Investigating Ammonia-producing Bacteria for the Establishment of a ph Gradient in Microbial Biofuel Cells. Alex Hodson

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Investigating Ammonia-producing Bacteria for the Establishment of a ph Gradient in Microbial Biofuel Cells. Alex Hodson"

Transcription

1 Investigating Ammonia-producing Bacteria for the Establishment of a ph Gradient in Microbial Biofuel Cells Alex Hodson Mentor: Dr. R. Shane Gold BIOL April

2 Abstract Microbial biofuel cells (MFCs) present a unique opportunity to recycle organic waste, such as old food or yard waste, into electricity by harnessing the metabolic activities of bacteria. Traditionally MFCs have utilized two chambers filled with bacteria growing at a neutral ph to produce an open circuit voltage potential; power production using this design has been moderately successful. In a recent modification, a manually generated ph gradient established between the two chambers demonstrated improved power output, but the need to maintain the gradient using exogenous HCl and NaOH has proven to be expensive. This research investigates the use of ammonia-producing bacteria for potential use in the cathodic chamber to help establish and maintain a natural ph gradient without the need for exogenous ph adjustment. Growth curves, ph levels, and ammonium ion concentrations were measured for Azotobacter vinelandii and Proteus mirabilis grown with and without urea. The alkalinization coefficient (Ealk), defined as the average change in ph divided by the average change in growth, was used to compare the potential of bacteria to establish and maintain a ph graident within a MFC. Proteus mirabilis yielded an Ealk of and when grown with, and without, urea, respectively; Azotobacter vinelandii yielded an Ealk of 0. These results suggest that of these two species, P. mirabilis shows the greatest potential at raising the ph for increased energy production in the cathodic chamber of a gradient based MFC. Keywords: Microbial fuel cell, Proteus mirabilis, Azotobacter vinelandii, ph gradient, organic mediator dyes, Lactobacillus acidophilis Introduction The microbial fuel cell (MFC) represents a novel technology to simultaneously generate electric power and treat wastewater using both pure organic matter and wastewater as fuel to generate electric power (Wang et al. 2014). MFCs use the metabolism of heterotrophic bacteria to generate protons and electrons from an organic fuel source. As protons are generated they are able to pass through a proton exchange membrane from the anode to the cathode while electrons are forced to pass through an external wire, thereby producing an electric current (Rahimnejad et al. 2011). In the course of MFC operation the protonaccepting side (cathode) naturally becomes acidified as protons accumulate which 1

3 results in a reduction in power output (Zhuang et al. 2010). Zhuang et al. (2010) added HCl and NaOH continuously to the anode and cathode sides, respectively, to maintain a cathodic ph of 10.0 and an anodic ph of 2.0; this system was observed to achieve open circuit voltages and maximum power densities 1.5 and 3.8 times higher than those obtained in the same MFC working at a neutral ph. While voltage and power density increased by maintaining a ph gradient using exogenous agents, the constant addition of HCl and NaOH is costly and inefficient. The use of acidproducing bacteria in the anode and alkali-producing bacteria in the cathode may help to establish and maintain the ph gradient required to optimize energy production spontaneously without the need for supplementation. A number of bacteria are able to create an alkaline environment through the production of ammonia by hydrolyzing urea, hydrolyzing proteins, or through nitrogen fixation (Vince et al. 1973, Padan et al. 2005, Thomspson and Zher 2013). The purpose of this study was to investigate the use of alkali-producing bacteria for potential use in the cathode chamber side of a gradient based MFC. Methods Azotobacter vinelandii (ATCC #478), Proteus mirabilis (ATCC # 25933), and Lactobacillus acidophilus (ATCC #4356) were obtained from the American Type Culture Collection. Azotobacter vinelandii was cultured on Azotobacter medium (1.5 mm KH2PO4, 4.6 mm K2HPO4, 0.8 mm MgSO4 x 7H2O, 0.6 mm CaSO4 x 2H2O, 0.06 mm FeCL3, 0.05 mm Na2MoO4 x 2H2O, and 0.05 g yeast extract per liter), Proteus 2

