.g., when Km for influx = Km for efflux, equilibrium is reached at an internal concentration equal to that of the external concentration Functions ( facilitated diffusion ) facilitated diffusion of solutes through a transporter Michelis-Menten (influx / efflux are symetrical) V= Vmax [S] / Km + [S], V= rate of transport [S]= substrate conc. Vmax= max. rate of transport (influx=efflux) Km= substrate conc. for half Vmax e.g., when Km for influx = Km for efflux, equilibrium reached at internal conc = to that of external conc. 15

16 Functions ( active transporter ) active transport, transport against concentration / electrical gradient Michelis-Menten (influx / efflux are asymetrical) V= Vmax [S] / Km + [S], V= rate of transport [S]= substrate concentration Vmax= max. rate of transport (influx efflux) Km= substrate concentration of for half Vmax e.g., when Km for influx= 0.5 mm and Km for efflux= 5 mm, equilibrium is reached at an internal concentration 10x that of the external concentration Functions ( active transport ) electrochemical equilibrium across a semi-permeable memb. Nernst equation Ea-Eb= -60 mv/z log10 [x]a/[x]b, (important Ea-Eb= ion electrochemical potential in mv concepts for z= valence of the ion (e,g., K=Na=1) later lectures) [x]a= internal concentration [x]b= external concentration an electrical potential difference of about 60mV is needed to balance a 10 fold concentration difference of a univalent ion electrochemical equilibrium across a semi-permeable memb. chord conductance equation Em= gk EK/gT + gna ENa/gT + gca ECa/gT Em= membrane potential gk, gna, gca= ion conductances involved EK, ENa, ECa= ion potential equilibrium involved gt= total conductance of all ions involved expresses transmemb electrical potential difference as weighted average of permeable ions' equilibrium potentials involved Gibbs - Donnan equilibrium steady-state properties of a mixture of permeant (e.g., initial KCl solution inside B) and impermeant ions (e.g., initial KY solution in side A, where Y is an anion to which the plasma membrane is completely impermeable) across a semi permeable membrane Under this condition, equilibrium between the A and B sides will be reached when the product of the concentration of the permeant cation K and the permeant anion Cl is equal in side A and side B. 16

17 Functions ( active transport ) Functions (Vmax concept ) 17

18 Functions e.g. ( pumps ) potential energy at the membrane level is associated with pumps e.g. electrical gradient e.g. conc. gradients e.g. action potential Functions e.g. ( calcium ) intracellular calcium is an important 2nd messenger e.g. release e.g. contraction e.g. communication 18

19 Functions e.g. ( sodium ) electrochemical and concentration gradients for sodium e.g. Na homeostasis e.g. absorption in gut e.g. renal absorption Functions e.g. ( organic solutes ) transmembrane Na as source of potential energy for work e.g. absorption of sugars e.g. absorption of amino acids e.g. Na / Ca and Na / H exchange 19

20 Functions e.g. ( water ) water goes where sodium goes e.g. absorption of water e.g. countercurrent mech. e.g. diuretics and alcohol Functions e.g. ( secretion ) glands secrete specific substances to the extra- cellular fluid (ECF) e.g. exocrine secretion e.g. endocrine secretion 20

The circle and the basics of signal transduction. Course Outline. Topic #! Topic lecture! Silverthorn! Membranes (pre-requisite material)" "

The circle and the basics of signal transduction. Course Outline. Topic #! Topic lecture! Silverthorn! Membranes (pre-requisite material) Homeostasis 03 The goal of this lecture is to discuss the concept of homeostasis and to introduce basic signal transduction mechanisms involved in homeostatic regulation The sections for this lecture are:

More information

Introduction to electrophysiology 1. Dr. Tóth András

Introduction to electrophysiology 1. Dr. Tóth András Introduction to electrophysiology 1. Dr. Tóth András Today topics Transmembran transport Donnan equilibrium Resting potential Level of significance Entry level (even under 6) Student level (for most of

More information

Chapter 2 Cellular Homeostasis and Membrane Potential

Chapter 2 Cellular Homeostasis and Membrane Potential Chapter 2 Cellular Homeostasis and Membrane Potential 2.1 Membrane Structure and Composition The human cell can be considered to consist of a bag of fluid with a wall that separates the internal, or intracellular,

