Electrochemical Classification of Gram-Negative and Gram-Positive Bacteria

Size: px
Start display at page:

Download "Electrochemical Classification of Gram-Negative and Gram-Positive Bacteria"

Transcription

1 APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1985, p /85/8238-5$2./ Copyright C) 1985, American Society for Microbiology Vol. 5, No. 2 Electrochemical Classification of Gram-Negative and Gram-Positive Bacteria TADASHI MATSUNAGA* AND TOSHIAKI NAKAJIMA Department of Applied Chemistry for Resources, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan Received 22 January 1985/Accepted 1 May 1985 Intestinal bacteria were classified as gram-positive or gram-negative by an electrode system with a basal plane pyrolytic graphite electrode and a porous nitrocellulose membrane filter to trap bacteria. When the potential of the graphite electrode was run in the range of to 1. V versus the saturated calomel electrode (SCE), gram-positive bacteria gave peak currents at.65 to.69 V versus the SCE. The peak potentials of gram-negative bacteria were.7 to.74 V versus the SCE. Gram-negative bacteria and gram-positive bacteria were also classified based on the ratio of the second peak current to the first peak current when the potential cycle was repeated twice. The numbers of cells on the membrane filter were determined from the peak currents. It was found that the peak currents result from the electrochemical oxidation of coenzyme A in the cells of Escherichia coli and Lactobacilus acidophilus. Various electrochemical methods have been developed to classify microbial cells (1, 3, 4, 9). For example, the impedance measurement of culture broth has been proposed for the determination of viable-cell numbers (1). The electrochemical method based on the detection of hydrogen molecules produced by bacteria has been used to estimate cell numbers of members of the family Enterobacteriaceae and other organisms (9). T. Matsunaga and co-workers have performed the amperometric determination of viable cells based on the analysis of microbial respiration (3) and lactic acid production (4). However, since the cell number is indirectly measured from bacterial metabolites and oxygen, the electric signal obtained does not reflect the true cell number. An electrode system has been developed for the continuous determination of cell numbers in fermentation media (2, 5). Although this system was shown to be convenient for the continuous determination of cell populations, the mechanism of current generation was unknown, and the classification of microorganisms was impossible. Recently, a novel method for detecting microbial cells has been developed based on cyclic voltammetry with a basal plane pyrolytic graphite electrode used alone (6) or modified with 4,4'-bipyridine (7). Electron transfer between cells and the electrodes is mediated by coenzyme A (CoA) present in the cell wall. As a result, the cell numbers were determined from the peak current of cyclic voltammograms. It was also suggested that the differences in the peak potentials may be used to classify some microbial cells. In this study, an electrode system using a basal plane pyrolytic graphite electrode and a porous nitrocellulose membrane filter to trap microorganisms is described and used to classify bacteria. The electrode system is applied to intestinal bacteria which are then classified into grampositive and gram-negative strains based on cyclic voltammograms. MATERIALS AND METHODS Materials. Tryptose and Trypticase were purchased from Oxoid Ltd., London, England, and yeast extract was obtained from Difco Laboratories, Detroit, Mich. Phos- * Corresponding author. 238 photransacetylase (EC ) was purchased from P-L Biochemicals, Inc., Milwaukee, Wis. Acetyl phosphate was obtained from Boehringer GmbH, Mannheim, Federal Republic of Germany. Other reagents were commercially available analytical reagents or laboratory grade materials. Deionized water was used in all procedures. Microbial cells. The microbial cells used here for electrochemical classification were Lactobacillus fermentum ATCC 9338, L. casei ATCC 393, L. acidophilus ATCC 4356, Streptococcus bovis IID 676, Streptococcus durans IID 677, Streptococcus salivarius IID 5223, Streptococcus sanguis IID 5224, Streptococcus mitis IID 685, Streptococcus equinus IID 68, Staphylococcus aureus IID 671, Staphylococcus aureus ATCC 421, Staphylococcus epidermidis ATCC 12228, Escherichia coli K-12, and Proteus vulgaris. These microorganisms were cultured aerobically at 37 C for 16 to 18 h on Rogosa agar consisting of: Trypticase, 1%; tryptose,.3%; yeast extract,.5%; KH2PO4,.3%; (NH4)3- citrate,.2%; glucose, 2%; Tween 8,.1%; cysteinehydrochloride,.2%; agar, 3%; and salt solution,.5% - (MgSO4 2H2, 11.5%; FeSO4 * 7H2,.68%; MnSO4 * 2H2, 2.4%). The ph was adjusted to 7., and the agar was autoclaved at 121 C for 15 min. Apparatus. The electrode system for the classification of microbial cells is depicted in Fig. 1. The electrode system consisted of a basal plane pyrolytic graphite electrode (surface area,.19 cm2; Union Carbide Corp., New York, N.Y.), a counter electrode (platinum wire), and a membrane filter for retaining microbial cells. Cyclic voltammograms were obtained by using a potentiostat (model HA31; Hokuto Denko), a function generator (model HB14; Hokuto Denko), and an X-Y recorder (F35; Riken Denshi). After each run, the graphite electrode was polished with emery paper (Nikken Kogyo Rodo, Tokyo, Japan). The measurement cell was an all-glass construction, approximately 25 ml in volume, incorporating a conventional threeelectrode system. The reference electrode was the saturated calomel electrode (SCE). It was separated from the main cell compartment by immersion in a glass tube terminated by a sintered glass frit. Procedure for classification of bacteria. Microbial cells were obtained from the Rogosa agar after incubation for 16 Downloaded from on December 31, 218 by guest