4 mirabilis was cultured in Nutrient Broth (Difco), and L. acidophilus was cultured in MRS broth (Difco), each at 37 0 C with vigorous shaking (250 rpm). To determine the ability of A. vinelandii and P. mirabilis to establish an alkaline environment the optical density (OD 600 nm) and ph were monitored by taking samples hourly for hours. Each hourly sample was assayed for ammonium ion concentration by acidifying to ph 4.0 with acetate buffer and tested with an ammonium ion-selective electrode (Vernier). To determine the effects of bacterial strains on current, voltage, and power output a microbial biofuel cell was constructed of two 250 ml Wheaten Bottles with a 5.5 mm diameter proton selective membrane used to separate the anodic and cathodic chambers. A titanium electrode (#313830, Millrose) integrated with a carbon fiber brush (VWR, 2.5 cm X 2.5 cm X 7.2 cm) was used to facilitate the movement of the electrons to the external circuit. Lactobacillus acidophilus was inoculated into the anodic chamber and A. vinelandii or P. mirabilis was inoculated into appropriate media within the cathodic chamber. The MRS broth in the anode was supplemented with 20 mm indigo carmine to serve as the mediator for electron transfer. Electrical output and voltage were measured continuously for 24 hours. The tests were performed in triplicate and significance was analyzed using ANOVA. Results The slope of the logarithmic (linear) phase of growth and ph were calculated as a means of comparing growth rates and ph change between bacterial species (Figures 1 and 2). The alkalinization coefficient (Ealk) was determined by dividing 3

5 Optical density the average change in ph by the average change in optical density. Proteus mirabilis yielded an Ealk of 2.7 and 3.2 when grown with, and without, urea, respectivly (Figure 3); Azotobacter vinelandii yielded an Ealk of 0. Figure 1: The fuel cell setup used in this study Time (h) Azotobacter vinelandii Proteus mirabilis (no urea) Proteus mirabilis (urea) Figure 2. Optical density measured over 24 hours. 4

6 Ammonium mg/l ph Azotobacter vinelandii 7.5 Proteus mirabilis (no urea) 7 Proteus mirabilis (urea) Time (h) Figure 2. ph measured over 16 hours Azotobacter vinelandii 10 5 Proteus mirabilis (no urea) Proteus mirabilis (urea) Time (h) Figure 3. Ammonium ion concentration measured over 24 hours. Discussion Microbial bio fuel cells hold great potential for the production of electricity from biological waste streams. If effectively optimized, MFCs could be used to power cities from sewage, as power sources for pacemakers that do not require battery 5

7 replacement, or as home power systems that run from organic material such as food scraps or yard waste. The establishment of a natural ph gradient may help improve the efficiency of MFC s to make this technology competitive with current energy production techniques. The bacteria that are able to produce the greatest increase in ph, thereby establishing the greatest ph gradient at the lowest metabolic rate, may be most ideal for use in the cathodic chamber. Of the strains tested, P. mirabilis, with an alkalinization coefficient of 3.2, increased the ph to the greatest extent while maintaining a low metabolic rate. When P. mirabilis was tested with urea the metabolic rate increased without a corresponding increase in ph, making these conditions less suitable for MFC use. Ammonium ion concentrations were measured to identify the metabolic process by which ph is increased; however, no correlation was observed between an increase in ammonium ion concentration and a raise in ph. The ability of P. mirabilis to rapidly raise the ph of the cathodic environment confers the potential to neutralize protons passing through the proton-selective membrane from the anodic chamber, thereby establishing and maintaining a ph gradient that has the potential to maximize power output without the use of exogenous agents. These results indicate that further studies involving P. mirabilis in a microbial fuel cell, in conjunction with an acid-producing anodic organism, are warranted in an effort to improve the efficiency and cost effectiveness of the microbial fuel cell technology. References Padan, E., E. Bibi, M. Ito and T. Krulwich Alkaline ph Homeostasis in Bacteria: New Insights. Biochim Biophys Acta 1717(2):

8 Rahimnejad M., G. Najafpour and A. A. Ghoreyshi Effect of Mass Transfer on Performance of Microbial Fuel Cell, Mass Transfer in Chemical Engineering Processes. InTech, Dr. Jozef Markoa (Ed.), Available from: Rijeka, Croatia pp Thompson, A. and J. Zehr Cellular Interactions: Lessons from the Nitrogenfixing Cyanobacteria. Phycological Society of America Vince, A., A. M. Dawson, N. Park and F. O Grady Ammonia production by intestinal bacteria. Gut Wang, Z., T. Lee, B. Lim, C. Choi, and J. Park Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fuled with rice straw hydrolysate. Biotechnology for Biofuels 7:9 Last accessed 4/10/14 Zhuang, L, S. Zhou, Y. Li, and Y. Yuan Enhanced performance of air-cathode two-chamber microbial fuel cells with high-ph anode and low ph cathode. Bioresource Technology 101:

