Cyclomorphosis of Daphnia pulex spined morph9

Size: px
Start display at page:

Download "Cyclomorphosis of Daphnia pulex spined morph9"

Transcription

1 Limnol. Oceanogr., 30(4), 1985, , by the American Society of Limnology and Oceanography, Inc. Cyclomorphosis of Daphnia pulex spined morph9 John E. Have1 Department of Zoology, University of Wisconsin, Madison Abstract Chaoborus-induced spined phenotypes of Daphnia pulex were present at frequencies >80% in two Wisconsin ponds during summer 1983 but were rare earlier in the year, even though predaceous instars of Chaoborus americanus were common. Laboratory induction experiments with one clone revealed that the proportion of Daphnia juveniles which bore the Chaobonrs-induced spines (% SM) was a positive function of both temperature and Chaoborus density, and C. americanus from different times of year could induce high percentages of spined morphs. For both ponds, clonal descendants of Daphnia isolated during the spring were less sensitive to a standard Chaoborus treatment than descendants of summer Daphnia The results suggest that the changing frequency of spined morphs in the field was due in part to a shift of Daphnia populations, one unresponsive and another responsive to the Chaoborus factor. Phenotypic plasticity to environmental factors may also influence the distribution of morphs in the field. One species of the Daphnia pulex Leydig complex (Brooks 1957; Dodson 1981), Daphnia minnehaha Herrick, is now known to be an inducible form of D. pulex (Krueger and Dodson 198 1). Neonates bearing a toothed dorsal crest not present in their parents are released by gravid parthenogenetic Daphnia in association with Chaoborus americanus. This crest is conspicuous only in the first three instars of D. pulex and first appears shortly after release from the mother. Animals with this crest are here called the spined morph or SM, and those lacking the crest are called the typical morph or TM (Fig. 1). SM is less susceptible to predation by Chaoborus than is TM (Have1 and Dodson 1984), but may have a lower intrinsic rate of increase (Have1 and Dodson in prep.). Daphnia pulex populations in ponds containing Chaoborus (C. americanus) are usually dominated by SM, while only TM is found in locations without Chaoborus (Krueger and Dodson unpubl.), although SM is sometimes absent when Chaoborus is present (Cooper 1979). Seasonal polymorphism in a planktonic species, or cyclomorphosis, has been well studied in Daphnia (Hutchinson 1967). Kerfoot (1980) suggested that there are three proximate causes of cyclomorphosis: phenotypic plasticity, clonal succession, and l Supported by NSF grant DEB 8 l to S. I. Dodson. succession of sibling species. Phenotypic plasticity occurs where single genotypes can produce different phenotypes under different environmental conditions. Phenotypes of Daphnia are plastic. Helmet size in some species, such as Daphnia galeata and Daph- nia retrocurva, can be modified independently by temperature and turbulence (Jacobs 196 1; Have1 and Dodson 1985), and crest size in others, such as the Daphnia carinata complex and D. pulex, can be modified solely by the presence or absence of specific insect predators (Grant and Bayly 1981; Krueger and Dodson 1981). Cyclomorphosis via clonal succession (and sibling species succession) occurs when the relative frequencies of specific genotypes change during a yearly cycle, and these changes are expressed in observable changes in morphology (phenotype). Cyclomorphosis of the cladoceran Bosmina Zongiros- tris is probably due to a succession of clones (Kerfoot 1977, 1980). Long- and short-featured morphs isolated from Lake Washington at different times of year maintained their morphological differences when grown under identical laboratory conditions and differed in electrophoretic phenotypes (Kerfoot 1977; Brock 1980). Seasonal clonal shifts may also influence cyclomorphic patterns in Daphnia. Numerous clones of obligately asexual D. pulex can coexist in ponds (Hebert and Crease 1980) and clones within other Daphnia species differ in responsive- 853

2 854 Have1 lmm Fig. 1. First five instars of Daphnia pulex spined and typical morph s. Spined morphs (top) are characterized by the presence of a dorsal crest during the first three instars. This crest is a developmental response to Chaoborus, ness to temperature and turbulence (Jacobs 196 1; Have1 and Dodson 1985). Using electrophoretic and life history information, Lynch (1983) found that several clonal groups of D. pulex coexisted for a long period in a small pond and that their relative frequencies changed over time, suggesting that the genetic structure of the population was changing during the course of his study. He later reported (Lynch 1984) that one of these groups is another species. I here present observations on the relative abundance of the spined and typical morphs of D. pulex in two Wisconsin ponds over several years and describe experiments testing variation in the Chaoborus induction process th: rough modification of temperature, Chaoborus density and source, and Daphnia clone. The following questions were investigated experimentally. What is the relationship between temperature and Daphnia spine inducibility? Do those Chaoborus co11 ected from ponds during periods of high Sh!: frequency cause induction more readily thzn Chaoborus isolated during periods of lc w SM frequency? Do clones established r rom populations dominated by SM resportd more readily to induction than