2 VOL. 5, 1985 ELECTROCHEMICAL CLASSIFICATION OF BACTERIA 239 FIG. 1. (Left) A schematic diagram of the electrode system for detecting microbial cells. 1, Function generator; 2, potentiostat; 3, X-Y recorder; 4, counter electrode (platinum wire); 5, working electrode (basal plane pyrolytic graphite); 6, reference electrode (SCE); 7, microbial cells; 8, membrane filter; 9, holder. (Right) Photographs of working electrode and microbial cells on the membrane filter. Downloaded from l- cu L.) 1 4) ci 3 on December 31, 218 by guest.5 1. v U.-, 1L.V A E (V vs S.C.E.) B E (V vs S.C.E.) FIG. 2. Cyclic voltammograms of (A) gram-positive bacteria (L. acidophilus) and (B) gram-negative bacteria (E. coli). The cell numbers of L. acidophilus and E. coli were 5. x 1O and 1. x 18 cells, respectively. The scan rates was 1 mv/s. The experiments were performed at ph 7. and at an ambient temperature ( C).

3 24 MATSUNAGA AND NAKAJIMA APPL. ENVIRON. MICROBIOL. 1.5 LU LU- 2. LUJ LU) C--, R 1. ci~ 1-) wo C. al) ~ =31 4-), 1. c L) A Cell numbers (x18 cells ) B Cell numbers W(18 cells) FIG. 3. Relationship between peak current (), peak potential (), and cell numbers on the membrane filter for (A) L. acidophilus and (B) E. coli. to 18 h. Colonies on the agar were scraped off and suspended in 1 ml of.1 M phosphate buffer (ph 7.). The cell suspension was dropped onto the membrane filter (pore size,.45 j.m; Toyo Roshi Co.). Immediately, the cells were fixed on the membrane filter by filtration using an aspirator. The cells on the membrane filter were attached to the basal plane pyrolytic graphite. Cyclic voltammetry was run in the range of to 1. V versus the SCE. RESULTS AND DISCUSSION Cyclic voltammetry of gram-positive bacteria and gramnegative bacteria. Figure 2 shows the cyclic voltammograms of gram-positive bacteria (L. acidophilus) and gram-negative bacteria (E. coli). Anodic waves appeared at.68 V versus C,) -) 1.5 ~~~ ~.72.7 the SCE for L. acidophilus and.72 V versus the SCE for E. coli on the first scan in the positive direction. Upon scan reversal, no corresponding reduction peak was obtained. On the second scan, anodic waves appeared at the same potentials. However, the peak current of L. acidophilus decreased to 38% of that of the first scan, whereas that of E. coli was still 8%. Relationship between peak current and cell numbers on the membrane filter. Figure 3 shows the relationship between peak current, peak potential, and cell numbers on the membrane filter for L. acidophilus and E. coli. Linear relationships were obtained for cell concentrations below 6. x 18 for L. acidophiliis and below 2.5 x 18 for E. coli. The minimum detectable cell numbers were 1. x 18 and.5 x 18 for L. acidophiluls and E. coli, respectively. The peak LUJ LU 1- al) Cl.76 p / C) a1) ~ Downloaded from on December 31, 218 by guest C) C) p-c Incubation time (hr) FIG. 4. Peak current per 18 cells when L. acidophilus () and E. coli () were incubated on Rogosa agar at 37 C for 8 to 25 h. ~ Incubation time (hr) FIG. 5. Peak potential per 18 cells when L. acidophilus () and E. coli () were incubated on Rogosa agar at 37 C for 8 to 25 h.

4 VOL. 5, ELECTROCHEMICAL CLASSIFICATION OF BACTERIA cn -) -'.3 C: 1-4-J.2 3 CL 1. - _ w C1 ) "%, -4 ' ;2 C _< C-).5,_ I4- =s A Sonicating time (min) B Sonicoting (min) time FIG. 6. Relationship between peak current and amount of CoA eluted in the solution when whole cells of (A) L. acidophilus and (B) E. coli were sonicated. After the cell suspension was sonicated, it was dropped on the membrane filter. The cells on the membrane filter were attached to the electrode for cyclic voltammetry, and the peak current was obtained. The CoA concentration in the filtrate was determined by the method of Stadtman et al. (8). current was reproducible with an average relative error of 4% when microbial cells from 2 Rogosa agar plates were used for the experiments. These results indicate that cell numbers on the membrane filter can be determined from the peak current of cyclic voltammetry in the.range of 1. x 18 to 6. 5< 18 cells for L. acidophilus and.5 x 18 to 2.5 x 18 cells for E. coli. The oxidation peak current increased linearly with the square root of the scan rate as expected for a diffusion controlled electrode reaction of a totally irreversible system using L. acidophilus and E. coli. The slopes of the line were.11 pua/mv112 *s-112 for E. coli in the range over 1 to 5 mv112 * S-112 and.37 jxaimv"12 S-1/2 for E. coli in the range over 1 to 5 mv1"2 S-1/2. Figure 4 shows the peak current per 18 cells when L. acidophilus and E. coli were incubated on Rogosa agar for 8 to 25 h. The peak current of E. coli was higher than that of L. acidophilus. The peak currents obtained from cells on the membrane filter were almost constant for 13 to 25 h. TABLE 1. Cl),.5, ~ Classification of gram-positive and gram-negative bacteria. As shown in Fig. 2, gram-positive (L. acidophilus) and gram-negative (E. coli) bacteria gave different peak potentials when incubated for 16 to 18 h. Figure.5 shows the relationship between peak potentials and incubation timne when L. acidophilus and E. coli were cultured on Rogosa agar for 8 to 24 h. The peak potentials of L. acidophilus were in the range of.67 to.69 V versus the SCE. On the other hand, E. coli gave peak potentials at.71 to.73 V versus the SCE. The peak potentials and the first and second peak current values of various intestinal bacteria are given in Table 1. Gram-positive bacteria such as L. fermentum, L. acidophilus, L. casei, Streptococcus equinus, Streptococcus mitis, Streptococcus salivarius, Streptococcus sanguis, Staphylococcus aureus, and Staphylococcus epidermidis gave peak currents at.65 to.69 V versus the SCE. The peak potentials of gram-negative bacteria such as E. coli and Peak potentials and first and second peak currents of various intestinal bacteria Peak current (j±a/18 cells) Peak Strain pvs the SCE) Scan 1 (A) Scan 2 (B) C = - w acoo C.-) 2.5 4o.E C_ B/A (%) Downloaded from on December 31, 218 by guest Gram-stain positive Lactobacillus fermentum.66 ± Lactobacillus acidophilus Lactobacillus casei.66 ± Streptococcus equinus.66 ± Streptococcus mitis.65 ± Streptococcus salivarius Streptococcus sanguis Staphylococcus aureus.67 ± Staphylococcus epidermidis.68 ± Gram-stain negative Escherichia coli.71 ± Proteus vulgaris.72 ±