Chapter 6 Microbial Growth With a focus on Bacteria

Chapter 6 Microbial Growth With a focus on Bacteria Chapter 6 Microbial Growth With a focus on Bacteria Temperature Minimum growth temperature Optimum growth temperature Maximum growth temperature Usually within a 30-40 degree range Microbial growth = increase

More information

CHLORINE THEORY & MEASUREMENT

CHLORINE THEORY & MEASUREMENT CHLORINE THEORY & MEASUREMENT Introduction Chlorine, dissolved in liquid, is one of the most effective and economical germ-killers for the treatment of water to make it potable or safe to drink. Chlorine's

More information

Influence of ph and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell

Influence of ph and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Influence of ph and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell A. Torrents 1, N. Godino 1, F.J. del Campo 1,

More information

EFFECT OF ph AND AMMONIUM IONS ON THE PERMEABILITY

EFFECT OF ph AND AMMONIUM IONS ON THE PERMEABILITY EFFECT OF ph AND AMMONIUM IONS ON THE PERMEABILITY OF BACILLUS PASTEURII W. R. WILEY AND J. L. STOKES Department of Bacteriology and Public Health, Washington State University, Pullman, Washington ABSTRACT

More information

NCERT. [H O] Since water is in large excess, its concentration can be assumed to be constant and combining it with K provides a new constant K w

NCERT. [H O] Since water is in large excess, its concentration can be assumed to be constant and combining it with K provides a new constant K w UNIT-5 PH AND PH CHANGE IN AQUEOUS SOLUTIONS YOU have already performed experiments on dynamic equilibrium between unionised salt and the ions produced by it on dissolving in a solvent. In this unit we

More information

(c) Na is deposited at the cathode (d) Na appears at the anode

(c) Na is deposited at the cathode (d) Na appears at the anode year chemiry n0tes new CHAPTER 10 ELECTROCHEMISTRY MCQS Q.1 Electrolysis is the process in which a chemical reaction takes place at the expense of (a) chemical energy (b) electrical energy (c) heat energy

More information

Zeolite as a carrier for lactic acid bacteria in biorefinery processes

Zeolite as a carrier for lactic acid bacteria in biorefinery processes Zeolite as a carrier for lactic acid bacteria in biorefinery processes Aleksandra Djukić-Vuković 1 *, Ljiljana Mojović 1, Jelena Pejin 2, Sunčica Kocić-Tanackov 2 *adjukic@tmf.bg.ac.rs 1 Faculty of Technology

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Practice Packet: Oxidation Reduction. Regents Chemistry: Mrs. Mintz. Practice Packet. Chapter 14: Oxidation Reduction & Electrochemistry

Practice Packet: Oxidation Reduction. Regents Chemistry: Mrs. Mintz. Practice Packet. Chapter 14: Oxidation Reduction & Electrochemistry Practice Packet: Oxidation Reduction Regents Chemistry: Mrs. Mintz Practice Packet Chapter 14: Oxidation Reduction & Electrochemistry 1 Assigning Oxidation Numbers Objective: How do we assign atoms the

More information

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s)

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s) 12.05 Galvanic Cells 1. In an operating voltaic cell, reduction occurs A) at the anode B) at the cathode C) in the salt bridge D) in the wire 2. Which process occurs in an operating voltaic cell? A) Electrical

More information

CHEMISTRY 12 JUNE 2000 STUDENT INSTRUCTIONS

CHEMISTRY 12 JUNE 2000 STUDENT INSTRUCTIONS Insert Personal Education Number (PEN) here. Insert only pre-printed PEN label here. STUDENT INSTRUCTIONS 1. Insert the stickers with your Personal Education Number (PEN) in the allotted spaces above.

