Microstructure of Colonies of Rod-Shaped Bacteria

Size: px
Start display at page:

Download "Microstructure of Colonies of Rod-Shaped Bacteria"

Transcription

1 JOURNAL OF BACTERIOLOGY, Oct. 1971, p Copyright American Society for Microbiology Vol. 108, No. I Printed in U.S.A. Microstructure of Colonies of Rod-Shaped Bacteria D. B. DRUCKER AND D. K. WHITTAKER Department of Bacteriology and Virology, University of Manchester, Manchester, 13, England, and Department of Oral Medicine and Oral Pathology, Welsh National School of Medicine, Cardiff, CF4 4XY, Wales Received for publication 19 July 1971 Whole colonies of Bacillus cereus, B. megaterium, B. mycoides CN2495, Corynebacterium hofmanni NCTC 1938, Escherichia coli, Lactobacillus acidophilus NCIB1899, Nocardia graminis NCTC4728, Pseudomonas viscosa, and Serratia marcescens were prepared for scanning electron microscopic examination by freezedrying and metal-coating. The arrangement of individual cells within colonies could be seen. Cells of Bacillus colonies tended to be longer than in liquid culture and irregular in shape and to give the appearance of branching. B. megaterium colonies frequently had a dense covering film. Colonies of gram-negative bacteria consisted of fairly short rods covered by much adherent extracellular material. L. acidophilus had colonies comprised of densely packed, well-oriented rods. C. hofmanni colonies contained coccobacilli, packed together. Correlations were observed between planoconvex colony form and densely packed cells, rough colony form and random arrangement of well-separated microorganisms, and irregular colony edge and tendency of cells to grow out from the colony in filaments. Light microscopy permits studies on the initiation of colony formation (6) but is of limited use for the examination of mature colonies. However, the advent of the scanning electron microscope has made possible the study of unsectioned material at a greater resolution (250 nm) than obtains in conventional light microscopy (2, 5). This, coupled with the 200x greater depth of field, makes the scanning electron microscope ideally suited to observation of bacterial cells. The instrument has been used by Williams and Davies (I 1) who examined Actinomycetes, by Klainer and Betsch (7) in their work on the surface morphology of liquid grown cells of Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Proteus vulgaris, by Klainer and Perkins (8) in their studies on antibiotic-treated cells, by Bulla et al. (4) and Murphy and Campbell (9) in their examination of bacterial spores, and by Barnes et al. (1) in their work on Candida albicans. More recently, techniques were developed (10) which made possible the preparation of whole bacterial colonies for scanning electron microscopy; intact colonies of Streptococcus mutans OMZ61, Streptococcus sp. D182, Staphylococcus aureus NCTC 6571, and Candida albicans type A MRL 3153 were examined. There appeared to be a correlation between planoconvex colony form and uniform distribution of cocci within the colony. Because the possibilities, 515 with regard to colonial "microstructure," are rather limited in the case of spherical bacteria, the previous work has been extended to include rod-shaped microorganisms in an attempt to discover other relationships between colonial microstructure and gross morphology. MATERIALS AND METHODS Bacterial strains. The following strains were used: Bacillus cereus, Bacillus megaterium, Bacillus mycoides CN 2495, Corynebacterium hofmanni, E. coli, Lactobacillus acidophilus NCIB 1899, Nocardia graminis NCTC 4728, Pseudomonas viscosa and Serratia marcescens. Growth of colonies. L. acidophilus was grown for 48 hr in 5% CO2-95% N2 on "'Oxoid" Rogosa agar. N. graminis was grown aerobically on 5% (v/v) horse blood-oxoid nutrient agar for 48 hr. The remaining organisms were grown aerobically, on Oxoid nutrient agar no. 2 for 48 hr, in the case of P. viscosa and, for 24 hr, in the case of the other organisms. All plates were incubated at 37 C. Freeze-drying of colonies. Colonies were photographed before removal from plates on agar blocks and again after drying to measure shrinkage, which was minimized by rapid freezing by immersion in a 2- methyl butane freezing mixture cooled in liquid nitrogen. Agar blocks carried on aluminum foil were held at C for I min and then freeze-dried for 24 hr at 10-3 Torr in a 500-ml culture vessel (Quickfit) initially cooled in dry ice-acetone. The temperature of the culture vessel was allowed to rise to ambient tem-

2 516 DRUCKER AND WHITTAKER J. BACTERIOL. perature over a 12-hr period. Metal-coating of colonies. Dried colonies were cemented to scanning electron microscope stubs and plated, while rotating in a vacuum of 10-5 Torr, with 15 mg of Au-Pd alloy (60-40) at a distance of 10 cm. Coated colonies were photographed in a Cambridge Instrument Stereoscan. RESULTS Samples showed little sign of distortion or shrinkage (usually <10%) and compared favorably with samples obtained earlier (8) by using a cooled planchet in a bell-jar. Colony microstructure. B. cereus exhibited some evidence of cell orientation in the center of colonies. Little extracellular material, e.g., gum or covering film, was seen (Fig. 1). Individual cells were 0.4 to 1.0 by 1.1 to 3.6,um and were frequently distorted by opaque spherical structures 1.0,Am in diameter, presumably spores. r; " Divided cells were incompletely separated and were occasionally joined by "bridges" (Fig. 2). At the edge of the colony, cells were more densely packed, and extracellular material was noted. Colonies of B. megaterium also showed localized-cell orientation (Fig. 3). In the center of colonies, some extracellular gum was apparent, and cells gave the appearance of true-branching, although this requires further investigation (Fig. 4). Spores were occasionally seen in the cells which were 0.5 to 1.0 by 1.0 to 14.8,um; sporebearing cells frequently appeared club-shaped. Separation of cells was incomplete. Cells at the edge of the colony showed more dense packing, and more extracellular material was present. Long filaments were noted growing out from the colony (Fig. 5). Occasionally, a dark covering film was seen on the surface of the colony; this obscured the underlying cells. I ra '1% - It _ e s s 'sk }s~~~~ FIG. 1. Organisms in the central area of a Bacillus cereus colony show localized orientation. There is little extracellular material. Bar represents 10,im.