5 242 MATSUNAGA AND NAKAJIMA P. vulgaris were.7 to.74 V versus the SCE. Gramnegative and gram-positive bacteria can be classified from the peak currents in intestinal bacteria. The first peak current per 18 cells of gram-positive bacteria was.19 to.47 p.a, which was lower than that of gram-negative bacteria (.74 to.99 p.a). Moreover, the peak current of grampositive bacteria decreased to 27 to 47% of the first peak current on the second scan. On the other hand, the second peak current of gram-negative bacteria retained 8 to 91% of the first peak current. It is also possible to classify gramnegative and gram-positive bacteria by using the ratio of the second peak current to the first peak current. Mechanism of electrochemical classification. Recently, it was found that an electron transfer between cells and the graphite electrode is mediated by CoA present in the cell wall of Saccharomyces cerevisiae (6, 7). Therefore, the relationship between peak current and the amount of CoA eluted in the solution was studied when whole cells of L. acidophilus and E. coli were sonicated (Fig. 6). CoA was enzymatically detected in the exudate solution by the method of Stadtman et al. (8). The concentration of CoA in the exudate solution increased as the peak current decreased. The amount of CoA in the eluent from L. acidophilius increased from.3 to.9 nmol/18 cells, and that from E. coli increased from 1.4 to 5.7 nmol/18 cells. The decrease in CoA content in the cell was also determined after sonication of cells. The CoA content of L. acidophilus decreased from 2.3 to 1.7 nmol/18 cells, and that of E. coli decreased from 7. to 2.7 nmol/18 cells. These results support the idea that CoA present in the cell wall also mediates an electron transfer between the graphite electrode and the L. acidophilus and E. coli cells. Further developmental studies are in progress in our laboratories to determine and classify various species of microorganisms by electrochemical techniques. ACKNOWLEDGMENTS APPL. ENVIRON. MICROBIOL. This work was partially supported by grant-in-aid for scientific research no from the Ministry of Science and Culture. We thank Y. Kawai and N. Suegara, Advance Research and Development Co., for supplying intestinal bacteria and helpful suggestions. LITERATURE CITED 1. Hadley, W. K., and G. Senyk Early detection of microbial metabolism and growth by measurement of electrical impedance, p In D. Schlessinger (ed.), Microbiology American Society for Microbiology, Washington, D.C. 2. Matsunaga, T., I. Karube, T. Nakahara, and S. Suzuki Amperometric determination of viable cell numbers based on sensing microbial respiration. Eur. J. AppI. Microbiol. Biotechnol. 12: Matsunaga, T., I. Karube, and S. Suzuki Electrode system for the determination of microbial populations. Appl. Environ. Microbiol. 37: Matsunaga, T., I. Karube, and S. Suzuki Electrochemical determination of cell populations. Eur. J. Appl. Microbiol. Biotechnol. 1: Matsunaga, T., I. Karube, N. Teraoka, and S. Suzuki Determination of cell numbers of lactic acid producing bacteria by lactate sensor. Eur. J. Appl. Microbiol. Biotechnol. 16: Matsunaga, T., and Y. Namba Detection of microbial cells by cyclic voltammetry. Anal. Chem. 56: Matsunaga, T., and Y. Namba Selective determination of microbial cells by graphite electrode modified with adsorbed 4,4'-bipyridine. Anal. Chim. Acta 159: Stadtman, E. R., G. D. Novelli, and F. Lipman Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. Biol. Chem. 191: Wilkins, J. R., R. N. Young, and E. H. Boykin Multichannel electrochemical microbial detection unit. Appl. Environ. Microbiol. 35: Downloaded from on December 31, 218 by guest

Experiences with the Coulter Counter in Bacteriology1

Experiences with the Coulter Counter in Bacteriology1 Experiences with the Coulter Counter in Bacteriology1 ELLEN M. SWANTON, WILLIAM A. CTJRBY, AND HOWARD E. LIND Sias Laboratories, Brooks Hospital, Brookline, Massachusetts Received for publication May 24,