More information

Strategy for Obtaining Inexpensive Prodigiosin Production by Serratia Marcescen

Strategy for Obtaining Inexpensive Prodigiosin Production by Serratia Marcescen 211 3rd International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.2 (211) (211) IACSIT Press, Singapore Strategy for Obtaining Inexpensive Prodigiosin Production by Serratia

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Acids, Bases, Salts, Buffers

Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers An acid is any solute that dissociates in a solution and releases hydrogen ions, thereby lowering ph Since a hydrogen ion consist solely of a proton,

More information

3M Food Safety Technical Bulletin

3M Food Safety Technical Bulletin 3M Petrifilm Aqua Enterobacteriaceae Count Plates Performance Summary 3M Petrifi lm Aqua Enterobacteriaceae (AQEB) Count Plates are sample ready media plates used in the microbial testing of bottled water.

More information

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book)

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book) OXIDATION-REDUCTIONS REACTIONS Chapter 19 (From next years new book) ELECTROCHEMICAL REACTIONS: What are electrochemical reactions? Electrons are transferred from one species to another ACTIVATING PRIOR

More information

2. Which of the following statements best describes the movement of electrons in an electrochemical cell?

2. Which of the following statements best describes the movement of electrons in an electrochemical cell? Exam 2 Chem 311 Evans Fall 2009 112: 2 pts each 1. Consider the following unbalanced redox equation: Pb (s) + PbO 2 (s) + 2 HSO 4 (aq) 2 PbSO 4 (s) Which species is being oxidized? A. HSO 4 B. Pb(s) C.

More information

Chemistry Discussion #9, Chapter 16 Student name TA name Section. Things you should know when you leave Discussion today:

Chemistry Discussion #9, Chapter 16 Student name TA name Section. Things you should know when you leave Discussion today: Chemistry 102 2016 Discussion #9, Chapter 16 Student name TA name Section Things you should know when you leave Discussion today: 1. Potential E cell at standard conditions.(all concentrations are at 1M)

More information

Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output

Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output 168 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 1 Yong Yuan and Sunghyun Kim Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output Yong Yuan and Sunghyun

More information

Ajay Krishnamurthy PhD Student Department of Mechanical Engineering. Advisor: Prof. Nikhil Koratkar

Ajay Krishnamurthy PhD Student Department of Mechanical Engineering. Advisor: Prof. Nikhil Koratkar A Graphene Based Coating for Protection Against Microbially Induced Corrosion (MIC) Ajay Krishnamurthy PhD Student Department of Mechanical Engineering Rensselaer Polytechnic Institute, Troy, NY, USA Advisor:

More information

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis AP Biology Energy Exam Study Guide Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis 1. In which orientation must these two amino acids be brought together to form a dipeptide bond?

More information

The Biochemistry of Water

The Biochemistry of Water The Biochemistry of Water The Biochemistry of Water 2.3 Water, ph, and Buffers Water is the solvent of life All organisms are composed primarily of water, such that most eukaryotic organisms are about

More information

Buffer Preparation. Learning Objectives:

Buffer Preparation. Learning Objectives: Proteomics Buffer Preparation Buffer Preparation Maintaining the optimum ph during the biological sample processing is to maintain the proper functional and structural aspects of the sample. It is important

More information

capable of neutralizing both acids and bases

capable of neutralizing both acids and bases Buffers Buffer n any substance or mixture of compounds that, added to a solution, is capable of neutralizing both acids and bases without appreciably changing the original acidity or alkalinity of the

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells PURPOSE To see how changes in concentration and ph affect the potential in an electrochemical cell, and confirm the Nernst equation. GOALS To examine how standard reduction potentials

More information

ELECTROCHEMICAL CELLS NAME ROW PD

ELECTROCHEMICAL CELLS NAME ROW PD 4-26-12 NAME ROW PD (1) Which statement describes the redox reaction that occurs when an object is electroplated? The diagram below shows the electrolysis of fused KCl. A) It is spontaneous and requires

More information

ph and Liming Practices Kent Martin Stafford County 1/5/2010

ph and Liming Practices Kent Martin Stafford County 1/5/2010 ph and Liming Practices Kent Martin Stafford County 1/5/2010 Outline What is ph Normal ph ranges Acid Soil Importance of soil ph Factors affecting soil ph Acid types and measurement Neutralizing value

More information

Ions in Solution. Solvent and Solute

Ions in Solution. Solvent and Solute Adapted from Peer-led Team Learning Begin at the beginning and go on till you come to the end: then stop." Early ideas of atoms and compounds, developed primarily through the reactions of solids and gases,