3 VOL. 108, 1971 ROD-SHAPED BACTERIA 517 FIG. 2. Central area of a Bacillus cereus colony examined in the scanning electron microscope. Note the cellular morphology. Bar represents 2 ium. Examination of the "rami" growing from a B. mycoides colony revealed that each "ramus" consisted of rods 0.5 to 1.0 by 1.4 to 3.6 gm which showed little overall orientation (Fig. 6). Cells at the top of a ramus were occasionally flattened, and spherical intracellular bodies could be seen distending the outline of the cells (Fig. 7). B. mycoides cells were sometimes coated with extracellular material. C. hofmanni colonies were comprised of either very short cells (0.3 to 0.5 by 0.5 to 1.0 uin), which appeared to be covered by a dense film, or larger cells (0.3 to 0.7 by 0.5 to 1.5) densely, yet randomly packed, without any covering film (Fig. 8). Colonies of E. coli revealed regular separation of cells (0.3 to 0.5 by 1.0 to 2.0 ium, Fig. 9) with associated extracellular material. At the periphery of the colony, cells were more oriented and more densely packed with less extracellular material. Some colonies were covered by a film which was perforated by holes, 0.2 to 1.0 gm in diameter. The film totally obscured the bacteria beneath it. Colonies of L. acidophilus were seen to consist of strongly oriented, irregular, tightly packed rods approximately 1 gm in width and 3 to 10,um in length; no extracellular material was observed (Fig. 10). A tangled mass of filaments was observed in colonies of N. graminis. Individual cells were 0.5 to 1.0 Am in width and over 20 gm in length (Fig. 11). No extracellular material was observed. P. viscosa colonies consisted of randomly arranged microorganisms (0.5 by 1.4,im) coated with an adherent extracellular material which did not obscure the outlines of the cells but appeared rather to form a supporting skeleton for them (Fig. 12).

4 b L& I FIG. 3. Scanning electron micrograph of organisms in the center of a Bacillus megaterium colony. Note the incomplete separation of cells. Bar represents 2 Am. FIG. 4. Note the localized-cell orientation in the center of this Bacillus megaterium colony. Bar represents 2,m. 518

5 VOL. 108, 1971 ROD-SHAPED BACTERIA 519 FIG. 5. Edge of a Bacillus megaterium colony showing covering film and long filamentous cells growing out from the colony. Bar represents 10,im.

6 520 DRUCKER AND WHITTAKER J. BACTERIOL. FIG. 6. Chains of B. mycoides cells in a colony "ramus" near the agar surface. Note the lack of overall orientation of bacteria. Bar represents 10,um. FIG. 7. Scanning electron micrograph of B. mycoides cells in the upper portion of a colony "ramus." Note flattened appearance ofcells. Bar represents 5 um.

7 VOL. 108, 1971 ROD-SHAPED BACTERIA AV, '1".-VI," -A *}~~~~~~~~'^'w" FIG. 8. Occasionally, colonies of Corynebacterium hofmanni had no covering film. Scanning electron micrograph reveals tightly packed cells in the center of the colony without any covering film. Bar represents 2 um. Colonies of S. marcescens resembled those of E. coli except that the cells were more completely covered by extracellular material which resulted in a perforated-surface covering film. Cells were not closely packed but showed regular separation and were slightly shorter (0.5 to 1.0,um) than bacteria in an E. coli colony. At the periphery of the colony, cells were more closely packed. DISCUSSION Well-defined covering films were seen only on colonies of B. megaterium and C. hofmanni. This is in contrast to the more widespread occurrence of covering films on colonies of cocci (10). The appearance of branching forms in certain Bacillus colonies might be due to extracellular material having concealed incomplete separation of two or more rods. Thin intracellular "bridges" (7) might be either genuine cellular extensions of adherent slime; however, L. fermentis appears to show intracellular bridges (3) even after washing and centrifuging of cells, which would presumably separate cells held together only by slime. The long filaments growing out from the edge of B. megaterium colonies (Fig. 5) might be responsible for the irregular edge of such colonies and would explain the flattened appearance of B. megaterium colonies. The.Al1 rami of B. mycoides colonies appeared to consist of unorientated, fairly short rods rather than the long, parallel bundles of rods which might be expected. However, it is possible that growth of a ramus occurs by extension of parallel filaments and that later development of a ramus consists of the growth of an outer layer of shorter cells. The association of densely packed colonies with plano-convex colony form, previously shown in the case of cocci (10), holds true for C. hofmanni, whose colonies consist of coccoid forms. A similar association is found in the case of L. acidophilus, even though individual cells in the colony are distinctly rod-shaped. The orientation of Lactobacillus cells is not noted in the case of colonies of the other rod-shaped bacteria examined. This may be a reflection of the mode of division of the cells or their differing surface characteristics. The colonies of gram-negative bacteria consist of cells obscured by adherent material probably of bacterial origin. In the hydrated state, such material might contribute to the glossiness of colonies. The macroscopical appearance of Nocardia colonies differed from that of the other organisms examined. This difference was paralleled by differences in colonial microstructure. The well-separated, tangled filaments, growing verti-

8 522 DRUCKER AND WHITTAKER J. BACTERIOL. Akl-,-A~~' w. FIG. 9. Scanning electron micrograph showing arrangement of cells in an Escherichia coli colony. Note the extracellular material. Bar represents 5 Am.

9 VOL. 108, 1971 ROD-SHAPED BACTERIA _ - - r 1a -._ FIG. 10. Colonies of Lactobacillus acidophilus consist of strongly orientated, closely packed rods. Bar represents 10 Am.

10 -W..w w.14 L. 4c, JWI f.,;..40 %k-i. hr. 1; I.1 4A FIG Tangled filaments of Nocardia graminis seen in the stereoscan. Bar represents 5,m. FIG. 12. Scanning electron micrograph of a Pseudomonas viscosa colony. Cells are almost obscured by extracellular material. Bar represents 20,um. 524