More information

Evaluation of the efficiency of Mxxxx as a barrier against microrganisms crossing

Evaluation of the efficiency of Mxxxx as a barrier against microrganisms crossing Evaluation of the efficiency of as a barrier against microrganisms crossing A) composition of filter The filter of has the following characteristics: 1. An outer layer, which is composed by a medical,

More information

Electronic Supplementary Information. Hydrogen Evolution Reaction (HER) over Electroless- Deposited Nickel Nanospike Arrays

Electronic Supplementary Information. Hydrogen Evolution Reaction (HER) over Electroless- Deposited Nickel Nanospike Arrays Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Hydrogen Evolution Reaction (HER) over Electroless- Deposited

More information

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures

More information

Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground Meatst

Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground Meatst APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1981, p. 303-307 0099-2240/81/090303-05$02.00/0 Vol. 42, No. 2 Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground

More information

Pharmaceutical Microbiology Forum Newsletter Vol. 12 (4) Page 3 of 14 (NCIMB 8545, CIP NBRC. Salmonella enterica ssp typhimurium

Pharmaceutical Microbiology Forum Newsletter Vol. 12 (4) Page 3 of 14 (NCIMB 8545, CIP NBRC. Salmonella enterica ssp typhimurium Page 3 of 14 Continued from page 2 Table 2. Absence of Specified Details Media Growth Promotion Organisms for Trypticase Soy Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Salmonella Staphylococcus

More information

INTRODUCTION MATERIALS & METHODS

INTRODUCTION MATERIALS & METHODS Evaluation of Three Bacterial Transport Systems, The New Copan M40 Transystem, Remel Bactiswab And Medical Wire & Equipment Transwab, for Maintenance of Aerobic Fastidious and Non-Fastidious Organisms

More information

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY Page No. 175-187 5.1 Introduction 5.2 Theoretical 5.3 Experimental 5.4 References 5. 1 Introduction Electrochemical

More information

BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015

BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015 BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015 Week of May 18 th Introduction to the Microbiology Laboratory: Become familiar with the laboratory and its safety features Review safety rules

More information

Microbiology. Definition of a Microorganism. Microorganisms in the Lab. The Study of Microorganisms

Microbiology. Definition of a Microorganism. Microorganisms in the Lab. The Study of Microorganisms Microbiology The Study of Microorganisms Definition of a Microorganism Derived from the Greek: Mikros, «small» and Organismos, organism Microscopic organism which is single celled (unicellular) or a mass

More information

Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes

Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes Turk J Chem 24 (2000), 95 99 c TÜBİTAK Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes Nil ERTAŞ Ege University, Faculty of Science, Department

More information

Kinetics of Escherchia coli Destruction by Microwave Irradiation

Kinetics of Escherchia coli Destruction by Microwave Irradiation APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1992, p. 92-924 99-224/92/392-5$2./ Copyright X) 1992, American Society for Microbiology Vol. 58, No. 3 Kinetics of Escherchia coli Destruction by Microwave

More information

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES ENTEROBACTER AEROGENES UNKNOWN BACTERIA PDF UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES IDENTIFICATION OF AN UNKNOWN BACTERIAL SPECIES OF 1 / 5 2 / 5 3 / 5 enterobacter aerogenes unknown bacteria

More information

Supporting Information

Supporting Information Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly-Enhanced Activity Zuofeng Chen and Yanbing Zu * Department of Chemistry, The University

More information

Thermal Injury and Recovery of Salmonella typhimurium and Its Effect on

Thermal Injury and Recovery of Salmonella typhimurium and Its Effect on APPLIED MICROBIOLOGY, Sept. 1969, p. 332-336 Copyright @ 1969 American Society for Microbiology Vol. 18, No. 3 Printed in U.S.A. Thermal Injury and Recovery of Salmonella typhimurium and Its Effect on

More information

of the work reported here was to define the point in the developmental process at which the curing salts act to prevent outgrowth.

of the work reported here was to define the point in the developmental process at which the curing salts act to prevent outgrowth. APPLIED MICROBIOLOGY, Feb. 1968, p. 406-411 Copyright 1968 American Society for Microbiology Vol. 16, No. 2 Printed in U.S.A. Effect of Sodium Nitrite, Sodium Chloride, and Sodium Nitrate on Germination

More information

Unit 2 B Voltammetry and Polarography

Unit 2 B Voltammetry and Polarography Unit 2 B Voltammetry and Polarography Voltammetric methods of Analysis What is Voltammetry? A time-dependent potential is applied to an electrochemical cell, and the current flowing through the cell is

More information

Direct electron transfer reactions of glucose oxidase and D-amino acid oxidase at a glassy carbon electrode in organic media

Direct electron transfer reactions of glucose oxidase and D-amino acid oxidase at a glassy carbon electrode in organic media Direct electron transfer reactions of glucose oxidase and D-amino acid oxidase at a glassy carbon electrode in organic media By: Wei Jianjun, Qin Yiqin, Liu Haiying, Deng Jiaqi J. Wei, Y. Q. Qin, H. Y.