More information

MICROBIOLOGY TEST 1 - SPRING 2007

MICROBIOLOGY TEST 1 - SPRING 2007 MICROBIOLOGY TEST 1 - SPRING 2007 Name Part One: Short Answers. Answer 5 of the following 6 questions in the space that has been provided. Each question is worth 15 points. Question 1: Name and briefly

More information

Kjeldahl Method. Quantiative analysis

Kjeldahl Method. Quantiative analysis e-learning for Quantiative analysis Kjeldahl Method Introduction Nitrogen is one of the five major elements found in organic materials such as protein. This fact was recognized by a Danish chemist, Johan

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

Acids & Bases. Chapter 17

Acids & Bases. Chapter 17 Acids & Bases Chapter 17 Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H + ], (also thought of as hydronium ion, H 3 O + )

More information

HYDROGEN. technique. uptake/co2 uptake, which according to equation (1) should equal 4, has

HYDROGEN. technique. uptake/co2 uptake, which according to equation (1) should equal 4, has 184 BA CTERIOLOG Y: H. A. BARKER PROC. N. A. S. STUDIES ON THE METHANE FERMENTATION. VI. THE IN- FLUENCE OF CARBON DIOXIDE CONCENTRATION ON THE RATE OF CARBON DIOXIDE REDUCTION BY MOLECULAR HYDROGEN By

More information

TITRATIONS BASED ON COMPLEX FORMATION

TITRATIONS BASED ON COMPLEX FORMATION Experiment No. Date TITRATIONS BASED ON COMPLEX FORMATION INTRODUCTION Titrimetric methods based upon complex formation, sometimes called complexometric methods have been used for at least a century. A

More information

BIOSORPTION OF HEAVY METALS BY PSEUDOMONAS BACTERIA

BIOSORPTION OF HEAVY METALS BY PSEUDOMONAS BACTERIA BIOSORPTION OF HEAVY METALS BY PSEUDOMONAS BACTERIA ABBAS ALI A 1, MOHAMED SIHABUDEEN M 2 AND ZAHIR HUSSAIN A 3 1 Professor, M.I.E.T Engineering College, Tiruchirappalli. 2 Associate Professor and Head,

More information

A Study of Waste Water Treatment of Microbiological Laboratories of Hospitals by Electrolyzed Oxidized Water

A Study of Waste Water Treatment of Microbiological Laboratories of Hospitals by Electrolyzed Oxidized Water A Study of Waste Water Treatment of Microbiological Laboratories of Hospitals by Electrolyzed Oxidized Water Fiza Sarwar College of Earth & Environmental Sciences University of the Punjab, Lahore, Pakistan

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

ACID-BASE TITRATION AND PH

ACID-BASE TITRATION AND PH ACID-BASE TITRATION AND PH Section 1 Aqueous Solutions and the Concept of ph Hydronium and Hydroxide Ions Acids and bases form hydroxide and hydronium ions These ions are not the only ones in an aqueous

More information

Applications of Ion-Selective Electrodes

Applications of Ion-Selective Electrodes Applications of Ion-Selective Electrodes Analyte Ammonia Carbon dioxide Chloride Chlorine residual Cyanide Fluoride Nitrate Nitrogen oxide/nitrite Oxygen, dissloved Sulfide Electrode type Gas sensing Gas

More information

Name: Block: Date: Student Notes

Name: Block: Date: Student Notes Name: Block: Date: LCPS Core Experience Acids and Bases Student Notes OBJECTIVES Students will: recognize some acids and bases as common and familiar household chemicals. realize that acids and bases are

More information

10.1 Acids and Bases in Aqueous Solution

10.1 Acids and Bases in Aqueous Solution 10.1 Acids and Bases in Aqueous Solution Arrhenius Definition of Acids and Bases An acid is a substance that gives hydrogen ions, H +, when dissolved in water. In fact, H + reacts with water and produces

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Energy of Life The living

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Figure 2.1

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Figure 2.1 Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Figure 2.1 1) Which compound in Figure 2.1 is an ester? 1) A) a b c d e Answer: D 2) A scientist

More information

Basic Analytical Techniques, Calorimeter, and Conductivity Meter

Basic Analytical Techniques, Calorimeter, and Conductivity Meter Basic Analytical Techniques, Calorimeter, and Conductivity Meter Santosh Vijapur ABC s of Electrochemistry 01/12/2012 Outline Calorimeter Conductivity meter ph meter Analytical balance Glassware cleaning