More information

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018 Introduction to cardiac electrophysiology 1. Dr. Tóth ndrás 2018 Topics Transmembran transport Donnan equilibrium Resting potential 1 Transmembran transport Major types of transmembran transport J: net

More information

Introduction to electrophysiology. Dr. Tóth András

Introduction to electrophysiology. Dr. Tóth András Introduction to electrophysiology Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of the

More information

CELL SIGNALLING and MEMBRANE TRANSPORT. Mark Louie D. Lopez Department of Biology College of Science Polytechnic University of the Philippines

CELL SIGNALLING and MEMBRANE TRANSPORT. Mark Louie D. Lopez Department of Biology College of Science Polytechnic University of the Philippines CELL SIGNALLING and MEMBRANE TRANSPORT Mark Louie D. Lopez Department of Biology College of Science Polytechnic University of the Philippines GENERIC SIGNALLING PATHWAY CELL RESPONSE TO SIGNALS CELL RESPONSE

More information

Cells have an unequal distribution of charge across their membrane: more postiive charges on the outside; more negative charges on the inside.

Cells have an unequal distribution of charge across their membrane: more postiive charges on the outside; more negative charges on the inside. Resting Membrane potential (V m ) or RMP Many cells have a membrane potential (Vm) that can be measured from an electrode in the cell with a voltmeter. neurons, muscle cells, heart cells, endocrine cells...

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Cell membrane resistance and capacitance

Cell membrane resistance and capacitance Cell membrane resistance and capacitance 1 Two properties of a cell membrane gives rise to two passive electrical properties: Resistance: Leakage pathways allow inorganic ions to cross the membrane. Capacitance:

More information

Lojayn Salah. Zaid R Al Najdawi. Mohammad-Khatatbeh

Lojayn Salah. Zaid R Al Najdawi. Mohammad-Khatatbeh 7 Lojayn Salah Zaid R Al Najdawi Mohammad-Khatatbeh Salam everyone, I made my best to make this sheet clear enough to be easily understood let the party begin :P Quick Revision about the previous lectures:

More information

Medical Physiology. Medical Physiology. Introduction and Control Theory Learning objectives # 1. The subject. What to expect. Feed back

Medical Physiology. Medical Physiology. Introduction and Control Theory Learning objectives # 1. The subject. What to expect. Feed back Medical Physiology Introduction and Control Theory Learning objectives # 1. Prof. Gyula Sáry 1 Medical Physiology The subject What to expect Feed back www.markmyprofessor.com Domoki.Ferenc@med.u-szeged.hu

More information

Nernst Equation and Equilibrium Potentials

Nernst Equation and Equilibrium Potentials CELLULAR AND AUTONOMIC PHYSIOLOGY 13 Case 3 Nernst Equation and Equilibrium Potentials This case will guide you through the principles underlying diffusion potentials and electrochemical equilibrium. veil

More information

Membrane transport 1. Summary

Membrane transport 1. Summary Membrane transport 1. Summary A. Simple diffusion 1) Diffusion by electrochemical gradient no energy required 2) No channel or carrier (or transporter protein) is needed B. Passive transport (= Facilitated

More information

ELEMENTARY ASPECTS OF IONIC EQUILIBRIA

ELEMENTARY ASPECTS OF IONIC EQUILIBRIA ELEMENTRY SPETS OF IONI EQUILIRI ( self-instructional package) Howard Kutchai Department of Physiology University of Virginia harlottesville, Va. 22908 opyright 2003 by Howard Kutchai 2 INTRODUTION Ions

More information

2002NSC Human Physiology Semester Summary

2002NSC Human Physiology Semester Summary 2002NSC Human Physiology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Diffusion, Membranes & Action Potentials - Fundamentals of the Nervous System - Neuroanatomy

More information

Problem Set No. 4 Due: Monday, 11/18/10 at the start of class

Problem Set No. 4 Due: Monday, 11/18/10 at the start of class Department of Chemical Engineering ChE 170 University of California, Santa Barbara Fall 2010 Problem Set No. 4 Due: Monday, 11/18/10 at the start of class Objective: To understand the thermodynamic and

More information

Electrical Properties of the Membrane

Electrical Properties of the Membrane BIOE 2520 Electrical Properties of the Membrane Reading: Chapter 11 of Alberts et al. Stephen Smith, Ph.D. 433 Biotech Center shs46@pitt.edu Permeability of Lipid membrane Lipid bilayer is virtually impermeable

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

Biomedical Instrumentation

Biomedical Instrumentation ELEC ENG 4BD4: Biomedical Instrumentation Lecture 5 Bioelectricity 1. INTRODUCTION TO BIOELECTRICITY AND EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

- the flow of electrical charge from one point to the other is current.