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Salmonella typhimurium in Glucose-Mineral Salts Medium

Salmonella typhimurium in Glucose-Mineral Salts Medium APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1987, p. 1311-1315 0099-2240/87/061311-05$02.00/0 Copyright 1987, American Society for Microbiology Vol. 53, No. 6 Effect of NaCl, ph, Temperature, and Atmosphere

More information

A Selective Medium for Bacillus anthracis

A Selective Medium for Bacillus anthracis 56 R~ORRIS, E. J. (955). J. gen. Microbiol. 3, 566 A Selective Medium for Bacillus anthracis BY E. J. MORRIS Microbiological Research Department, Ministry of Supply, Porton, Wiltshire SUMMARY: A medium

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information Supporting Information A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as anode catalyst for direct methanol fuel cells Yi-Ge Zhou, Jing-Jing Chen, Feng-bin Wang*,

More information

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18 THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE Introduction: The identification of bacteria is important in order for us to differentiate one microorganism

More information

Originally published as:

Originally published as: Originally published as: Hedderich, R., Müller, R., Greulich, Y., Bannert, N., Holland, G., Kaiser, P., Reissbrodt, R. Mechanical damage to Gram-negative bacteria by surface plating with the Drigalski-spatula

More information

MICROBIOLOGY LAB #1 SAFETY RULES & GRAM STAIN METHOD

MICROBIOLOGY LAB #1 SAFETY RULES & GRAM STAIN METHOD MICROBIOLOGY LAB #1 SAFETY RULES & GRAM STAIN METHOD Precaution processes are extremely important when working with cultures in the lab for the safety of the microbiologist from getting diseases from bacteria

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Sieving Behaviour of Nanoscopic Pores by. Hydrated Ions

Sieving Behaviour of Nanoscopic Pores by. Hydrated Ions Sieving Behaviour of Nanoscopic Pores by Hydrated Ions Joohan Lee a and Juhyoun Kwak* a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu,

More information

Laboratory Exercise # 7: Aseptic Technique

Laboratory Exercise # 7: Aseptic Technique Laboratory Exercise # 7: Aseptic Technique Purpose: The purpose of this laboratory exercise is to acquaint the student with the procedures of aseptic transfer of microbiological cultures. ntroduction:

More information

Investigating Ammonia-producing Bacteria for the Establishment of a ph Gradient in Microbial Biofuel Cells. Alex Hodson

Investigating Ammonia-producing Bacteria for the Establishment of a ph Gradient in Microbial Biofuel Cells. Alex Hodson Investigating Ammonia-producing Bacteria for the Establishment of a ph Gradient in Microbial Biofuel Cells Alex Hodson Mentor: Dr. R. Shane Gold BIOL 491-494 April 20 2015 Abstract Microbial biofuel cells

More information

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Supplementary Information Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Zhen Liu, Selcuk Poyraz, Yang Liu, Xinyu Zhang* Department of Polymer and Fiber Engineering, Auburn

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

ANALYSIS OF MICROBIAL COMPETITION

ANALYSIS OF MICROBIAL COMPETITION ANALYSIS OF MICROBIAL COMPETITION Eric Pomper Microbiology 9 Pittsburgh Central Catholic High School Grade 9 Introduction Escherichia coli (E. coli) and Saccharomyces cerevisiae (Yeast) were grown together

More information

Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery

Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery ACTA PHYSICO-CHIMICA SINICA Volume 22, Issue 4, April 2006 Online English edition of the Chinese language journal Cite this article as: Acta Phys. -Chim. Sin., 2006, 22(4), 403 408. RESEARCH PAPER Investigations

More information

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Supplementary Information Electron transfer reactions at the plasma-liquid interface Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Chung-Chiun Liu, and R. Mohan Sankaran*,

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Electronic Supplementary Information Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Yang Liu, a Zhen Liu, a Ning Lu, b Elisabeth Preiss, a Selcuk

More information

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium Portugaliae Electrochimica Acta 2010, 28(6), 397-404 DOI: 10.4152/pea.201006397 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic

More information

A Sensitive Dissolved Oxygen Sensor Based on a Charge-Transfer Complex Modified Electrode

A Sensitive Dissolved Oxygen Sensor Based on a Charge-Transfer Complex Modified Electrode Sensors & Transducers ISSN 1726-5479 2006 by IFSA http://www.sensorsportal.com A Sensitive Dissolved Oxygen Sensor Based on a Charge-Transfer Complex Modified Electrode TU Yifeng Institute of Analytical

More information

DISINFECTION IN A DAIRY MILKING PARLOUR USING ANOLYTE AS DISINFECTION

DISINFECTION IN A DAIRY MILKING PARLOUR USING ANOLYTE AS DISINFECTION DISINFECTION IN A DAIRY MILKING PARLOUR USING ANOLYTE AS DISINFECTION Prof T E Cloete and M S Thantsha, Department of Microbiology and Plant Pathology, University of Pretoria, South Africa INTRODUCTION

More information

Characteristics of Salmonella'

Characteristics of Salmonella' APuLED MICROBIOLOGY, Oct. 19, p. 636-640 Vol. 18, No. 4 Copyright 19 American Society for Microbiology Printed in U.S.A. Effect of Repeated Irradiation on Various Characteristics of Salmonella' J. J. LICCIARDELLO,

More information

Morphology and Ultrastructure of Staphylococcal L Colonies: Light, Scanning,

Morphology and Ultrastructure of Staphylococcal L Colonies: Light, Scanning, JOURNAL OF BACTERIOLOGY, Feb. 1973, p. 1049-1053 Copyright ( 1973 American Society for Microbiology Vol. 113, No. 2 Printed in U.S.A. Morphology and Ultrastructure of Staphylococcal L Colonies: Light,

More information

Synthesis of naturally-derived macromolecules. through simplified electrochemically mediated ATRP

Synthesis of naturally-derived macromolecules. through simplified electrochemically mediated ATRP Supporting Information for Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP Paweł Chmielarz*, Tomasz Pacześniak, Katarzyna Rydel-Ciszek, Izabela Zaborniak,

More information

Microstructure of Colonies of Rod-Shaped Bacteria

Microstructure of Colonies of Rod-Shaped Bacteria JOURNAL OF BACTERIOLOGY, Oct. 1971, p. 515-525 Copyright 0 1971 American Society for Microbiology Vol. 108, No. I Printed in U.S.A. Microstructure of Colonies of Rod-Shaped Bacteria D. B. DRUCKER AND D.