More information

Unit 8: Acids/Bases/Salts Addt'l Practice

Unit 8: Acids/Bases/Salts Addt'l Practice Name: Unit 8: Acids/Bases/Salts Addt'l Practice Period: 1. A student tested a 0.1 M aqueous solution and made the following observations: conducts electricity turns blue litmus to red reacts with Zn(s)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) 1) Which of the following statements about the atom A) It has 12 neutrons in its nucleus. B) It

More information

If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement reaction.

If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement reaction. 5.3 REDOX Reactions Half-reactions from Full Redox Equations If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement

More information

Cellular Respiration. Anaerobic vs Aerobic

Cellular Respiration. Anaerobic vs Aerobic Cellular Respiration Anaerobic vs Aerobic What is Cellular Respiration? Process where organisms use GLUCOSE (sugar) to create ENERGY! The energy that is released from chemical bonds during Cellular Respiration

More information

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is Surname 1 Name Course Instructor Date Electrochemistry 1. Faraday s Law Michael Faraday s law of electromagnetic induction says that whenever a conductor is positioned in a changeable magnetic field emf

More information

Electrochemistry. Outline

Electrochemistry. Outline Electrochemistry Outline 1. Oxidation Numbers 2. Voltaic Cells 3. Calculating emf or Standard Cell Potential using Half-Reactions 4. Relationships to Thermo, Equilibrium, and Q 5. Stoichiometry 6. Balancing

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions Honors Chemistry Mrs. Agostine Chapter 19: Oxidation- Reduction Reactions Let s Review In chapter 4, you learned how atoms rearrange to form new substances Now, you will look at how electrons rearrange

More information

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: www.austincc.edu/samorde Email: samorde@austincc.edu Lecture Notes Chapter 21 (21.1-21.25) Suggested Problems () Outline 1. Introduction

More information

To determine relative oxidizing and reducing strengths of a series of metals and ions.

To determine relative oxidizing and reducing strengths of a series of metals and ions. Redox Reactions PURPOSE To determine relative oxidizing and reducing strengths of a series of metals and ions. GOALS 1 To explore the relative oxidizing and reducing strengths of different metals. 2 To

More information

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water Lesson Overview Proper&es of Water Lesson Overview 2.2 Properties of Water THINK ABOUT IT Looking back at Earth from space, an astronaut called it the blue planet, referring to the oceans of water that

More information

ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY

ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY ELECTROCHEMISTY ELECTROCHEMISTRY IS THE STUDY OF CHEMICAL REACTIONS THAT RESULT IN THE FLOW OF ELECTRONS (CURRENT) OR THE DEVELOPMENT

More information

Productivity. Technician. Maximized. Interpretation Guide

Productivity. Technician. Maximized. Interpretation Guide 3M Food Safety 3M Petrifilm Aqua Enterobacteriaceae Count Plate 3M Petrifilm Aqua Yeast and Mold Count Plate Technician Productivity Maximized Interpretation Guide Introducing 3M Petrifilm Aqua Plates

More information

Alkalinity. LabQuest INTRODUCTION

Alkalinity. LabQuest INTRODUCTION Alkalinity LabQuest 11 INTRODUCTION The alkalinity of water is a measure of how much acid it can neutralize. If any changes are made to the water that could raise or lower the ph value, alkalinity acts

More information

Practicing Biology Questions

Practicing Biology Questions Practicing Biology Questions Big Idea 2.A 1. Log onto http://www.bozemanscience.com/ap-biology/. Scroll down to Big Idea 2: Free Energy. Complete the video review activities listed below for videos #012,

More information

Chapter 8: Energy from Electron Transfer

Chapter 8: Energy from Electron Transfer Chapter 8: Energy from Electron Transfer In his 2006 State of the Union address, President George W. Bush proclaimed... we are addicted to oil Are we doomed as a country to go on to the bitter end in terms

More information

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI Modern Theory principles in Corrosion and their applications :- Corrosion studies can be carried-out by two methods 1 Thermodynamics. or 2 By

More information

Microbiology: An Introduction, 12e (Tortora) Chapter 2 Chemical Principles. 2.1 Multiple Choice Questions