3 Cyclomorphosis of D. pulex 855 those established from populations dominated by TM? In others words, are there genetic differences between and changes within populations that influence their susceptibility to induction? I thank D. Krueger for supplying the samples and S. Dodson, A. Hershey, K. Spitze, and two outside reviewers for criticisms of the manuscript. Methods Field samples- Samples were collected during 1982, 1983, and 1984 from two permanent ponds in southern Wisconsin: Arboretum Pond Alpha (Neess 1949) in Madison, and Dead Dog Pond in Columbia County (RlOE, T13N, S27 NWG). The maximum depth of both ponds varied from about 2 m in the spring to 1 m in midsummer. Although vertebrate predators were never observed in either pond, insect predators were abundant. Chaoborus americanus larvae were abundant year round and hemipterans of the Belostomatidae and Notonecta spp., damselfly larvae, and beetle larvae were common during summer. Both ponds had large beds of submerged macrophytes, along with associated herbivores: chironomids, ostracods, Simocephalus, snails, tadpoles, and amphipods. Cyclopoid copepods, frogs, Chydoridae, and water mites were also present in Dead Dog Pond. Alpha Pond is dystrophic, receives water by rainfall and seepage, has a midsummer area of 200 m*, is located in dense deciduous woods, and has an anoxic marl and black ooze bottom. Dead Dog Pond is eutrophic, receives water by rainfall, has an area of about 5,000 m*, a black ooze bottom, and is surrounded by a thin margin of woods with a cornfield and pasture beyond. Zooplankton was collected during midmorning by oblique 3-m tows with a 180- pm mesh plankton net and preserved in 70% ethanol. Twenty haphazardly chosen 2nd or 3rd instar D. pulex (body length, BL = 0.78-l -32 mm) from each sample were examined at 50 x and classed as spined or typical morphs. Spined animals include only those with a distinct dorsal crest, characterized by two or more points projecting from a hump on the neck (Fig. 1). For each date, Chaoborus density was estimated by counting a subsample of one plankton sample and assuming that the entire volume of a cylinder 3 m long and 0.13 m in radius passed through the net. Since the usual procedure in the field was to take one sample, variance estimates could be made for field Chaoborus densities on only one date. Some Chaoborus populations migrate into the sediments (Roth 1968; Bass and Sweet 1984); my samples were taken only from the plankton and may therefore underestimate the true density of Chaoborus in the ponds. Chaoborus in the sample was identified as C. americanus (Saether 1972) and assigned to instar according to head length (Swift and Fedorenko 1975). Water temperature was measured near shore during midmorning on each sampling date with a glass thermometer. Samples from Dead Dog Pond for were supplied by D. Krueger. Laboratory induction experiments- Clones were started from Daphnia isolated on a known date and location. In the standard induction procedure each clone was divided into replicate experimental and control jars by placing 5-10 adults into 1 liter of 80-pm filtered pond water. Experimental jars usually received two well fed, recently collected, 4th instar Chaoborus larvae; controls received no Chaoborus. The cultures were preserved after 2 weeks at 20 C (unless indicated otherwise), during which time the Chaoborus ate Daphnia in the jar. Direct association between Chaoborus and Daphnia was necessary for maximum induction of spined morphs; screened enclosures and chemical extracts (as used by Krueger and Dodson 198 1; Schwartz and Hebert unpubl.) were less successful. Since some midges pupated and emerged during the 2-week period, their density was readjusted every few days in most experiments. To ensure that Daphnia juveniles spent their entire developmental histories under the experimental conditions, I discarded the first two broods of neonates. Twenty 2nd or 3rd instar Daphnia from later broods in each jar were classed as SM or TM. The separate experiments were conducted as follows. In experiment 1, I tested clone DDP (Dead Dog Pond) August 1982 at 20 C with Chaoborus concentrations ranging from 0.5 to 4 liter-l. Except for the 0.5 per liter

4 856 Have1 Table 1. Fielc 1 densities of 3rd and 4th larval instars of Chaoborus, proportions of Daphnia pulex that were spined morphs, and water temperatures for Alpha Pond. Standard t Deviation for Chaoborus density on 29 June 1984 (in p rrentheses) is based on five replicate samples. All sari ples were collected during midmorning with a plank;on net. 8 Jun Ju182 5 Apr May Jun Ju Aug Apr 84 7 Jun Jun 84 Temp ( 0 21? Chaoborus liter- %SM (0.39) 95 loo AP urll M AMJJASON MONTH Fig. 2. Succession of Daphnia pulex morphs in field samples. Depicted are % SM from ponds near Madison, Wisconsin. Chaoborus larvae were present on all dates. The sample from was supplied by D. Krueger. treatment, all concentrations were tested in 1 liter of medium with 5-12 replicate jars for each concentration. Three replicates of the 0.5 per liter treatment were set up, each in 2 liters of medium. With the exception of Chaoborus concentration, the standard induction procedure was followed. In experiment 2, I tested clone DDP August 1982 at several temperatures. Five-eleven replicate jars were incubated at 5, lo, 15, 20, and 25 C with the standard induction procedure. In this experiment emerging midges were not replaced, so densities were typically between 1 and 2 liter-. Experiment 3 tested clone DDP August 1982 with groups of Chaoborus obtained about every month from Alpha Pond. Each month, the freshly gathered midges were fed Daphnia juveniles for 2 days, then introduced to duplicate 4-liter Daphr2ia cultures at a density of 2-3 liter-. Aft zr 2 weeks at 2O C, 2nd instar Daphnia larrae were preserved and examined. Experiment 4 used clones established on each of t: le sampling dates in the standard induction procedure. For each date on which I isolated live Daphnia, one-five replicate cultur,:s, each started with a single field-collected individual, were tested with Chaoborus ;tfter the cultures were established in the laboratory. Although I refer to these cultures as clones, they are not necessarily distinct clones. Some may be identical genotypes because of the clonal structure of some Daphnia populations (Hebert and Crease,980). The statisic of interest for all field samples and experiments is the proportion of juveniles belring a distinct dorsal crest (percentage spired: % SM). All references to population I*esponsiveness or spine inducibility refer, to this population estimate. Statistical inferences are based on Mann- Whitney U-tests and simple linear regression (Snedecor and Cochran 1980). Results Field sam,oles-the % SM of D. pulex in the field followed a distinct seasonal succession during and 1983, with a frequency of zero from March through May and