11 VOL. 108, 1971 ROD-SHAPED BACTERIA 525 cally as well as laterally, are no doubt responsible for the rough appearance of colonies of this organism. ACKNOWLEDGMENTS We thank J. Hearle for use of his scanning electron microscope, N. Preston for the strains used in this investigation, and B. Chapman, J. Hutton, and A. Williams for their assistance. LITERATURE CITED 1. Barnes, W. G., A. Flesher, A. E. Berger, and J. D. Arnold Scanning electron microscopic studies of Candida albicans. J. Bacteriol. 106: Boyde, A., and P. J. Knight The use of scanning electron microscopy in clinical dental research. Brit. Dent. J. 127: Boyde, A., and R. A. D. Williams Estimation of the volumes of bacterial cells by scanning electron microscopy. Arch. Oral Biol. 16: Bulla, L. A., G. St. Julian, R. A. Rhodes, and C. W. Hesseltine Scanning electron and phase-contrast mi- croscopy of bacterial spores. Appl. Microbiol. 18: Crewe, A. V., and J. Wall A scanning electron microscope with 5 A resolution. J. Mol. Biol. 48: Driedger, A. A The ordered growth pattern of microcolonies of Micrococcus radiodurans: first generation sectioning of induced lethal mutations. Can. J. Microbiol. 16: Klainer, A. S., and C. J. Betsch Scanning-beam microscopy of selected microorganisms. J. Infec. Dis. 121: Klainer, A. S., and R. L. Perkins Antibiotic-induced alterations in the surface morphology of bacterial cells: a scanning beam electron microscopic study. J. Infec. Dis. 122: Murphy, J. A., and L. L. Campbell Surface features of Bacillus polymyxa spores as revealed by scanning electron microscopy. J. Bacteriol. 98: Whittaker, D. K., and D. B. Drucker Scanning electron microscopy of intact colonies of microorganisms. J. Bacteriol. 104: Williams, S. T., and F. L. Davies Use of scanning electron microscope for the examination of Actinomycetes. J. Gen. Microbiol. 48:

Evaluation of the efficiency of Mxxxx as a barrier against microrganisms crossing

Evaluation of the efficiency of Mxxxx as a barrier against microrganisms crossing Evaluation of the efficiency of as a barrier against microrganisms crossing A) composition of filter The filter of has the following characteristics: 1. An outer layer, which is composed by a medical,

More information

A Selective Medium for Bacillus anthracis

A Selective Medium for Bacillus anthracis 56 R~ORRIS, E. J. (955). J. gen. Microbiol. 3, 566 A Selective Medium for Bacillus anthracis BY E. J. MORRIS Microbiological Research Department, Ministry of Supply, Porton, Wiltshire SUMMARY: A medium

More information

Morphology and Ultrastructure of Staphylococcal L Colonies: Light, Scanning,

Morphology and Ultrastructure of Staphylococcal L Colonies: Light, Scanning, JOURNAL OF BACTERIOLOGY, Feb. 1973, p. 1049-1053 Copyright ( 1973 American Society for Microbiology Vol. 113, No. 2 Printed in U.S.A. Morphology and Ultrastructure of Staphylococcal L Colonies: Light,

More information

CYTOLOGICAL CHANGES IN AGING BACTERIAL CULTURES

CYTOLOGICAL CHANGES IN AGING BACTERIAL CULTURES CYTOLOGICAL CHANGES IN AGING BACTERIAL CULTURES B. R. CHATTERJEE AND ROBERT P. WILLIAMS Department of Microbiology, Baylor University College of Medicine, Houston, Texas Received for publication March

More information

Shape, Arrangement, and Size. Cocci (s., coccus) bacillus (pl., bacilli) 9/21/2013

Shape, Arrangement, and Size. Cocci (s., coccus) bacillus (pl., bacilli) 9/21/2013 Shape, Arrangement, and Size Cocci (s., coccus) are roughly spherical cells. The other common shape is that of a rod, sometimes called a bacillus (pl., bacilli). Spiral-shaped procaryotes can be either

More information

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES ENTEROBACTER AEROGENES UNKNOWN BACTERIA PDF UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES IDENTIFICATION OF AN UNKNOWN BACTERIAL SPECIES OF 1 / 5 2 / 5 3 / 5 enterobacter aerogenes unknown bacteria

More information

Laboratory Exercise # 7: Aseptic Technique

Laboratory Exercise # 7: Aseptic Technique Laboratory Exercise # 7: Aseptic Technique Purpose: The purpose of this laboratory exercise is to acquaint the student with the procedures of aseptic transfer of microbiological cultures. ntroduction:

More information

Experiences with the Coulter Counter in Bacteriology1

Experiences with the Coulter Counter in Bacteriology1 Experiences with the Coulter Counter in Bacteriology1 ELLEN M. SWANTON, WILLIAM A. CTJRBY, AND HOWARD E. LIND Sias Laboratories, Brooks Hospital, Brookline, Massachusetts Received for publication May 24,

More information

Microbiology. Definition of a Microorganism. Microorganisms in the Lab. The Study of Microorganisms

Microbiology. Definition of a Microorganism. Microorganisms in the Lab. The Study of Microorganisms Microbiology The Study of Microorganisms Definition of a Microorganism Derived from the Greek: Mikros, «small» and Organismos, organism Microscopic organism which is single celled (unicellular) or a mass

More information

BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015

BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015 BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015 Week of May 18 th Introduction to the Microbiology Laboratory: Become familiar with the laboratory and its safety features Review safety rules

More information

THIN SECTIONS OF DIVIDING NEISSERIA GONORRHOEAE

THIN SECTIONS OF DIVIDING NEISSERIA GONORRHOEAE JOURNAL OF BACTERIOLOGY Vol. 87, No. 6, pp. 1477-1482 June, 1964 Copyright 1964 by the American Society for Microbiology Printed in U.S.A. THIN SECTIONS OF DIVIDING NEISSERIA GONORRHOEAE PHILIP FITZ-JAMES

More information

NUT-TTC/EMB Code 5541

NUT-TTC/EMB Code 5541 NUT-TTC/EMB Code 5541 COMING SOON! BioPaddles Colony Identification App Nutrient-TTC Agar (NUT-TTC) Eosin Methylene Blue Agar (EMB) USE: Isolation and differentiation of Gram (-) enteric bacilli. Coliform

More information

SHORT COMMUNICATION Scanning and Transmission Electron Microscopy of Candida albicans C hlamydospores

SHORT COMMUNICATION Scanning and Transmission Electron Microscopy of Candida albicans C hlamydospores ~ Journal of General Microbiology (198 l), 125, 199-203. Printed in Great Britain 199 SHORT COMMUNICATION Scanning and Transmission Electron Microscopy of Candida albicans C hlamydospores By JAMES L. SHANNON

More information

Overview of the major bacterial pathogens The major bacterial pathogens are presented in this table:

Overview of the major bacterial pathogens The major bacterial pathogens are presented in this table: Practical Microbiology 30/11/2018 University of Sulaimani college of Pharmacy Year2 Lab. 5: Overview of the major bacterial pathogens The major bacterial pathogens are presented in this table: Major Bacterial

More information

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18 THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE Introduction: The identification of bacteria is important in order for us to differentiate one microorganism

More information

RELATIONSHIP OF CELL WALL STAINING TO GRAM DIFFERENTIATION'