Microbiology: An Introduction, 12e (Tortora) Chapter 2 Chemical Principles. 2.1 Multiple Choice Questions Microbiology An Introduction 12th Edition Tortora TEST BANK Full download at: https://testbankreal.com/download/microbiology-an-introduction-12thedition-tortora-test-bank/ Microbiology An Introduction

More information

4. In this electrochemical cell, the reduction half reaction is

4. In this electrochemical cell, the reduction half reaction is Exam 3 CHEM 1100 Version #1 Student: 1. A monomer is a polymer made from only one component. a single polymer chain. a polymer molecule that only contains a single element. a small molecule used to make

More information

Cyanide, colorimetric, pyridine-pyrazolone

Cyanide, colorimetric, pyridine-pyrazolone Cyanide, colorimetric, pyridine-pyrazolone Parameters and Codes: Cyanide, dissolved, I-1300-85 mg/l as CN): 00723 Cyanide, total, I-3300-85 (mgll as CN): 00720 Cyanide, total-in-bottom-material, dry wt,

More information

EXPERIMENT 1. Object: Measurement of ph of Water THEORY

EXPERIMENT 1. Object: Measurement of ph of Water THEORY EXPERIMENT 1 Object: Measurement of ph of Water THEORY ph as defined by Sorenson is negative logarithm of hydrogen ion concentration. At a given temperature the acidic or basic character of a solution

More information

Chemistry Discussion #7, Chapter 14 *Assume room temperature for all reactions* Student name TA name

Chemistry Discussion #7, Chapter 14 *Assume room temperature for all reactions* Student name TA name Chemistry 102 2018 Discussion #7, Chapter 14 *Assume room temperature for all reactions* Student name TA name Section Things you should know when you leave Discussion today: 1. Kw

More information

REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER

REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER Int. J. Chem. Sci.: 11(4), 213, 1824-183 ISSN 972-768X www.sadgurupublications.com REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER G. VIJAYARAGHAVAN *, R. RAJASEKARAN

More information

Kingdom Monera(Archaebacteria & Eubacteria)

Kingdom Monera(Archaebacteria & Eubacteria) Kingdom Monera(Archaebacteria & All bacteria are prokaryotes Characteristics: 1. No nucleus Eubacteria) 2. No membrane bound organelles 3. Smaller & less ribosomes 4. Most are smaller than eukaryotes 5.

More information

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems

More information

ACIDS & BASES. Acids & Bases 1

ACIDS & BASES. Acids & Bases 1 ACIDS & BASES Acids and bases have real-life significance. The human body functions properly only when delicate acid-base balances are maintained and crops grow best in soil with the proper ph. In addition,

More information

1 Chapter 19 Acids, Bases, and Salts

1 Chapter 19 Acids, Bases, and Salts 1 Chapter 19 Acids, Bases, and Salts ACID-BASE THEORIES Acids and bases are all around us and part of our everyday life (ex. bodily functions, vinegar, carbonated drinks, citrus fruits, car batteries,

More information

Lesson Five: Acids, Bases, ph, and Buffers

Lesson Five: Acids, Bases, ph, and Buffers Lesson Five: Acids, Bases, ph, and Buffers Arrhenius Acids and Bases Acids and bases can be defined a number of ways. One of the oldest and most common ways is the definition according to Arrhenius, named

More information

WATER ANALYSIS The ph Value. The Redox Potential. ALMEMO ph and Redox Measurement. The Electrical Conductivity

WATER ANALYSIS The ph Value. The Redox Potential. ALMEMO ph and Redox Measurement. The Electrical Conductivity www.ahlborn.com WATER ANALYSIS The ph Value The ph value is a logarithmic measure for the concentration of the H ions in a hydrous solution and indicates, by a numerical value, whether the solution has

More information

Faraday s Law. Current (Amperes)

Faraday s Law. Current (Amperes) Faraday s Law How can one predict the amount of product made in an electrolytic reaction? Why? In an electrolytic reaction, an electrical current is used to run a nonspontaneous redox reaction. This might

More information

Bacterial Physiology Lec -3

Bacterial Physiology Lec -3 Bacterial Physiology Lec -3 Uptake of nutrients by the cell The first step in nutrient use is uptake of the required nutrients by the microbial cell,uptake mechanism must be specific-that is the necessary

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

METHOD 9200 NITRATE. 1.2 The applicable range of concentration is 0.1 to 2 mg NO -N per liter. 3 of sample.