5 Cyclomorphosis of D. pulex 857 loo- A B 80- f 60- z a cn $ Chuoborus DENSITY I# liter- ) TEMPERATURE ( C) Fig. 3. % SM as a function of Chaoborus density and temperature. The standard induction procedure was used with clone DDP August 1982, varying either density or temperature. The density experiment was run at 20 C; the temperature experiment with l-2 Chaoborus liter-. Error bars show + 1 SE for three-five different jars set up under each condition % during the summer months (Fig. 2). Since the first samples containing Daphnia consisted only of 1st and 2nd instars, this population presumably hatched from ephippia during the spring in both ponds. All juvenile instars of this exephippial generation were TM. During June through September 1982, SM always comprised at least 85% of the D. pulex populations in Alpha Pond (Fig. 2). For all years studied, the D. pulex populations declined abruptly before the end of September. A small population reappeared in Dead Dog Pond during late fall 1983; juveniles in the samples were 100% SM on 27 October and 0% SM on 27 November. Chaoborus in samples collected from March through September 1983 revealed no change in species composition: C. americanus always comprised at least 98% of the Chaoborus in the community. Estimated densities of 3rd and 4th instar Chaoborus during 3 years of sampling ranged from 0.3 to 6.5 liter-l, with a C.V. of 39% on one date (Table 1). During 1983, the temperature of Alpha Pond reached 18 C by the middle of May and exceeded that on all later sampling dates during the summer (Table 1). The temperature in Dead Dog Pond was 8 C on 27 October and 0.5 on 27 November; during 198 1, it averaged 14 C during April and early May, and from late May to August (D. Krueger pers. comm.). Laboratory induction experiments- Chaoborus density influenced the proportion of spined offspring. Spined morphs were recovered from experimental jars only when densities of Chaoborus were 11 per liter, and % SM was higher at higher densities of Chaoborus (Fig. 3A). Spined morphs never developed when Chaoborus was absent. Temperature also influenced the proportion of spined offspring. In experiment 2, low percentages of SM were recovered from experimental jars at 10 and 15 C and high percentages at 20 and 25 C (Fig. 3B). The % SM increased with temperature (? = 64%, 34 df, P < 0.005). Chaoborus isolated during periods of high % SM in Alpha Pond does not appear to be any more effective at inducing Daphnia in

6 858 Have J F M A M J J A S O N DATE OF Chaoborus ISOLATION Fig. 4. % SM as a function of Chaoborus isolation date, using one clone and the standard induction procedure. Chaoborus density was maintained at 2-3 liter-i. The median plus range for each sample date is indicated. the laboratory than midges isolated during periods of low % SM. Chaoborus captured in January through April 1983 induced clone DDP August 1982 at frequencies no lower than Chaoborus captured in June through August 1983 (Fig. 4). Daphnia clones isolated from Alpha Pond during March through early June 1983 did not produce spines in standard laboratory induction trials, while those isolated in August and September did produce spines (Fig. 5A). There is a positive relationship between % SM for laboratory experiments and % SM in field samples taken on the date of clonal isolation (Fig. 5B); i.e. clones isolated during periods of low % SM in the field were not responsive to Chaoborus induction in the lab, but clones isolated during periods of high % SM in the field were highly responsive in the laboratory. The clones isolated from Dead Dog Pond in May and June 1983 were much more responsive in the induction experiments than those isolated from Alpha Pond during the same period (Mann-Whitney U-test P < 0.01). The first clones isolated from Dead Dog Pond (May 1983) were highly responsive in the laboratory, even though field samples from the same date had no SM. Clones isolated on 27 October 1983 were still highly responsive. Discussion The seasonal succession of D. pulex morphs reported here for two Wisconsin ponds is another example of cyclomorphosis or seasonal polymorphism in a planktonic species (Hutchinson 1967). Cooper (1979) observed that SM replaced TM during the summer in yet another pond (BVSP) in southern Wisconsin. Samples from other populations of D. pulex coexisting with Chaoborus should help clarify whether this cyclomorphic pattern is widespread and also whether spined morphs coexist with species other than C. americanus. My experimental results confirm those of Krueger and Dodson (198 1). Third and fourth instar C. americanus larvae induce the typical ntorph of D. pulex to produce spined morph offspring, and these will produce typical morphs if Chaoborus is absent. Similar cone: usions have been reported for other predai or-induction groups in zooplankton conrmunities: AspZanchna-Brachionus (Gilbe , Anisops-D. carinata complex (Grmt and Bayly 198 l), and Tropocyclops-Keratella (Stemberger and Gilbert 1984); presence or absence of the predator was the principal factor determining morphology of the prey. In each of these studies, the inducing factor is probably a water-soluble substance. Chaoborw density proved an important determinant of the % SM in my laboratory experiments; with < 2 Chaoborus liter-, only small proportions of juvenile Daphnia were spined. Because of the experimental design, two lactors could cause an increase in % SM with increased Chaoborus density; increased concentration of the Chaoborus substance ar:d selective predation on TM. Although C..zmericanus larvae eat TM twice as efficiently< as SM (Have1 and Dodson 1984), selec tive predation probably accounted for only a small amount of the vari- ation in the present study. After removal of the first 1 or 2 broods of D. pulex, the next brood of ju\teniles (typically n > 100) was exposed to Chaoborus for at most 3 days. Because preciaceous Chaoborus can eat be-