RELATIONSHIP OF CELL WALL STAINING TO GRAM DIFFERENTIATION' RELATONSHP OF CELL WALL STANNG TO GRAM DFFERENTATON' J. W. BARTHOLOMEW AND HAROLD FNKELSTEN Department of Bacteriology, University of Southern California, Los Angeles, California Received for publication

More information

Figure Page 117 Microbiology: An Introduction, 10e (Tortora/ Funke/ Case)

Figure Page 117 Microbiology: An Introduction, 10e (Tortora/ Funke/ Case) Chapter 11 The Prokaryotes: Domains Bacteria and Archaea Objective Questions 1) Which of the following are found primarily in the intestines of humans? A) Gram-negative aerobic rods and cocci B) Aerobic,

More information

Laboratory Training and Procedures Bacteriological Techniques Sputum smear Antoine Pierson (BiolTrop)

Laboratory Training and Procedures Bacteriological Techniques Sputum smear Antoine Pierson (BiolTrop) Laboratory Training and Procedures Bacteriological Techniques Sputum smear Antoine Pierson (BiolTrop) Cocci gram positif Bacterial species Macroscopique Culture media Microscopic appearance Reference characteristics

More information

surface of each plate and spread evenly with a sterile glass rod. Inoculated media were incubated The stock cultures of the C. perfringens strains

surface of each plate and spread evenly with a sterile glass rod. Inoculated media were incubated The stock cultures of the C. perfringens strains STUDIES OF THE L-FORMS OF CLOSTRIDIUM PERFRINGENS I. RELATIONSHIP OF COLONY MORPHOLOGY AND REVERSIBILITY TOSHIO KAWATOMARI Department of Bacteriology, 406th Medical General Laboratory, APO 343, San Francisco,

More information

Microbial Taxonomy. Classification of living organisms into groups. A group or level of classification

Microbial Taxonomy. Classification of living organisms into groups. A group or level of classification Lec 2 Oral Microbiology Dr. Chatin Purpose Microbial Taxonomy Classification Systems provide an easy way grouping of diverse and huge numbers of microbes To provide an overview of how physicians think

More information

Electron Microscopic Studies on Mode of Action of Polymyxin

Electron Microscopic Studies on Mode of Action of Polymyxin JOURNAL OF BACrERIOLOGY, Jan. 1969, p. 448452 Vol. 97, No. I Copyright 1969 American Society for Microbiology Printed In U.S.A. Electron Microscopic Studies on Mode of Action of Polymyxin M. KOIKE, K.

More information

Originally published as:

Originally published as: Originally published as: Hedderich, R., Müller, R., Greulich, Y., Bannert, N., Holland, G., Kaiser, P., Reissbrodt, R. Mechanical damage to Gram-negative bacteria by surface plating with the Drigalski-spatula

More information

INTRODUCTION MATERIALS & METHODS

INTRODUCTION MATERIALS & METHODS Evaluation of Three Bacterial Transport Systems, The New Copan M40 Transystem, Remel Bactiswab And Medical Wire & Equipment Transwab, for Maintenance of Aerobic Fastidious and Non-Fastidious Organisms

More information

Inheritance of Capsule and the Manner of Cell-Wall Formation in Bacillus anthracis

Inheritance of Capsule and the Manner of Cell-Wall Formation in Bacillus anthracis J. gen. Microbiol. (1965), 39, 423427 With 2 plates Printed in Great Britain 423 Inheritance of Capsule and the Manner of Cell-Wall Formation in Bacillus anthracis BY G. G. MEYNELL AND A. M. LAWN Guinness-Lister

More information

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED UNCLASSIFIED ADL 4 5 2981 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED NOTICE: When goverment or other drawings, specifications

More information

Kharkov National Medical University. Head of Microbiology, Virology and Immunology Department Minukhin Valeriy Vladimirivich

Kharkov National Medical University. Head of Microbiology, Virology and Immunology Department Minukhin Valeriy Vladimirivich Kharkov National Medical University Head of Microbiology, Virology and Immunology Department Minukhin Valeriy Vladimirivich Tkachenko Victoria 1, 5, 11, 14, 19, 21, 30 Kovalenko Natalia 2, 12, 25, 29 Siritsa

More information

Objects of the Medical Microbiology revision a) Pathogenic microbes (causing diseases of human beings or animals) b) Normal microflora (microbes commo

Objects of the Medical Microbiology revision a) Pathogenic microbes (causing diseases of human beings or animals) b) Normal microflora (microbes commo Institute for Microbiology, Medical Faculty of Masaryk University and St. Anna Faculty Hospital in Brno Miroslav Votava MORPHOLOGY AND STRUCTURE OF BACTERIAL CELL The 2nd lecture for 2nd-year students

More information

Relationship Between Atmospheric Temperature

Relationship Between Atmospheric Temperature APPLIED MICROBIOLOGY, Feb. 1970, p. 245-249 Copyright ( 1970 American Society for Microbiology Vol. 19, No. 2 Printed in U.S.A. Relationship Between Atmospheric Temperature and Survival of Airborne Bacteria

More information

Haemophilus influenzae and Haemophilus parainfluenzae

Haemophilus influenzae and Haemophilus parainfluenzae JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 1975, p. 89-95 Copyright ( 1975 American Societv for Microbiology Vol. 1, No. 1 Printed in U.S.A. New Satellitism Test for Isolation and Identification of Haemophilus

More information

Multiple Septation in Variants of Bacillus cereus

Multiple Septation in Variants of Bacillus cereus JOURNAL OF BACTERIOLOGY, Nov., 1965 Copyright @ 1965 American Society for Microbiology Vol. 90, No. 5 Printed in U.S.A. Multiple Septation in Variants of Bacillus cereus C. C. REMSEN AND D. G. LUNDGREN

More information

Atlas of Food Microbiology LAB

Atlas of Food Microbiology LAB Atlas of Food Microbiology LAB Microorganisms including: Bacteria, Molds & Yeast Describes in pictures the Microorganisms that can be isolated from food, giving brief characteristics of the isolated ones

More information

USING SCANNING ELECTRON MICROSCOPY TO VISUALIZE PHOTOCATALYTIC MINERALIZATION OF AIRBORNE MICROORGANISMS

USING SCANNING ELECTRON MICROSCOPY TO VISUALIZE PHOTOCATALYTIC MINERALIZATION OF AIRBORNE MICROORGANISMS USING SCANNING ELECTRON MICROSCOPY TO VISUALIZE PHOTOCATALYTIC MINERALIZATION OF AIRBORNE MICROORGANISMS HT Greist 1*, SK Hingorani 1, K Kelley 2 and DY Goswami 3 1 Universal Air Technology, Gainesville,