METHOD 9200 NITRATE. 1.2 The applicable range of concentration is 0.1 to 2 mg NO -N per liter. 3 of sample. METHOD 9200 NITRATE 1.0 SCOPE AND APPLICATION 1.1 This method is applicable to the analysis of ground water, drinking, surface, and saline waters, and domestic and industrial wastes. Modification can be

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Find the ph of the solution

Find the ph of the solution 155 Find the ph of the solution

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban CHEM191 Tutorial 1: Buffers Preparing a Buffer 1. How many moles of NH 4 Cl must be added to 1.0 L of 0.05 M NH 3 to form

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions AP Chemistry CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

More information

Unit 4 Cell Structure, Cell Processes, Cell Reproduction, and Homeostasis. Mrs. Stahl AP Biology

Unit 4 Cell Structure, Cell Processes, Cell Reproduction, and Homeostasis. Mrs. Stahl AP Biology Unit 4 Cell Structure, Cell Processes, Cell Reproduction, and Homeostasis Mrs. Stahl AP Biology How cells first came about! http://ed.ted.com/lessons/the-wackyhistory-of-cell-theory Robert Hooke 1665 First

More information

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS Name: 4667-1 - Page 1 UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS 1) The diagram below illustrates the movement of materials involved in a process that is vital for the energy needs of organisms.

More information

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website.

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website. Homework III: The State Soil of Florida Posted on website 5 bonus points Type all answers Soil Organisms, Biology, and Nutrients Mineral and Organic Components Functions of soils: recycler of raw materials

More information

Chemistry 3202 Pre-Public Examination May 2012 Name:

Chemistry 3202 Pre-Public Examination May 2012 Name: Chemistry 3202 Pre-Public Examination May 2012 Name: Section A: Multiple Choice This section contains 40 multiple choice covering concepts from the entire course. Please answer all multiple choice items

More information

Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow

Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow 1. Application Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow Parameters and Codes: Nitrogen, ammonia, dissolved, I-2522-90 (mg/l as N): 00608 Nitrogen, ammonia, total-in-bottom-material,

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES

DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES Chemistry 112 Laboratory: Chemistry of Acids & Bases Page 73 DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES Name Partner s Name Grade and Instructor Comments Part 1: Experimental Measurement Determining

More information

Introduction. Objectives

Introduction. Objectives Experiment: Acids, Bases, and Buffers * Introduction Many common household solutions contain acids and bases. Acid-base indicators, such as litmus and red cabbage juice, turn different colors in acidic

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Eye on Ions: Electrical Conductivity of Aqueous Solutions

Eye on Ions: Electrical Conductivity of Aqueous Solutions Eye on Ions: Electrical Conductivity of Aqueous Solutions Pre-lab Assignment: Reading: 1. Chapter sections 4.1, 4.3, 4.5 and 4.6 in your course text. 2. This lab handout. Questions: 1. Using table 1 in

More information

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS INSERT STUDENT I.D. NUMBER (PEN) STICKER IN THIS SPACE JUNE 1998 PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS 1. Insert the stickers with your Student I.D. Number (PEN)

More information

Chapter 7. The Cell: Basic Unit of Life. AP Biology

Chapter 7. The Cell: Basic Unit of Life. AP Biology Chapter 7. The Cell: Basic Unit of Life Why do we study cells? Cell Theory All organisms are made up of cells The cell is the basic living unit of organization for all organisms All cells come from pre-existing

More information

The Effect of Temperature and Concentration on Galvanic Cells

The Effect of Temperature and Concentration on Galvanic Cells http://www.periodni.com/gallery/galvanic_cell.png Joel Johnson, Yr 12 EEI 3.3, Final, 2/8/16 Page 1 of 12 The Effect of Temperature and Concentration on Galvanic Cells ABSTRACT Standard electrode potentials

More information

CET Q UESTIONS QUESTIONS

CET Q UESTIONS QUESTIONS CET QUESTIONS ON ELECTROCHEMISTRY 1. Electrolytic and metallic conductance differs from 1. Electrolytic and metallic conductance increases with increase of temperature 2. Electrolytic conductance increases

More information