- the flow of electrical charge from one point to the other is current. Biology 325, Fall 2004 Resting membrane potential I. Introduction A. The body and electricity, basic principles - the body is electrically neutral (total), however there are areas where opposite charges

More information

Thomas Fischer Weiss. Cellular Biophysics. Volume 1: Transport. A Bradford Book The MIT Press Cambridge, Massachusetts London, England

Thomas Fischer Weiss. Cellular Biophysics. Volume 1: Transport. A Bradford Book The MIT Press Cambridge, Massachusetts London, England Thomas Fischer Weiss Cellular Biophysics Volume 1: Transport A Bradford Book The MIT Press Cambridge, Massachusetts London, England 1996 Massachusetts Institute of Technology All rights reserved. No part

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Physiology. Biol 219 Lec 1 Fall The Science of Body Function. Themes of Physiology. Themes of Physiology

Physiology. Biol 219 Lec 1 Fall The Science of Body Function. Themes of Physiology. Themes of Physiology Physiology The Science of Body Function Themes of Physiology 1. Physical-chemical basis of body function Scientific method to study and understand the body Descriptive and quantitative Focus on processes

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7 STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 12, 2009 -- PAGE 1 of 7 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter Vertebrate Physiology 437

More information

Chapter 7-3 Cells and Their Environment

Chapter 7-3 Cells and Their Environment Chapter 7-3 Cells and Their Environment 7-3 Passive Transport Passive transport-the movement of substances across the cell membrane without using NRG Concentration Gradient-difference in concentration

More information

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter 1 Vertebrate Physiology

More information

The Nervous System and the Sodium-Potassium Pump

The Nervous System and the Sodium-Potassium Pump The Nervous System and the Sodium-Potassium Pump 1. Define the following terms: Ion: A Student Activity on Membrane Potentials Cation: Anion: Concentration gradient: Simple diffusion: Sodium-Potassium

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

Neuroscience: Exploring the Brain

Neuroscience: Exploring the Brain Slide 1 Neuroscience: Exploring the Brain Chapter 3: The Neuronal Membrane at Rest Slide 2 Introduction Action potential in the nervous system Action potential vs. resting potential Slide 3 Not at rest

More information

Introduction to electrophysiology 1. Dr. Tóth András

Introduction to electrophysiology 1. Dr. Tóth András Introduction to electrophysiology 1. Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of

More information

BIOELECTRIC PHENOMENA

BIOELECTRIC PHENOMENA Chapter 11 BIOELECTRIC PHENOMENA 11.3 NEURONS 11.3.1 Membrane Potentials Resting Potential by separation of charge due to the selective permeability of the membrane to ions From C v= Q, where v=60mv and

More information

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation EXCITABLE TISSUES The tissues can change the properties under

More information

Alaa' Alajrami. Hussam Twaissi. Mohammad khatatbeh

Alaa' Alajrami. Hussam Twaissi. Mohammad khatatbeh 6 Alaa' Alajrami Hussam Twaissi Mohammad khatatbeh Keep smiling stay beautiful,,, We will continue talking about cell membrane and what cause the potential across it. * Proton depended carrier: (secondary

More information

The Membrane Potential

The Membrane Potential The Membrane Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.aw.com/bc) ** It is suggested that you carefully label each ion

More information

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle!

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle! Chapter 3 Part 1! 10 th ed.: pp. 87 105! 11 th ed.: pp. 90 107!! Cellular Transport Mechanisms! The Cell Cycle! Transport Processes: Passive and Active (1 of 2)! 1. Passive transport! Does not use ATP!

More information

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle!

Chapter 3 Part 1! 10 th ed.: pp ! 11 th ed.: pp !! Cellular Transport Mechanisms! The Cell Cycle! Chapter 3 Part 1! 10 th ed.: pp. 87 105! 11 th ed.: pp. 90 107!! Cellular Transport Mechanisms! The Cell Cycle! Transport Processes: Passive and Active (1 of 2)! 1. Passive transport! Does not use ATP!