More information

THE JOURNAL OF AGRICULTURE

THE JOURNAL OF AGRICULTURE THE JOURNAL OF AGRICULTURE OF THE UNIVERSITY OF PUERTO RICO Issued quarterly by the Agricultural Expenment Station of the University of Puerto Rico, Mayaguez Campus, for the publication of articles and

More information

Electrochemical behaviour of alkaline copper complexes

Electrochemical behaviour of alkaline copper complexes Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 5, October 2000, pp. 543 550 Indian Academy of Sciences Electrochemical behaviour of alkaline copper complexes 1. Introduction C L ARAVINDA a, S M MAYANNA

More information

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid Int. J. Electrochem. Sci., 6 (2011) 6662-6669 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic

More information

Lack of effect of an externally applied electric field on bacterial adhesion to glass

Lack of effect of an externally applied electric field on bacterial adhesion to glass Colloids and Surfaces B: Biointerfaces 20 (2001) 189 194 www.elsevier.nl/locate/colsurfb Brief note Lack of effect of an externally applied electric field on bacterial adhesion to glass Albert T. Poortinga,

More information

CLASSIFICATION OF BACTERIA

CLASSIFICATION OF BACTERIA CLASSIFICATION OF BACTERIA DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential

More information

Bacterial Gram Staining

Bacterial Gram Staining PR021 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Bacterial Gram Staining Teacher s Guidebook (Cat. # BE 202) think proteins! think G-Biosciences

More information

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED UNCLASSIFIED ADL 4 5 2981 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED NOTICE: When goverment or other drawings, specifications

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

A SILVER/SILVER SULPHIDE SELECTIVE ELECTRODE PREPARED BY MEANS OF CHEMICAL TREATMENT OF SILVER WIRE

A SILVER/SILVER SULPHIDE SELECTIVE ELECTRODE PREPARED BY MEANS OF CHEMICAL TREATMENT OF SILVER WIRE 209 Acta Chim. Slov. 1998, 45(3), pp. 209-216 (Received 15. 5.1998) A SILVER/SILVER SULPHIDE SELECTIVE ELECTRODE PREPARED BY MEANS OF CHEMICAL TREATMENT OF SILVER WIRE Faculty of Chemistry and Chemical

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Game plan Lecture Lab Prelabs

Game plan Lecture Lab Prelabs Game plan Lecture Binary fission Growth curves Physical requirements for growth Chemical requirements for growth Lab Lab Exam Prelabs Growth Curve Bring books and APO-3 for next class Microbial growth

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

METABOLIC ACTIVITY OF BACTERIAL ISOLATES FROM WHEAT RHIZOSPHERE AND CONTROL SOIL'

METABOLIC ACTIVITY OF BACTERIAL ISOLATES FROM WHEAT RHIZOSPHERE AND CONTROL SOIL' METABOLIC ACTIVITY OF BACTERIAL ISOLATES FROM WHEAT RHIZOSPHERE AND CONTROL SOIL' A. C. ZAGALLO2 AND H. KATZNELSON Bacteriology Division, Science Service, Canada Department of Agriculture, Ottawa Received

More information

Supplementary Material

Supplementary Material Supplementary Material Digital Electrogenerated Chemiluminescence Biosensor for the Determination of Multiple Proteins Based on Boolean Logic Gate Honglan Qi*, Xiaoying Qiu, Chen Wang, Qiang Gao, Chengxiao

More information

1. Which of the following species have strains that are capable of undergoing the process of conjugation?

1. Which of the following species have strains that are capable of undergoing the process of conjugation? Biology 3340 Summer 2005 Second Examination Version A Name Be sure to put your name on the mark-sense sheet as well Directions: Write your name in the correct space on the mark-sense sheet and the exam

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Uniform and Rich Wrinkled Electrophoretic Deposited Graphene Film: A Robust Electrochemical Platform for TNT Sensing Longhua Tang, Hongbin Feng, Jinsheng Cheng and

More information

Supporting Information

Supporting Information Supporting Information D Nanoporous Ag@BSA Composite Microspheres As Hydrogen Peroxide Sensor Quanwen Liu a, *, Ting Zhang b, Lili Yu c, Nengqin Jia c, Da-Peng Yang d * a School of Chemistry and Materials

More information

Electronic Supplementary Information for:

Electronic Supplementary Information for: Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 216 Electronic Supplementary Information for: Nitrogenase bioelectrocatalysis:

More information

The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability

The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability Khaled A. Al-Khaza'leh 1* Abdullah T. Al-fawwaz 2 1. Department of Physics, Al-albayt University, PO box 130040, Mafraq,