7 Cyclomorphosis of D. pulex 859 I A AP loo- 80- B AP 60- DDP 1983 loo t DDP 00 MAMJJASON ISOLATION DATE % SPINED IN FIELD Fig. 5. Evidence of clonal succession. A. % SM from standard laboratory induction experiments using different clones. Each point represents a separate clone, the founder of which was isolated on the date indicated. Error bars show +_ 1 SE for experiments using five clones isolated on the same date. B. Time series analysis. The points represent % SM for different clones in laboratory experiments (ordinate) plotted against similar proportions in field samples taken on the dates the clones were isolated (abscissa). tween 3 (Pastorok 1980) and 15 (Spitze 1985) juvenile Daphnia per day, the mortality from predation probably affected the population structure in the jars. However, predation from one additional Chaoborus, even if 100% selective on TM, can only account for a shift of 10% to 20% SM, while the data (Fig. 3A) show a shift of 10% to 65%. Chaoborus density was also an important parameter in the results of Krueger and Dodson (1981) over a range of Chaoborus liter-. The highest % SM in their study was 79%-lower than the proportion reported here (average 89% SM at 4 Chaoborus liter- ). This may have been because in the study of Krueger and Dodson the Chaoborus and experimental Daphnia were separated by a screen mesh, whereas I kept the two species in direct association. Selective predation on TM could increase the proportion of SM, as might better distribution of the inducing substance. These assays of sensitivity to the Chaoborus factor suggest that the inducing substance affects embryonic D. pulex only when it is present above a certain concentration. Such a density threshold may be potentially important, since Chaoborus is frequently found at densities < 1 liter-, especially in larger bodies of water (Fedorenko 1975). I do not know whether those Daphnia hatched from ephippia are sensitive to Chaoborus induction during embryonic development. The exephippial generations in my ponds during 1983 and in BVSP in 1978 (Cooper 1979) were unspined. This may have been due to other factors (such as too

8 860 Navel low a density of Chaoborus) or to insensitivity of ephippia to the Chaoborus factor. Temperature also proved an important determinant of the % SM in the present study; cultures grown at 20 and 25 C produced considerably higher % SM than those grown at cooler temperatures. Grant and Bayly (198 1) also found temperature to influence predator induction in the D. carinata complex: Anisops induced larger crests in several populations at 25 C, but not in most at 10 C. The increased % SM at higher temperatures in my study has several possible explanations. First, Chaoborus feeds at higher rates at warmer temperatures (Fedorenko 197 5) and, since the midges ingest TM more efficiently than SM (Have1 and Dodson 1984), the % SM increases due to selective predation would be higher at warmer temperatures. Second, Chaoborus may release more inducing factor at warmer temperatures. Third, developing D. pulex may be more responsive to a fixed concentration of inducing factor at warmer temperatures. The present data do not allow discrimination between these mechanisms, although calculations such as that for the Chaoborus concentration experiment suggest that the first mechanism accounts for little of the observed variation. Chaoborus may release more inducing factor at warmer temperatures, since it feeds at higher rates (Fedorenko 1975), and metabolic status influences the ability of Chaoborus to induce (Krueger and Dodson 198 l), but it is not clear whether the ambient concentration would be changed since the factor may also decay more rapidly at warmer temperatures. The inducing factor is active for <2 days in filtered pond water at 20 C (pers. obs.). From an evolutionary perspective, a positive effect of temperature on the responsiveness of Daphnia to predator induction should be expected, because Daphnia probably suffers significant mortality to Chaoborus predation only at the higher temperatures (Fedorenko 197 5) and produces spines (and associated structures) at a reproductive cost (Have1 and Dodson in prep.). My results here and those of Grant and Bayly (198 1) are consistent with work on the effects of temperature on induction of helmet growth in other species of Daphnia (see Jacobs 196 1; Have1 and Dodson 1985): increasing te mperature up to 25 C increased the growth c f the helmet relative to that of the rest of the body. The results of my induction experiments suggest that SM will be found in the field only when the density of Chaoborus is near or above 1 liter- and the temperature is near or above 10 C. The field data from Alpha Pond (Table 1) for most dates are consistent ti th this hypothesis, although the high variation in densities of Chaoborus on one date suggests that these are rough estimates; Chaoborus densities are difficult to measure act Jrately, and the vertical migration and patchy distribution of the midges may result in a patchy distribution of the inducing substance. Chaoboru, 3 at all seasons could induce SM in the laboratory. This suggests that qualitative differences in resident Chaoborus populations do not account for the absence of SM in the two ponds during spring Since feeding Chaoborus induce a higher % SM than strrved Chaoborus (Krueger and Dodson 19E l), one would expect that the low densities of prey (hence the poor nutritional status of Chaoborus) could also influence the % S im in the field. Perhaps the varying nutritional status of Chaoborus affects the induction process in the field. The work reported here suggests that a succession ()f inducible and noninducible populations occurred in the ponds during Descendants of TM Daphnia in the field were unresponsive to the Chaoborus treatment in the laboratory, while descen- dants of SM Daphnia were responsive. Seasonal variation in clonal responsiveness to a predator-nduced trait has been shown with the rcltifer Brachionus calyciflorus (Halbach and Jacobs 197 1). The relative length of pc sterolateral spines in B. calyci- Jlorus was srongly correlated #with the field densities of the predaceous rotifer Asplanchna b? tight welli, which increased during the course of summer. In laboratory experiments, clones of B. calyciflorus isolated early in the year produced individuals with shorter Aspianchna-induced spines than did clones isolated later in the year.