More information

TheGytology of Smooth and Rough Variation in Bacteria

TheGytology of Smooth and Rough Variation in Bacteria 83 TheGytology of Smooth and Rough Variation in Bacteria BY K. A. BISSET Department of Bacteriology, University of Birmingham SUMMARY: In those members of the genera Bacterium and Bacillus studied, the

More information

CLASSIFICATION OF BACTERIA

CLASSIFICATION OF BACTERIA CLASSIFICATION OF BACTERIA DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential

More information

The Influence of Magnesium on Cell Division

The Influence of Magnesium on Cell Division 480 WEBB, M. (1951). J. gen. Mimobiol. 5, 480-484. The Influence of Magnesium on Cell Division 4. The Specificity of Magnesium BY M. WEBB Chemistry Department, The University, Edgbaston, Birmingham 15,

More information

Considerations with Antibiotic Therapy PART

Considerations with Antibiotic Therapy PART Considerations with Antibiotic Therapy PART 1 The Wonderful World of Microbiology 1 Despite the promises of the household-products industry, almost every surface is covered in microorganisms almost all

More information

INTRODUCTION. Gram Stain

INTRODUCTION. Gram Stain INTRODUCTION In microbiology, organisms are so small that additional techniques are often required for proper viewing under the microscope. Cytological stains, or dyes that stain cells or cellular features,

More information

INTERPRETATION OF THE GRAM STAIN

INTERPRETATION OF THE GRAM STAIN INTERPRETATION OF THE GRAM STAIN DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential

More information

Bacteria. Prepared by. Doua a Hamadi Gellan Ibrahim Rahma Younis Doua a Abdul-Hadi Doua a Amjad Hanin Laith Khamael Dawood

Bacteria. Prepared by. Doua a Hamadi Gellan Ibrahim Rahma Younis Doua a Abdul-Hadi Doua a Amjad Hanin Laith Khamael Dawood Bacteria Prepared by Doua a Hamadi Gellan Ibrahim Rahma Younis Doua a Abdul-Hadi Doua a Amjad Hanin Laith Khamael Dawood History of Bacteriology Doua a Hamadi Bacteria were first observed by Antonie van

More information

Sample Date: March 30, 2018 Date Received: March 31, 2018 Date of Report: April 9, 2018 (877) Fax: (877)

Sample Date: March 30, 2018 Date Received: March 31, 2018 Date of Report: April 9, 2018 (877) Fax: (877) U.S. Micro-Solutions, Inc. * 075 South Main Street, Suite 04 * Greensburg, PA 560 Phone: (877) 876-4276 Fax: (724) 853-4049 AIHA-LAP, LLC EMLAP #03009 075 South Main Street, Suite 04 Greensburg, PA 560

More information

Worksheet for Morgan/Carter Laboratory #13 Bacteriology

Worksheet for Morgan/Carter Laboratory #13 Bacteriology Worksheet for Morgan/Carter Laboratory #13 Bacteriology Ex. 13-1: INVESTIGATING CHARACTERISTICS OF BACTERIA Lab Study A: Colony Morphology Table 13.1 Characteristics of Bacterial Colonies Name of Bacteria

More information

Acta Medica Okayama. Selective staining of cytoplasmic membrane and nuclear apparatus of bacteria. Yasuhiro Kanemasa FEBRUARY 1962

Acta Medica Okayama. Selective staining of cytoplasmic membrane and nuclear apparatus of bacteria. Yasuhiro Kanemasa FEBRUARY 1962 Acta Medica Okayama Volume 16, Issue 1 1962 Article 5 FEBRUARY 1962 Selective staining of cytoplasmic membrane and nuclear apparatus of bacteria Yasuhiro Kanemasa Okayama University, Copyright c 1999 OKAYAMA

More information

study of these organisms have been applied in the present work to Streptobacillus

study of these organisms have been applied in the present work to Streptobacillus THE MORPHOLOGY OF THE L1 OF KLIENEBERGER AND ITS RELATIONSHIP TO STREPTO- BACILLUS MONILIFORMIS' L. DIENES Department of Pathology and Bacteriology of the Massachusetts General Hospital and the Robert

More information

(inner dense substance) of the identical bacteria later photographed in the electron

(inner dense substance) of the identical bacteria later photographed in the electron ON THE MICROSCOPIC METHODS OF MEASURING THE DIMENSIONS OF THE BACTERIAL CELL GEORGES KNAYSI Laboratory of Bacteriology, College of Agriculture, Cornell University, Ithaca, New York Received for publication

More information

Electrochemical Classification of Gram-Negative and Gram-Positive Bacteria

Electrochemical Classification of Gram-Negative and Gram-Positive Bacteria APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1985, p. 238-242 99-224/85/8238-5$2./ Copyright C) 1985, American Society for Microbiology Vol. 5, No. 2 Electrochemical Classification of Gram-Negative and

More information

GUJARAT UNIVERSITY Syllabus for First Year Microbiology Semester I and II Effective from June 2017

GUJARAT UNIVERSITY Syllabus for First Year Microbiology Semester I and II Effective from June 2017 GUJARAT UNIVERSITY Syllabus for First Year Microbiology Semester I and II Effective from June 2017 1. A student offering Microbiology programme will be offered two theory papers of core course MI 101 and

More information

The Prokaryotes & Viruses

The Prokaryotes & Viruses The Prokaryotes & Viruses Lab Exercise Contents Objectives 1 Introduction 1 Activity.1 Prokaryotic Cell Structure 2 Activity.2 Blue-Green Algae 2 Activity.3 Viruses 3 Activity.4 Gram Staining of Bacteria

More information

THE GRAM STAIN OBJECTIVE/RATIONALE KEY POINTS

THE GRAM STAIN OBJECTIVE/RATIONALE KEY POINTS THE GRAM STAIN OBJECTIVE/RATIONALE One of the first procedures preformed by the medical microbiologist for the identification of bacteria is the Gram Stain. The student will learn the procedure for performing

More information

Isolation of Psychrophilic Species of Bacillus

Isolation of Psychrophilic Species of Bacillus JOURNAL OF BACTERIOLOGY, May, 1966 Copyright 1966 American Society for Microbiology Vol. 91, No. 5 Printed in U.S.A. Isolation of Psychrophilic Species of Bacillus J. M. LARKIN AND J. L. STOKES Department