More information

Membrane Potential Fox Chapter 6 pt 2

Membrane Potential Fox Chapter 6 pt 2 Vert Phys PCB3743 Membrane Potential Fox Chapter 6 pt 2 T. Houpt, Ph.D. Resting Membrane potential (V m ) or RMP Many cells have a membrane potential (Vm) that can be measured from an electrode in the

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

Resting membrane potential,

Resting membrane potential, Resting membrane potential Inside of each cell is negative as compared with outer surface: negative resting membrane potential (between -30 and -90 mv) Examination with microelectrode (Filled with KCl

More information

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu PNS Chapter 7 Membrane Potential 18-698 / 42-632 Neural Signal Processing Spring 2017 Prof. Byron Yu Roadmap Introduction to neuroscience Chapter 1 The brain and behavior Chapter 2 Nerve cells and behavior

More information

Renal handling of substances. Dr.Charushila Rukadikar Assistance Professor Physiology

Renal handling of substances. Dr.Charushila Rukadikar Assistance Professor Physiology Renal handling of substances Dr.Charushila Rukadikar Assistance Professor Physiology GENERAL PRINCIPLES OF RENAL TUBULAR TRANSPORT Transport mechanisms across cell membrane 1) Passive transport i. Diffusion

More information

Study Guide for Bio101 Lecture Exam 1

Study Guide for Bio101 Lecture Exam 1 Study Guide for Bio101 Lecture Exam 1 Please note that this study guide is a listing of objectives that you are required to master for this course. However, items mentioned in class or in laboratory as

More information

Chapter 1 subtitles Ion gradients

Chapter 1 subtitles Ion gradients CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 1 subtitles Ion gradients Introduction In this first chapter, I'll explain the basic knowledge required to understand the electrical signals generated

More information

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC) Newton s laws of Motion Work, Energy and Power Fluids Direct Current (DC) Nerve Conduction Wave properties of light Ionizing Radiation General Physics Prepared by: Sujood Alazzam 2017/2018 CHAPTER OUTLINE

More information

The Membrane Potential

The Membrane Potential The Membrane Potential Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) ** It is suggested that you carefully label each ion channel

More information

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Solutes & Water Chapter 4

Solutes & Water Chapter 4 4 th Lecture, 23 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Solutes & Water Chapter 4 Kevin Bonine & Kevin Oh 1. Finish Molecules, Membranes, etc. 2. Solutes

More information

PREREQUISITE CHECKLIST

PREREQUISITE CHECKLIST PREREQUISITE CHECKLIST UNIVERSITY OF CALIFORNIA, BERKELEY SCHOOL OF OPTOMETRY ADMISSIONS AND STUDENT AFFAIRS OFFICE Name: Date: Email: Status (complete, in progress, or planned) Prerequisite Course Requirements

More information

NURS1004 Week 12 Lecture 1 Acid Base Balance Prepared by Didy Button

NURS1004 Week 12 Lecture 1 Acid Base Balance Prepared by Didy Button NURS1004 Week 12 Lecture 1 Acid Base Balance Prepared by Didy Button The Role of Amino Acids in Protein Buffer Systems 2-7 ph and Homeostasis ph The concentration of hydrogen ions (H + ) in a solution

More information

Diffusion and Cell Membranes - I

Diffusion and Cell Membranes - I Diffusion and Cell Membranes - I Objectives 1. Define the following terms: solute, solvent, concentration gradient, osmotic pressure, and selectively permeable. 2. Define the following processes and identify

More information

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Lecture 10 : Neuronal Dynamics. Eileen Nugent Lecture 10 : Neuronal Dynamics Eileen Nugent Origin of the Cells Resting Membrane Potential: Nernst Equation, Donnan Equilbrium Action Potentials in the Nervous System Equivalent Electrical Circuits and

More information

Biochemistry. Biochemistry 9/20/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes

Biochemistry. Biochemistry 9/20/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes 9/20/15 Biochemistry Biochemistry 4. Bio-Energetics 4.2) Transport of ions and small molecules across cell membranes Aquaporin, the water channel, consists of four identical transmembrane polypeptides

More information

Rahaf Nasser mohammad khatatbeh

Rahaf Nasser mohammad khatatbeh 7 7... Hiba Abu Hayyeh... Rahaf Nasser mohammad khatatbeh Mohammad khatatbeh Brief introduction about membrane potential The term membrane potential refers to a separation of opposite charges across the