More information

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis ANTIMICROBIAL TESTING E-Coli K-12 - E-Coli 0157:H7 Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis Staphylococcus Aureus (Staph Infection MRSA) Streptococcus Pyrogenes Anti Bacteria effect

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

Effect of Coliform and Proteus Bacteria on Growth

Effect of Coliform and Proteus Bacteria on Growth APPLIED MICROBIOLOGY, Jan., 19 Copyright @ 19 American Society for Microbiology Vol. 14, No. 1 Printed in U.S.A. Effect of Coliform and Proteus Bacteria on Growth of Staphylococcus aureus1 J. V. DiGIACINTO2

More information

Relationship Between Atmospheric Temperature

Relationship Between Atmospheric Temperature APPLIED MICROBIOLOGY, Feb. 1970, p. 245-249 Copyright ( 1970 American Society for Microbiology Vol. 19, No. 2 Printed in U.S.A. Relationship Between Atmospheric Temperature and Survival of Airborne Bacteria

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Selective Electrocatalytic Reduction of Nitrite to Dinitrogen Based on Decoupled Proton Electron Transfer Daoping He, Yamei Li, Hideshi Ooka, Yoo Kyung Go, Fangming Jin*, Sun Hee

More information

ENTEROBACTER CLOACAE OUTER MEMBRANE PERMEABILITY TO CEFTIZOXIME (FK 749) AND FIVE OTHER NEW CEPHALOSPORIN DERIVATIVES

ENTEROBACTER CLOACAE OUTER MEMBRANE PERMEABILITY TO CEFTIZOXIME (FK 749) AND FIVE OTHER NEW CEPHALOSPORIN DERIVATIVES VOL. XXXIII NO. 3 THE JOURNAL OF ANTIBIOTICS 317 ENTEROBACTER CLOACAE OUTER MEMBRANE PERMEABILITY TO CEFTIZOXIME (FK 749) AND FIVE OTHER NEW CEPHALOSPORIN DERIVATIVES HITOSHI Kojo, YASUTAKA SHIGI and MINORU

More information

American Journal of Environmental Science 9 (5): , 2013

American Journal of Environmental Science 9 (5): , 2013 American Journal of Environmental Science 9 (5): 424-430, 2013 ISSN: 1553-345X 2013 Science Publication doi:10.3844/ajessp.2013.424.430 Published Online 9 (5) 2013 (http://www.thescipub.com/ajes.toc) A

More information

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous

More information

Microbiology Laboratory (BIOL 3702L) Page 1 of 10

Microbiology Laboratory (BIOL 3702L) Page 1 of 10 Microbiology Laboratory (BIOL 3702L) Page 1 of 10 Principle and Purpose THE GRAM STAIN The Gram stain is perhaps the most useful test conducted in the clinical microbiology laboratory. It was first developed

More information

TSC AGAR (base) INTENDED USE / HISTORY

TSC AGAR (base) INTENDED USE / HISTORY TSC AGAR (base) INTENDED USE / HISTORY Tryptone Sulfite Cycloserine Agar was described by Harmon for the selective isolation and enumeration of Clostridium perfringens in water and food samples. The medium

More information

Chapter 6 Microbial Growth With a focus on Bacteria

Chapter 6 Microbial Growth With a focus on Bacteria Chapter 6 Microbial Growth With a focus on Bacteria Temperature Minimum growth temperature Optimum growth temperature Maximum growth temperature Usually within a 30-40 degree range Microbial growth = increase

More information

INTERPRETATION OF THE GRAM STAIN

INTERPRETATION OF THE GRAM STAIN INTERPRETATION OF THE GRAM STAIN DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential

More information

affected by the ph of the medium, the dependence of the bacteriostasis by dyes

affected by the ph of the medium, the dependence of the bacteriostasis by dyes THE BACTERICIDAL AND BACTERIOSTATIC ACTION OF CRYSTAL VIOLET C. E. HOFFMANN AND OTTO RAHN Bacteriological Laboratory, New York State College of Agriculture, Cornell University, Ithaca, N. Y. Received for

More information

Oxidation state. Electrochemical Techniques OCN Nov. 25, Redox chemistry refresher. Intro to electrochemistry. Electrochemical techniques

Oxidation state. Electrochemical Techniques OCN Nov. 25, Redox chemistry refresher. Intro to electrochemistry. Electrochemical techniques Electrochemical Techniques OCN 633 - Nov. 25, 2013 Brian Glazer glazer@hawaii.edu Redox chemistry refresher Life on Earth is comprised of e - transfer reactions Intro to electrochemistry voltaic cells,

More information

Supporting Information. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential

Supporting Information. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential Supporting Information Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential Guillaume Passard, Andrew M. Ullman, Casey N. Brodsky and Daniel G. Nocera*

More information

Surface charge characteristics of Bacillus subtilis NRS-762 cells

Surface charge characteristics of Bacillus subtilis NRS-762 cells Surface charge characteristics of Bacillus subtilis NRS-762 cells Wenfa Ng Department of Chemical and Biomolecular Engineering, National University of Singapore Email: ngwenfa771@hotmail.com Graphical

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201701456 Selective Etching of Nitrogen-Doped Carbon by Steam

More information

Research & Reviews In. Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery

Research & Reviews In. Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery ISSN : 0974-7540 Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery Liu Xudong*, Bi Xiaoguo, Tang Jian, Guan Xin, Niu Wei Shenyang Institute of Engineering, 110136,

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010 Fluoride-Modulated Cobalt Catalysts for Electrochemical Oxidation of Water under Non-Alkaline Conditions James B.