9 BASS, D., AND M. H. SWEET Do Chaoborus migrate in temporary pools? Hydrobiologia 108: BROCK, D. A Genetic succession in the cyclomorphosis of Bosmina Zongirostris (Cladocera). Freshwater Biol. 10: BROOKS, J. L The systematics of North American Daphnia. Yale Univ. COOPER, S. D The impact of predation on cladoceran assemblages. Ph.D. thesis, Univ. Wisconsin, Madison. 179 p. DODSON, S. I Morphological variation in Daphnia pulex Leydig (Crustacea: Cladocera) and related species from North America. Hydrobiologia 83: 101-l 14. FEDORENKO, A. Y Feeding characteristics and predation impact of Chaoborus (Diptera, Chaoboridae) larvae in a small lake. Limnol. Oceanogr.20: GILBERT, J. J Rotifer ecology and embryological induction. Science 151: GRANT, J. W., AND I. A. BAYLY Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26: 20 l HALBACH, U., AND J. JACOBS Seasonal selection as a factor in rotifer cyclomorphosis. Naturwissenschaften 57: HAVEL, J. E., AND S. I. D~DSON Chaoborus predation on typical and spined morphs of Daphnia pulex: Behavioral observations. Limnol. Oceanogr. 29: , AND Environmental cues of Cyclomorphosis of D. pulex 861 The genetic mechanism behind the clonal cyclomorphosis in Daphnia retrocurva. Freshwasensitivity differences described here is un- ter Biol. 15: in press. HEBERT, P. D., AND T. J. CREASE Clonal coknown. One possibility is that the relative existence in Daphnia pulex (Leydig): Another frequencies of coexisting genotypes changed planktonic paradox. Science 207: during the year, one genotype sensitive and HUTCHINSON, G. E A treatise on limnology, the other insensitive to the Chaoborus fac- v. 2. Wiley. JACOBS, J Cyclomorphosis in Daphnia galeata tor. Seasonal shifts in clone frequencies have mendotae, a case of environmentally controlled been documented in other cladoceran pop- allometry. Arch. Hydrobiol. 58: ulations (Kerfoot 1977; Brock 1980; Lynch I(E RFOOT. W. C The divergence of adiacent 1983). Similar studies of Chaoborukin- populations. Ecology 56: 1298-i3 13. duced Daphnia should improve our under Perspectives on cyclomorphosis: Separation of phenotypes and genotypes. Am. Sot. standing of the distribution of these morphs Limnol. Oceanogr. Spec. Symp. 3: New in the field. England. KRUEGER, D. A., AND S. I. DODSON Embryological induction and predation ecology in Daph- References nia pulex. Limnol. Oceanogr. 26: LYNCH, M Ecological genetics of Daphnia pulex. Evolution 37: The genetic structure of a cyclical parthenogen. Evolution 38: NEESS, J. C A contribution to aquatic population dynamics. Ph.D. thesis, Univ. Wisconsin, Madison. 103 p. PASTOROK, R. A Selection of prey by Cha- oborus larvae: A review and new evidence for behavioral flexibility. Am. Sot. Limnol. Oceanogr. Spec. Symp. 3: New England. ROTH, J. C Benthic and limnetic distributions of three Chaoborus species in a southern Michigan lake (Diptera, Chaoboridae). Limnol. Oceanogr. 13: SAETHER, 0. A Chaoboridae. Binnengewasser 26: SNEDECOR,G. W., AND W.G. COCHRAN Statistical methods. Iowa State. SPITZE, K Implications of the functional response of an ambush predator: Laboratory experiments of Chaoborus americanus predation on Daphnia pulex. Ecology 66: in press. STEMBERGER, R. S., AND J. J. GILBERT Spine development in the rotifer Keratella cochlearis: Induction by cyclopoid copepods and Asplanchna. Freshwater Biol. 14: SWIFT, M. C., AND A. Y. FEDORENKO Some aspects of prey capture by Chaoborus larvae. Limnol. Oceanogr. 20: Submitted: 28 February 1984 Accepted: 8 January 1985

Predator-induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses to Notonecta and Chaoborus

Predator-induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses to Notonecta and Chaoborus Limnol. Oceanogr., 38(5), 1993, 986-996 1993, by the American Society of Limnology and Oceanography, Inc. Predator-induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses

More information

Short Communication Temporal pattern of feeding response of Chaobonis larvae to starvation

Short Communication Temporal pattern of feeding response of Chaobonis larvae to starvation Journal of Plankton Research Vol.8 no.l pp.229-233, 1986 Short Communication Temporal pattern of feeding response of Chaobonis larvae to starvation Rakesh Minocha 1 and James F. Haney Department of Zoology,