More information

MICROBIOLOGY LAB #1 SAFETY RULES & GRAM STAIN METHOD

MICROBIOLOGY LAB #1 SAFETY RULES & GRAM STAIN METHOD MICROBIOLOGY LAB #1 SAFETY RULES & GRAM STAIN METHOD Precaution processes are extremely important when working with cultures in the lab for the safety of the microbiologist from getting diseases from bacteria

More information

Bacterial Morphology and Structure م.م رنا مشعل

Bacterial Morphology and Structure م.م رنا مشعل Bacterial Morphology and Structure م.م رنا مشعل SIZE OF BACTERIA Unit for measurement : Micron or micrometer, μm: 1μm=10-3 mm Size: Varies with kinds of bacteria, and also related to their age and external

More information

Tentative Identification of Methanogenic Bacteria by Fluorescence Microscopy

Tentative Identification of Methanogenic Bacteria by Fluorescence Microscopy APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1977, p. 713-717 Copyright (C 1977 American Society for Microbiology Vol. 33, No. 3 Printed in U.S.A. Tentative Identification of Methanogenic Bacteria by Fluorescence

More information

Domain Bacteria. BIO 220 Microbiology Jackson Community College

Domain Bacteria. BIO 220 Microbiology Jackson Community College Domain Bacteria BIO 220 Microbiology Jackson Community College John Ireland, Ph.D. 2006 Scientific Nomenclature Domain - Bacteria Phylum Important for gross characteristics Class Intermediate characteristics

More information

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis ANTIMICROBIAL TESTING E-Coli K-12 - E-Coli 0157:H7 Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis Staphylococcus Aureus (Staph Infection MRSA) Streptococcus Pyrogenes Anti Bacteria effect

More information

STUDIES OF THE FINE STRUCTURE OF MICROORGANISMS

STUDIES OF THE FINE STRUCTURE OF MICROORGANISMS STUDIES OF THE FINE STRUCTURE OF MICROORGANISMS II. ELECTRON MICROSCOPIC STUDIES ON SPORULATION OF Clostridium sporogenes TADAYO HASHIMOTOI AND H. B. NAYLOR Laboratory of Bacteriology, College of Agriculture,

More information

colony size color morphology haemolysis S. aureus S. epidermidis

colony size color morphology haemolysis S. aureus S. epidermidis practical 2.: STAPHYLOCOCCUS 1. Prepare a heat fixed smear of the culture of S.aureus. (Gram staining, microscopy). 2. Prepare a heat fixed smear of the culture of S.aureus. and S.epidermidis (mixed smear),

More information

Disruption of Bacterial Cells by a Synthetic Zeolite

Disruption of Bacterial Cells by a Synthetic Zeolite APPLIED MICROBIOLOGY, Sept. 1968, p. 1269-1275 Copyright @ 1968 American Society for Microbiology Vol. 16, No. 9 Printed in U.S.A. Disruption of Bacterial Cells by a Synthetic Zeolite GEORGE WISTREICH,

More information

علم األحياء الدقيقة Microbiology Introduction to Bacteriology تركي محمد الداود مكتب 2 ب 45

علم األحياء الدقيقة Microbiology Introduction to Bacteriology تركي محمد الداود مكتب 2 ب 45 علم األحياء الدقيقة Microbiology Introduction to Bacteriology د. تركي محمد الداود مكتب 2 ب 45 Occurrence & distribution of bacteria - They live everywhere. They occur in water (fresh and salty), in soil

More information

The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile

The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile Journal of Applied Microbiology 1997, 83, 76 8 The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile bacteria A.J. Mitchell and J.W.T. Wimpenny School

More information

Effect of Coliform and Proteus Bacteria on Growth

Effect of Coliform and Proteus Bacteria on Growth APPLIED MICROBIOLOGY, Jan., 19 Copyright @ 19 American Society for Microbiology Vol. 14, No. 1 Printed in U.S.A. Effect of Coliform and Proteus Bacteria on Growth of Staphylococcus aureus1 J. V. DiGIACINTO2

More information

Influence of Food Microorganisms on Staphylococcal Growth and Enterotoxin Production in Meat

Influence of Food Microorganisms on Staphylococcal Growth and Enterotoxin Production in Meat APPLIED MICROBIOLOGY, May, 1966 Copyright 1966 American Society for Microbiology Vol. 14, No. 3 Printed in U.S.A. Influence of Food Microorganisms on Staphylococcal Growth and Enterotoxin Production in

More information

Labquality External Quality Assessment Programmes General Bacteriology 1 2/2014

Labquality External Quality Assessment Programmes General Bacteriology 1 2/2014 Labquality External Quality Assessment Programmes General Bacteriology 1 2/2014 Photos and text: Markku Koskela, M.D., Ph.D. Clinical microbiology specialist NordLab Oulu, Finland Specimen 21/2014 Pus

More information

Reconstruction of the Nuclear Sites of Salmonella typhimurium from Electron Micrographs of Serial Sections

Reconstruction of the Nuclear Sites of Salmonella typhimurium from Electron Micrographs of Serial Sections 327 BIRCH-ANDERSEN, A. (1955). J. gen. Microbial. 13, 327429 Reconstruction of the Nuclear Sites of Salmonella typhimurium from Electron Micrographs of Serial Sections BY A. BIRCH-ANDERSEN Statens Seruminstitut,

More information

Supporting Information

Supporting Information 1 Supporting Information 2 3 4 5 Automated High-Throughput Identification and Characterisation of Clinically Important Bacteria and Fungi using Rapid Evaporative Ionisation Mass Spectrometry (REIMS) 6

More information

Practical examination

Practical examination Practical examination I. Sterile media 1. Bouillon, 2. Slant agar, tube agar 4. Enrichment media: meat bouillon 3., 5., 6.: Agar, blood agar and chocolate agar plates 7. Selective and differentiating media

More information

LABORATORY 7 ENDOSPORE STAIN AND BACTERIAL MOTILITY

LABORATORY 7 ENDOSPORE STAIN AND BACTERIAL MOTILITY LABORATORY 7 ENDOSPORE STAIN AND BACTERIAL MOTILITY A. Endospore Stain B. Bacterial Motility A. ENDOSPORE STAIN DISCUSSION A few genera of bacteria, such as Bacillus and Clostridium have the ability to

More information

The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability

The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability Khaled A. Al-Khaza'leh 1* Abdullah T. Al-fawwaz 2 1. Department of Physics, Al-albayt University, PO box 130040, Mafraq,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 209 Supporting information Na 2 S promoted reduction of azides in water: Synthesis