More information

Supporting Information for

Supporting Information for Supporting Information for Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth Characterization and Electrocatalysis Min Zhou, Jeffrey E. Dick, and Allen J. Bard Center for Electrochemistry,

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Supporting Information Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Ruifeng Zhou 1, 2, Yao Zheng 1, Mietek Jaroniec 3 and Shi-Zhang Qiao 1, * 1 School

More information

Study of the role of sodium hypophosphite in electroless nickel bath solution

Study of the role of sodium hypophosphite in electroless nickel bath solution Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 109, No. 3. June 1997, pp. 203-209. 9 Printed in India. Study of the role of sodium hypophosphite in electroless nickel bath solution T MIMANI and S M MAYANNA*

More information

colony size color morphology haemolysis S. aureus S. epidermidis

colony size color morphology haemolysis S. aureus S. epidermidis practical 2.: STAPHYLOCOCCUS 1. Prepare a heat fixed smear of the culture of S.aureus. (Gram staining, microscopy). 2. Prepare a heat fixed smear of the culture of S.aureus. and S.epidermidis (mixed smear),

More information

Chapter 24. Electrogravimetry and Coulometry

Chapter 24. Electrogravimetry and Coulometry Chapter 24 Electrogravimetry and Coulometry Dynamic Electrochemical Methods of analysis Electrolysis Electrogravimetric and Coulometric Methods For a cell to do any useful work or for an electrolysis to

More information

Effect of Oxygen-Supply Rates on Growth

Effect of Oxygen-Supply Rates on Growth APPLIED MICROBIOLOGY, Jan., 1965 Vol. 13, No. 1 Copyright 1965 American Society for Microbiology Printed in U.S.A. Effect of Oxygen-Supply Rates on Growth of Escherichia coli II. Comparison of Results

More information

CYTOLOGICAL CHANGES IN AGING BACTERIAL CULTURES

CYTOLOGICAL CHANGES IN AGING BACTERIAL CULTURES CYTOLOGICAL CHANGES IN AGING BACTERIAL CULTURES B. R. CHATTERJEE AND ROBERT P. WILLIAMS Department of Microbiology, Baylor University College of Medicine, Houston, Texas Received for publication March

More information

Electrical Sensing Zone Particle Analyzer for Measuring Germination of Fungal Spores in the Presence of Other Particles'

Electrical Sensing Zone Particle Analyzer for Measuring Germination of Fungal Spores in the Presence of Other Particles' APPUED MicRoBImoLY, July 1967, p. 935-639 Vol. 15, No. 4 Copyright 1967 American Society for Microbiology Printed bi U.S.A. Electrical Sensing Zone Particle Analyzer for Measuring Germination of Fungal

More information

Miniature Ambient Ionization Mass Spectrometry System For Analysis of Microorganisms

Miniature Ambient Ionization Mass Spectrometry System For Analysis of Microorganisms Miniature Ambient Ionization Mass Spectrometry System For Analysis of Microorganisms R. Graham Cooks 1 and Zheng Ouyang 2 1 Department of Chemistry and 2 Weldon School of Biomedical Engineering Purdue

More information

Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant

Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant Ni Liao, Ying Zhuo, Yaqin Chai, Yun Xiang, Yaling Cao, Ruo Yuan, Jing Han Education

More information

LABORATORIUM Z CHEMII FIZYCZNEJ POTENTIOMETRIC MEASUREMENTS OF PH POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY. Agata Blacha-Grzechnik.

LABORATORIUM Z CHEMII FIZYCZNEJ POTENTIOMETRIC MEASUREMENTS OF PH POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY. Agata Blacha-Grzechnik. POLITCHNIKA ŚLĄSKA WYDZIAŁ CHMICZNY KATDRA IZYKOCHMII I TCHNOLOGII POLIMRÓW POTNTIOMTRIC MASURMNTS O PH Prowadzący: Miejsce ćwiczenia: Agata BlachaGrzechnik Katedra izykochemii i Technologii Polimerów,

More information

Performance Evaluation of Various ATP Detecting Units

Performance Evaluation of Various ATP Detecting Units Silliker, Inc., Food Science Center Report RPN: 13922 December 11, 2009 Revised January 21, 2010 Performance Evaluation of Various ATP Detecting Units Prepared for: Steven Nason 941 Avenida Acaso Camarillo,

More information

Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide

Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide Int. J. Electrochem. Sci., 8 (2013) 10557-10567 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled

More information

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information for Highly efficient hydrogen evolution of platinum via tuning

More information

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary information for Self-assembled Two-dimensional Copper Oxide

More information

Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate*

Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate* Agric. Biol Chem., 45 (10), 2191-2195, 1981 2191 Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate* Takashi Sakaguchi, Takao Horikoshi and Akira Nakajima Department of Chemistry, Miyazaki

More information

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 014 Supporting information Single-walled carbon nanotubes as nano-electrode and nanoreactor to control

More information

A Highly Miniaturized Dissolved Oxygen Sensor Using a Nanoporous Platinum Electrode Electroplated on Silicon

A Highly Miniaturized Dissolved Oxygen Sensor Using a Nanoporous Platinum Electrode Electroplated on Silicon Journal of the Korean Physical Society, Vol. 58, No. 5, May 2011, pp. 1505 1510 A Highly Miniaturized Dissolved Oxygen Sensor Using a Nanoporous Platinum Electrode Electroplated on Silicon Yi Jae Lee and

More information