More information

Population dynamics and body-size selection in Daphnia

Population dynamics and body-size selection in Daphnia LIMNOLOGY AND OCEANOGRAPHY January 12 Volume 37 Number 1 Limnol. Oceanogr., 37(l), 12, 1-13 0 12, by the American Society of Limnology and Oceanography, Inc. Population dynamics and body-size selection

More information

Background for Dynamic Nature of Scientific Knowledge

Background for Dynamic Nature of Scientific Knowledge Background for Dynamic Nature of Scientific Knowledge General lesson information: The lesson will take a minimum of two and a half weeks to conduct: three to five days for introduction and proposal development;

More information

Asplanchna-induced polymorphism in the rotifer Keratella slacki1

Asplanchna-induced polymorphism in the rotifer Keratella slacki1 Limnol. Oceanogr., 29(6), 1984, 1309-l 3 16 0 1984, by the American Society of Limnology and Oceanography, Inc. Asplanchna-induced polymorphism in the rotifer Keratella slacki1 John J. Gilbert and Richard

More information

CYCLOMORPKOSIS- A REVIEW

CYCLOMORPKOSIS- A REVIEW CHAPTER THREE CYCLOMORPKOSIS- A REVIEW Chapter deals with an interesting problem of cyclomorphosis in zooplankton particuiariy among rotifers. Nature, causes and adaptive value of cyclomorphosis are discussed.

More information

Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire USA

Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire USA Ecology, 94(10), 2013, pp. 2166 2172 Ó 2013 by the Ecological Society of America Maternal age and spine development in a rotifer: ecological implications and evolution JOHN J. GILBERT 1 AND MARK A. MCPEEK

More information

Impact of Temperature and Notonecta predation on Cyclomorphosis in Daphniapulex: A Field Study in Subtropical environment, Jammu, India

Impact of Temperature and Notonecta predation on Cyclomorphosis in Daphniapulex: A Field Study in Subtropical environment, Jammu, India Research Journal of Animal, Veterinary and Fishery Sciences ISSN 2320 6535 Impact of Temperature and Notonecta predation on Cyclomorphosis in Daphniapulex: A Field Study in Subtropical environment, Jammu,

More information

Predator-induced alterations in Daphnia morphology

Predator-induced alterations in Daphnia morphology Journal of Plankton Research Vol 13 no.6 pp 1151-1161, 1991 Predator-induced alterations in Daphnia morphology Steven S.Schwartz Department of Biology, Berry College, Mount Berry Station, Rome, GA 3149,

More information

Bi-directional plasticity: Rotifer prey adjust spine. length to different predator regimes

Bi-directional plasticity: Rotifer prey adjust spine. length to different predator regimes Supporting information Bi-directional plasticity: Rotifer prey adjust spine length to different predator regimes Huan Zhang, Johan Hollander, Lars-Anders Hansson Department of Biology, Aquatic Ecology,

More information

INDUCIBLE DEFENSES IN MULTIPREDATOR ENVIRONMENTS: CYCLOMORPHOSIS IN DAPHNIA CUCULLATA

INDUCIBLE DEFENSES IN MULTIPREDATOR ENVIRONMENTS: CYCLOMORPHOSIS IN DAPHNIA CUCULLATA Ecology, 85(8), 004, pp. 0 004 by the Ecological Society of America INDUCIBLE DEFENSES IN MULTIPREDATOR ENVIRONMENTS: CYCLOMORPHOSIS IN DAPHNIA CUCULLATA CHRISTIAN LAFORSCH AND RALPH TOLLRIAN Section of

More information

SHORT COMMUNICATION. Morphological defences of invasive Daphnia lumholtzi protect against vertebrate and invertebrate predators

SHORT COMMUNICATION. Morphological defences of invasive Daphnia lumholtzi protect against vertebrate and invertebrate predators Journal of Plankton Research plankt.oxfordjournals.org J. Plankton Res. (2014) 36(4): 1140 1145. First published online March 23, 2014 doi:10.1093/plankt/fbu023 SHORT COMMUNICATION Morphological defences

More information

Utilization of the Exotic Cladoceran Daphnia lumholtzi by Gambusia affinis

Utilization of the Exotic Cladoceran Daphnia lumholtzi by Gambusia affinis Transactions of the Illinois State Academy of Science received 2/23/06 (2006), Volume 99, #1&2, pp. 67-74 accepted 6/18/06 Utilization of the Exotic Cladoceran Daphnia lumholtzi by Gambusia affinis B.A.

More information

To link to this article:

To link to this article: This article was downloaded by: [University of Helsinki] On: 30 January 2014, At: 21:25 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

Populations in lakes. Limnology Lecture 9

Populations in lakes. Limnology Lecture 9 Populations in lakes Limnology Lecture 9 Outline Adaptations in lake organisms to Low oxygen Predation Seasonal disturbance Populations in lakes Exponential Logistic Metapopulation Low Oxygen Tolerance

More information

Vancouver Lake Biotic Assessment

Vancouver Lake Biotic Assessment Vancouver Lake Biotic Assessment Washington State University Vancouver Aquatic Ecology Laboratory Dr. Stephen M. Bollens Dr. Gretchen Rollwagen-Bollens Co-Directors Problem: Noxious cyanobacteria blooms

More information

Phenotypic associations in the Bosminidae (Cladocera): Zoogeographic patterns

Phenotypic associations in the Bosminidae (Cladocera): Zoogeographic patterns Limnol. Oceanogr., 29(l), 1984, 161-169 1984, by the merican Society of Limnology and Oceanography, Inc. Phenotypic associations in the Bosminidae (Cladocera): Zoogeographic patterns W. Gary Sprules Department

More information

Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species?

Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? Hydrobiologia 387/388: 349 353, 1998. E. Wurdak, R. Wallace & H. Segers (eds), Rotifera VIII: A Comparative Approach. 1998 Kluwer Academic Publishers. Printed in the Netherlands. 349 Population growth

More information

Effect of high population density on growth and reproduction of Daphnia pulex DeGeer

Effect of high population density on growth and reproduction of Daphnia pulex DeGeer Plankton Bioi. Ecol. 45 (I): 55-60, 1998 plankton biology & ecology l: The Plankton Society of Japan 1998 Effect of high population density on growth and reproduction of Daphnia pulex DeGeer ]UN NISHIKAWA

More information

Influence of temperature on hydrodynamic costs of. morphological defences in zooplankton: experiments on models of Eubosmina (Cladocera)

Influence of temperature on hydrodynamic costs of. morphological defences in zooplankton: experiments on models of Eubosmina (Cladocera) Functional Ecology 2000 Influence of temperature on hydrodynamic costs of Blackwell Science, Ltd morphological defences in zooplankton: experiments on models of Eubosmina (Cladocera) R. LAGERGREN, H. LORD

More information

5. Reproduction and Recruitment

5. Reproduction and Recruitment 5. Reproduction and Recruitment Sexual vs Asexual Reproduction Reproductive effort Developmental types Developmental trends What is recruitment Factors affecting recruitment Process of larval habitat selection

More information

Comparison of the response of Daphnia galeata and Daphnia obtusa to fish-produced chemical substance

Comparison of the response of Daphnia galeata and Daphnia obtusa to fish-produced chemical substance 1544 Notes REDFIELD, A. C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-222. RIEMANN, B., AND M. S~NDERGAARD [EDS.]. 1986. Carbon dynamics in eutrophic, temperate

More information

Survey of Invertebrate Species in Vernal Ponds at UNDERC. Joseph Lucero. 447 Knott Hall. University of Notre Dame

Survey of Invertebrate Species in Vernal Ponds at UNDERC. Joseph Lucero. 447 Knott Hall. University of Notre Dame Survey of Invertebrate Species in Vernal Ponds at UNDERC Joseph Lucero 447 Knott Hall University of Notre Dame Advisors: Dr. Ronald Hellenthal & Dr. Karen Francl 2004 Abstract Vernal ponds are an important

More information

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT Stephen D. Cockfield and Daniel L. Mahr Department of Entomology University of Wisconsin-Madison

More information

Constraints on the plasticity of Daphnia magna. influenced by fish-kairomones

Constraints on the plasticity of Daphnia magna. influenced by fish-kairomones Functional Ecology 2000 Constraints on the plasticity of Daphnia magna Blackwell Science, Ltd influenced by fish-kairomones H. STIBOR* and D. MÜLLER NAVARRA Max-Planck Institut für Limnologie, Postfach

More information

Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 53, Issue 2 (March, 1953)

Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 53, Issue 2 (March, 1953) The Ohio State University Knowledge Bank kb.osu.edu Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 53, Issue 2 (March, 1953) 1953-03 Seasonal Variations in Relative Abundance

More information

Evolution mediates the effects of apex predation on aquatic food webs

Evolution mediates the effects of apex predation on aquatic food webs Electronic Supplementary Material Evolution mediates the effects of apex predation on aquatic food webs Mark C. Urban 1 Map of study site... 2 2 Mesocosm experiment methodological details... 3 3 Ecological

More information

A PERSISTENT DIURNAL RHYTHM IN CHAOBORUS LARVAE. II. ECO LOGICAL SIGNIFICANCE

A PERSISTENT DIURNAL RHYTHM IN CHAOBORUS LARVAE. II. ECO LOGICAL SIGNIFICANCE A PERSISTENT DIURNAL RHYTHM IN CHAOBORUS LARVAE. II. ECO LOGICAL SIGNIFICANCE Edward J. LaRow2 Department of Zoology, Rutgers University, New Brunswick, NJ. 08903 ABSTRACT- When Chaoborus larvae (Diptcra:Culicidae)

More information

Swimming behaviour of Daphnia clones: differentiation through predator infochemicals

Swimming behaviour of Daphnia clones: differentiation through predator infochemicals Swimming behaviour of Daphnia clones: differentiation through predator infochemicals ANKE WEBER 1,3,* AND ARIE VAN NOORDWIJK 2 1 NETHERLANDS INSTITUTE FOR ECOLOGY, CENTRE FOR LIMNOLOGY (NIOO-CL), PO BOX

More information

The effects of larval predation on the morphology of juvenile wood frogs (Rana sylvatica)

The effects of larval predation on the morphology of juvenile wood frogs (Rana sylvatica) The effects of larval predation on the morphology of juvenile wood frogs (Rana sylvatica) Maria Correa BIOS 35502: Practicum in Field Biology Advisor: Dr. Matthew Michel 2011 2 Abstract Organisms that