More information

TER 26. Preview for 2/6/02 Dr. Kopeny. Bacteria and Archaea: The Prokaryotic Domains. Nitrogen cycle

TER 26. Preview for 2/6/02 Dr. Kopeny. Bacteria and Archaea: The Prokaryotic Domains. Nitrogen cycle Preview for 2/6/02 Dr. Kopeny Bacteria and Archaea: The Prokaryotic Domains TER 26 Nitrogen cycle Mycobacterium tuberculosis Color-enhanced images shows rod-shaped bacterium responsible for tuberculosis

More information

of the work reported here was to define the point in the developmental process at which the curing salts act to prevent outgrowth.

of the work reported here was to define the point in the developmental process at which the curing salts act to prevent outgrowth. APPLIED MICROBIOLOGY, Feb. 1968, p. 406-411 Copyright 1968 American Society for Microbiology Vol. 16, No. 2 Printed in U.S.A. Effect of Sodium Nitrite, Sodium Chloride, and Sodium Nitrate on Germination

More information

Introduction to microbiology

Introduction to microbiology Sulaimani University College of Pharmacy Microbiology Introduction to microbiology Dr. Abdullah Ahmed Hama PhD. Molecular Medical Parasitology abdullah.hama@spu.edu.iq 1 Definition Microbiology: is the

More information

ELECTRON MNIICROSCOPY OF CELLULAR DIVISION IN ESCHERICHIA COLI

ELECTRON MNIICROSCOPY OF CELLULAR DIVISION IN ESCHERICHIA COLI ELECTRON MNIICROSCOPY OF CELLULAR DIVISION IN ESCHERICHIA COLI S. F. CONTII AND M. E. GETTNER' Biology Department, Brookhaven National Laboratory, Upton, New York Received for publication September 18,

More information

Growth and Division of Some Unicellular Blue-green Algae

Growth and Division of Some Unicellular Blue-green Algae J. gen. Microbiol. (1968), 51, 199-202 With 3 plates Printed in Great Britain I99 Growth and Division of Some Unicellular Blue-green Algae By MARY MENNES ALLEN AND R. Y. STANIER Department of Bacteriology

More information

Vol. 14, No. 4 Printed in U.S.A. Preservation of Serratia marcescens by High-Vacuum Lyophilization

Vol. 14, No. 4 Printed in U.S.A. Preservation of Serratia marcescens by High-Vacuum Lyophilization APPLIED MICROBIOLOGY, July, 1966 Copyright 1966 American Society for Microbiology Vol. 14, No. 4 Printed in U.S.A. Preservation of Serratia marcescens by High-Vacuum Lyophilization ROBERT R. DEWALD1 Physical

More information

Pharmaceutical Microbiology Forum Newsletter Vol. 12 (4) Page 3 of 14 (NCIMB 8545, CIP NBRC. Salmonella enterica ssp typhimurium

Pharmaceutical Microbiology Forum Newsletter Vol. 12 (4) Page 3 of 14 (NCIMB 8545, CIP NBRC. Salmonella enterica ssp typhimurium Page 3 of 14 Continued from page 2 Table 2. Absence of Specified Details Media Growth Promotion Organisms for Trypticase Soy Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Salmonella Staphylococcus

More information

3M Food Safety Technical Bulletin

3M Food Safety Technical Bulletin 3M Petrifilm Aqua Enterobacteriaceae Count Plates Performance Summary 3M Petrifi lm Aqua Enterobacteriaceae (AQEB) Count Plates are sample ready media plates used in the microbial testing of bottled water.

More information

CLASSIFICATION OF MICROORGANISMS

CLASSIFICATION OF MICROORGANISMS CLASSIFICATION OF MICROORGANISMS DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential

More information

MICROBE MISSION - SAMPLE TOURNAMENT #1 by Karen L. Lancour

MICROBE MISSION - SAMPLE TOURNAMENT #1 by Karen L. Lancour MICROBE MISSION - SAMPLE TOURNAMENT #1 by Karen L. Lancour STATION A: MICROSCOPY 1. A microscope has an 10 objective and oculars of 4X, 10X, 40X and 100X. What is the range of magnification for this microscope.

More information

Fimbriae, Fibrils, Sex and Fuzzy Coats

Fimbriae, Fibrils, Sex and Fuzzy Coats Fimbriae, Fibrils, Sex and Fuzzy Coats The Limitation of Light One of the frustrating aspects of working with bacteria is that they are so small that it is almost impossible to see anything other than

More information

Cell Shape coccus bacillus spirillum vibrio

Cell Shape coccus bacillus spirillum vibrio wrong 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 right 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 score 100 98.2 96.4 94.6 92.9 91.1 89.3 87.5 85.7 83.9 82.1 80.4 78.6 76.8 75 73.2 71.4

More information

Lab Exercise 5: Pure culture techniques

Lab Exercise 5: Pure culture techniques Lab Exercise 5: Pure culture techniques OBJECTIVES 1. Perform a streak-plate to separate the cells of a mixed culture so that discrete colonies can be isolated. 2. Perform a pour-plate (loop) dilution

More information

Model for Bacterial Culture Growth Rate Throughout the

Model for Bacterial Culture Growth Rate Throughout the JOURNAL OF BACTERIOLOGY, June 1983, p. 1-16 1-9193/83/61-5$./ Copyright 1983, American Society for Microbiology Vol. 154, No. 3 Model for Bacterial Culture Growth Rate Throughout the Entire Biokinetic

More information

Electronic Supplemental Information (ESI) In situ synthesis of Ag/amino acid biopolymer hydrogels as moldable. wound dressing

Electronic Supplemental Information (ESI) In situ synthesis of Ag/amino acid biopolymer hydrogels as moldable. wound dressing Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplemental Information (ESI) In situ synthesis of Ag/amino acid biopolymer

More information

MnSO4.H2O, 0.04 g; and FeSO4*7H20, g.

MnSO4.H2O, 0.04 g; and FeSO4*7H20, g. LARGE CELL STAGE IN THE GENUS BACILLUS ROY M. JOHNSON Life Science Division, Arizona State University, Received for publication March 6, 1961 Tempe, Arizona ABSTRACT JOHNSON, Roy M. (Arizona State University,

More information

B. Correct! Bacillus anthraces produces spores that can cause anthrax. D. Incorrect! Diphtheria is caused by Corynebacterium diphtheriae.