More information

Housekeeping, 26 January 2009

Housekeeping, 26 January 2009 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Explain how cell size and shape affect the overall rate of nutrient intake and the rate of waste elimination. [LO 2.7, SP 6.2]

Explain how cell size and shape affect the overall rate of nutrient intake and the rate of waste elimination. [LO 2.7, SP 6.2] Cells Learning Objectives Use calculated surface area-to-volume ratios to predict which cell(s) might eliminate wastes or procure nutrients faster by diffusion. [LO 2.6, SP 2.2] Explain how cell size and

More information

Biochemistry. Biochemistry 7/11/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes

Biochemistry. Biochemistry 7/11/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes Biochemistry Biochemistry 4. Bio-Energetics 4.2) Transport of ions and small molecules across cell membranes Aquaporin, the water channel, consists of four identical transmembrane polypeptides Key Energy

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

2.6 The Membrane Potential

2.6 The Membrane Potential 2.6: The Membrane Potential 51 tracellular potassium, so that the energy stored in the electrochemical gradients can be extracted. Indeed, when this is the case experimentally, ATP is synthesized from

More information

Physiology Lecture 2 and 27 Chapter 2: Acids, Bases and Salts REVIEW:

Physiology Lecture 2 and 27 Chapter 2: Acids, Bases and Salts REVIEW: Physiology Lecture 2 and 27 Chapter 2: Acids, Bases and Salts REVIEW: 1. Salts an ionic compounds containing other than H + or OH - ; can dissociate in water to form electrolytes. Electrolytes can conduct

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

What are neurons for?

What are neurons for? 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes Water 2. Neurons Neurons Chapter 11

More information

Lecture 02, 28 Aug 2003 Chapters 2, 3, and 4. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 02, 28 Aug 2003 Chapters 2, 3, and 4. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 02, 28 Aug 2003 Chapters 2, 3, and 4 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. 3x5 cards, Syllabus, Photos

More information

I. Specialization. II. Autonomous signals

I. Specialization. II. Autonomous signals Multicellularity Up to this point in the class we have been discussing individual cells, or, at most, populations of individual cells. But some interesting life forms (for example, humans) consist not

More information

Biophysics I. DIFFUSION

Biophysics I. DIFFUSION Biophysics I. DIFFUSION Experiment add a droplet of ink to a glass of water Observation: the stain spreads and eventually colours the entire fluid add a droplet of ink to HOT and COLD water Observation:

More information

Life of the Cell. Learning Objectives

Life of the Cell. Learning Objectives Life of the Cell Society on a micro-scale 1 Learning Objectives 1. What are the characteristics that distinguish prokaryotic and eukaryotic cells? Which type of cell is believed to be older (more primitive)?

More information

REVIEW 2: CELLS & CELL COMMUNICATION. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 2: CELLS & CELL COMMUNICATION. A. Top 10 If you learned anything from this unit, you should have learned: Name AP Biology REVIEW 2: CELLS & CELL COMMUNICATION A. Top 10 If you learned anything from this unit, you should have learned: 1. Prokaryotes vs. eukaryotes No internal membranes vs. membrane-bound organelles

More information

Osmolarity, Tonicity, and Equivalents Study Guide & Practice. 1. Osmolarity

Osmolarity, Tonicity, and Equivalents Study Guide & Practice. 1. Osmolarity Osmolarity, Tonicity, and Equivalents Study Guide & Practice 1. Osmolarity Recall that the osmotic pressure of a solution is created by solutes dissolved in a solvent, and the dissolved solutes create

More information

Transporters and Membrane Motors Nov 15, 2007

Transporters and Membrane Motors Nov 15, 2007 BtuB OM vitamin B12 transporter F O F 1 ATP synthase Human multiple drug resistance transporter P-glycoprotein Transporters and Membrane Motors Nov 15, 2007 Transport and membrane motors Concentrations

More information

Ion Channel Structure and Function (part 1)

Ion Channel Structure and Function (part 1) Ion Channel Structure and Function (part 1) The most important properties of an ion channel Intrinsic properties of the channel (Selectivity and Mode of Gating) + Location Physiological Function Types

More information

For more info visit

For more info visit A solution is a homogeneous mixture of two (or more) substances, the composition of which may vary between certain limits. A solution consisting of two components is called binary solution. The component

More information

Main idea of this lecture:

Main idea of this lecture: Ac#ve Transport Main idea of this lecture: How do molecules, big and small, get in OR out of a cell? 2 Main ways: Passive Transport (Does not require energy) Lecture 1 Ac=ve Transport (Requires energy)

More information

Course website:

Course website: Integrative Physiology (Fall 2016) Lecture / recitation course: 11:067:300:01;4cr; index:09914; T1W1 lectures (9:15-10:35AM), F3 recitation (12:35-1:55PM); This course meets in Bartlett 123. Dr. JP Advis;

More information

OT Exam 1, August 9, 2002 Page 1 of 8. Occupational Therapy Physiology, Summer Examination 1. August 9, 2002

OT Exam 1, August 9, 2002 Page 1 of 8. Occupational Therapy Physiology, Summer Examination 1. August 9, 2002 Page 1 of 8 Occupational Therapy Physiology, Summer 2002 Examination 1 August 9, 2002 Dr. Heckman's section is questions 1-6 and each question is worth 5 points for a total of 30 points. Dr. Driska's section

More information

Physiology Coloring Book: Panels 29, 32, 33,

Physiology Coloring Book: Panels 29, 32, 33, ELEC4623/ELEC9734: Semester 2, 2009 Dr Stephen Redmond School of Electrical Engineering & Telecommunications Email: s.redmond@unsw.edu.au Ph: 9385 6101 Rm: 458, ELECENG (G17) Physiology Coloring Book:

More information

Acids, Bases, Salts, Buffers

Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers An acid is any solute that dissociates in a solution and releases hydrogen ions, thereby lowering ph Since a hydrogen ion consist solely of a proton,

More information

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes.

Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September Exam is worth 100 points. You have 75 minutes. 1 Vertebrate Physiology 437 EXAM I NAME, Section (circle): am pm 23 September 2004. Exam is worth 100 points. You have 75 minutes. True or False (write true or false ; 10 points total; 1 point each) 1.

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE COURSE OUTLINE 1 COURSE GENERAL INFORMATION 1 Course Title & Course Code Molecular Biology: 2 Credit (Contact hour) 3 (2+1+0) 3 Title(s) of program(s) within which the subject is taught. Preparatory Program

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

TRANSPORT ACROSS MEMBRANE

TRANSPORT ACROSS MEMBRANE TRANSPORT ACROSS MEMBRANE The plasma membrane functions to isolate the inside of the cell from its environment, but isolation is not complete. A large number of molecules constantly transit between the

More information

Membrane Structure and Function POGIL

Membrane Structure and Function POGIL Why? Membrane Structure and Function POGIL Advertisements for sports drinks, such as Gatorade, Powerade, and Vitaminwater seem to be everywhere. All of these drinks are supposed to help your body recover

More information

BIO 210 Chapter 4 Physiology of Cells. By Beth Wyatt, Jack Bagwell, & John McGill. Introduction

BIO 210 Chapter 4 Physiology of Cells. By Beth Wyatt, Jack Bagwell, & John McGill. Introduction BIO 210 Chapter 4 Physiology of Cells By Beth Wyatt, Jack Bagwell, & John McGill Introduction The living must exchange materials with the nonliving. How does this happen? Cell transport Two major types

More information

Neuroscience 201A Exam Key, October 7, 2014

Neuroscience 201A Exam Key, October 7, 2014 Neuroscience 201A Exam Key, October 7, 2014 Question #1 7.5 pts Consider a spherical neuron with a diameter of 20 µm and a resting potential of -70 mv. If the net negativity on the inside of the cell (all

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE ZOOLOGY 2420 ANIMAL PHYSIOLOGY II: INTERCELLULAR COMMUNICATIONS INSTRUCTOR: Dr. Georgia Goth PHONE: 780-513-1041 OFFICE: J222 E-MAIL: ggoth@gprc.ab.ca OFFICE HOURS:

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

Modesto Junior College Course Outline of Record ANAT 125

Modesto Junior College Course Outline of Record ANAT 125 Modesto Junior College Course Outline of Record ANAT 125 I. OVERVIEW The following information will appear in the 2010-2011 catalog ANAT 125 Human Anatomy 5 Units Prerequisite: Satisfactory completion

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Cell Structure and Function Unit 4

Cell Structure and Function Unit 4 Cell Structure and Function Unit 4 Definition of Cell A cell is the smallest unit that is capable of performing life functions. RECALL... Levels of Organization! Why do we call them cells? In 1665, Robert

More information