B. Correct! Bacillus anthraces produces spores that can cause anthrax. D. Incorrect! Diphtheria is caused by Corynebacterium diphtheriae. Microbiology - Problem Drill 09 - The Prokaryotes No. 1 of 10 1. Bacillus anthraces is most closely associated with which of the following? (A) Botulism poisoning (B) Anthrax (C) Gangrene (D) Diphtheria

More information

CULTURES OF BACILLUS CEREUS'

CULTURES OF BACILLUS CEREUS' SOME EFFECTS OF ULTRAVIOLET RADIATION ON SPORULATING CULTURES OF BACILLUS CEREUS' W. R. ROMIG AND ORVILLE WYSS Department of Bacteriology, University of Texas, Austin, Texas Received for publication April

More information

Microscopic and macroscopic observation of microorganisms & Gram stain. Mgr. Tomáš Kastl

Microscopic and macroscopic observation of microorganisms & Gram stain. Mgr. Tomáš Kastl Microscopic and macroscopic observation of microorganisms & Gram stain Mgr. Tomáš Kastl MARKS TO NOTICE Morphology of colonies and cells - strructure - size - surface - shape - profile - special organels

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNAL OF SCIENCE VOL. XXXVIII SEPTEMBER, 1938 No. 5 STUDIES IN ANTIBIOSIS BETWEEN BACTERIA AND FUNGI 1 CONST. J. ALEXOPOULOS, R. ARNETT, and A. V. McINTOSH Department of Biology, Kent State

More information

Multi-Scale Modeling and Simulation of the Growth of Bacterial Colony with Cell-Cell Mechanical Interactions

Multi-Scale Modeling and Simulation of the Growth of Bacterial Colony with Cell-Cell Mechanical Interactions Multi-Scale Modeling and Simulation of the Growth of Bacterial Colony with Cell-Cell Mechanical Interactions Hui Sun Department of Mathematics and Statistics California State University Long Beach SIAM

More information

Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground Meatst

Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground Meatst APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1981, p. 303-307 0099-2240/81/090303-05$02.00/0 Vol. 42, No. 2 Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground

More information

Principles of Biotechnology Lectures of week 4 MICROBIOLOGY AND BIOTECHNOLOGY

Principles of Biotechnology Lectures of week 4 MICROBIOLOGY AND BIOTECHNOLOGY Principles of Biotechnology Lectures of week 4 MICROBIOLOGY AND BIOTECHNOLOGY INTRODUCTION TO MICROBIOLOGY What are microbes? Germs, microbe s s microorganisms are minute living things that individually

More information

THE CYTOLOGICAL BASIS FOR THE ROLE OF THE PRIMARY DYE

THE CYTOLOGICAL BASIS FOR THE ROLE OF THE PRIMARY DYE THE CYTOLOGICAL BASIS FOR THE ROLE OF THE PRIMARY DYE IN THE GRAM STAIN' CARL LAMANNA AND M. F. MALLETTE Departments of Microbiology and Biochemistry, The Johns Hopkins University School of Hygiene and

More information

Interaction of Microorganisms with Soil Colloids Observed by X-Ray Microscopy

Interaction of Microorganisms with Soil Colloids Observed by X-Ray Microscopy Interaction of Microorganisms with Soil Colloids Observed by X-Ray Microscopy Galina Machulla 1, Jürgen Thieme 2, Jürgen Niemeyer 3 1 Institut für Bodenkunde und Pflanzenernährung, Martin-Luther-Universität,

More information

Exercise VI. Differential Staining: The Gram Stain

Exercise VI. Differential Staining: The Gram Stain Exercise VI Differential Staining: The Gram Stain The Gram stain, discovered by Dr. Hans Christian Gram in 1884, is the most useful differential stain used to aid in identifying bacteria. It divides bacterial

More information

Enlargement of WHO Repository Transfusion Relevant Bacteria Reference Strains - Report on experimental preparatory work and study design

Enlargement of WHO Repository Transfusion Relevant Bacteria Reference Strains - Report on experimental preparatory work and study design WP-TTID Chair: Silvano Wendel, Brazil Subgroup on Bacteria Chair: Thomas Montag, Germany Co-Chair: Erica Wood, Australia Enlargement of WHO Repository Transfusion Relevant Bacteria Reference Strains -

More information

3M Food Safety Technical Bulletin

3M Food Safety Technical Bulletin 3M Petrifilm Aqua Heterotrophic Count Plate Performance Summary 3M Petrifilm Aqua Heterotrophic Count (AQHC) Plates are sample ready media plates used in the microbial testing of bottled water. Each plate

More information

616 THE JOURNAL OF ANTIBIOTICS OCT A NEW GENUS OF THE ACTINOMYCETALES: KITASATOA GEN. NOV.

616 THE JOURNAL OF ANTIBIOTICS OCT A NEW GENUS OF THE ACTINOMYCETALES: KITASATOA GEN. NOV. 616 THE JOURNAL OF ANTIBIOTICS OCT. 1968 A NEW GENUS OF THE ACTINOMYCETALES: KITASATOA GEN. NOV. Akihiro Matsumae, Mariko Ohtani, Hideo Takeshima and Toju Hata The Kitasato Institute, Tokyo, Japan (Received

More information

Effect of ph on sporicidal and microbicidal activity of buffered mixtures of alcohol and sodium hypochlorite

Effect of ph on sporicidal and microbicidal activity of buffered mixtures of alcohol and sodium hypochlorite Journal of Clinical Pathology, 1979, 32, 148-153 Effect of on sporicidal and microbicidal activity of buffered mixtures of alcohol and sodium hypochlorite JANET E. DEATH AND D. COATES From the Disinfection

More information

Statistical Study of the Spot-Plate Technique for Viable-Cell Counts

Statistical Study of the Spot-Plate Technique for Viable-Cell Counts Statistical Study of the Spot-Plate Technique for Viable-Cell Counts A. F. GAUDY, JR., F. ABU-NIAAJ,' AND E. T. GAUDY 0 Bio-engineering Laboratories, School of Civil Engineering, and Microbiology Department,

More information

EFFECT OF ph AND AMMONIUM IONS ON THE PERMEABILITY

EFFECT OF ph AND AMMONIUM IONS ON THE PERMEABILITY EFFECT OF ph AND AMMONIUM IONS ON THE PERMEABILITY OF BACILLUS PASTEURII W. R. WILEY AND J. L. STOKES Department of Bacteriology and Public Health, Washington State University, Pullman, Washington ABSTRACT

More information