More information

MORPHOLOGICAL RESPONSES OF DAPHNIA PULEX TO CHAOBORUS AMERICANUS KAIROMONE IN THE PRESENCE AND ABSENCE OF METALS

MORPHOLOGICAL RESPONSES OF DAPHNIA PULEX TO CHAOBORUS AMERICANUS KAIROMONE IN THE PRESENCE AND ABSENCE OF METALS Environmental Toxicology and Chemistry, Vol., No. 5, pp. 111 11, 004 004 SETAC Printed in the USA 070-78/04 $1.00.00 MORPHOLOGICAL RESPONSES OF DAPHNIA PULEX TO CHAOBORUS AMERICANUS KAIROMONE IN THE PRESENCE

More information

Biology Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod. Introduction

Biology Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod. Introduction 1 Biology 317 - Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod Introduction The determination of how natural selection acts in contemporary populations constitutes

More information

*Current address: The University of Chicago Department of Ecology and Evolution 1101 East 57th Street Chicago, Illinois 60637

*Current address: The University of Chicago Department of Ecology and Evolution 1101 East 57th Street Chicago, Illinois 60637 J. Great Lakes Res. 21(4):670-679 Intemat. Assoc. Great Lakes Res., 1995 NOTE Ecological Interactions Between Bythotrephes cederstroemi and Leptodora kindtii and the Implications for Species Replacement

More information

Prey capture by the four larval instars of Chaoborus crystallinus

Prey capture by the four larval instars of Chaoborus crystallinus Limnol. Oceanogr., 37(l), 1992, 14-24 0 1992, by the Am&can Society of Limnology and Oceanography, Inc. Prey capture by the four larval instars of Chaoborus crystallinus Michael C. Swift1 Department of

More information

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS 1 BIOL2007 - EVOLUTION OF QUANTITATIVE CHARACTERS How do evolutionary biologists measure variation in a typical quantitative character? Let s use beak size in birds as a typical example. Phenotypic variation

More information

LINKING PREDATION RISK MODELS WITH BEHAVIORAL MECHANISMS: IDENTIFYING POPULATION BOTTLENECKS'

LINKING PREDATION RISK MODELS WITH BEHAVIORAL MECHANISMS: IDENTIFYING POPULATION BOTTLENECKS' Ecology; 74(2). 1993. pp. 320-331 Q 1993 by the Ecological Society of America LINKING PREDATION RISK MODELS WITH BEHAVIORAL MECHANISMS: IDENTIFYING POPULATION BOTTLENECKS' CRAIG E. WILLIAMSON Department

More information

Heritabilities at two food levels

Heritabilities at two food levels Heredity 7 (1993) 335 343 Genetical Society of Great Britain Received 26 November 1991 Genetics of life history in Daphnia magna. I. Heritabilities at two food levels DIETER EBERT*, LEV YAMPOLSKYt & STEPHEN

More information

Rapid evolution of thermal tolerance in the water flea Daphnia

Rapid evolution of thermal tolerance in the water flea Daphnia SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2628 Rapid evolution of thermal tolerance in the water flea Daphnia A. N. Geerts 1*, J. Vanoverbeke 1, B. Vanschoenwinkel 2, W. Van Doorslaer 1, H. Feuchtmayr

More information

The ecological role of chemical stimuli for the zooplankton: Predator-avoidance behavior in Daphia

The ecological role of chemical stimuli for the zooplankton: Predator-avoidance behavior in Daphia LIMNOLOGY AND OCEANOGRAPHY I November 1988 Volume 33 I Number 6 Part 2 Limnol. Oceanogr., 33(6, part 2), 1988, 1431-1439 @ 1988, by the American Society of Limnology and Oceanography, Inc. The ecological

More information

DETERMINING THE EFFECT OF DAPHNIA WHEN EXPOSED TO FISH HORMONES. Siemens Research Report

DETERMINING THE EFFECT OF DAPHNIA WHEN EXPOSED TO FISH HORMONES. Siemens Research Report DETERMINING THE EFFECT OF DAPHNIA WHEN EXPOSED TO FISH HORMONES Siemens Research Report 0 Table of Contents Abstract...ii Executive Summary...ii Introduction...1 Materials and Methods.1 Illustration and

More information

No.1, C.P , Los Reyes, Tlalnepantla, State of Mexico, Mexico

No.1, C.P , Los Reyes, Tlalnepantla, State of Mexico, Mexico 211 Triveni Enterprises Vikas Nagar, Lucknow, INDIA editor@jeb.co.in Full paper available on: www.jeb.co.in 489 J. Environ. Biol. 32, 489-495 (211) ISSN: 254-874 CODEN: JEBIDP Somatic and population growth

More information

Predation, Competition, and Zooplankton Community Structure: An Experimental Study

Predation, Competition, and Zooplankton Community Structure: An Experimental Study Predation, Competition, and Zooplankton Community Structure: An Experimental Study Michael Lynch Limnology and Oceanography, Vol. 24, No. 2. (Mar., 1979), pp. 253-272. Stable URL: http://links.jstor.org/sici?sici=0024-3590%28197903%2924%3a2%3c253%3apcazcs%3e2.0.co%3b2-6

More information

LETTER Phosphorus availability mediates plasticity in life-history traits and predator prey interactions in Daphnia

LETTER Phosphorus availability mediates plasticity in life-history traits and predator prey interactions in Daphnia Ecology Letters, (25) 8: 121 128 doi: 1.1111/j.1461-248.25.83.x LETTER Phosphorus availability mediates plasticity in life-history traits and predator prey interactions in Daphnia Punidan D. Jeyasingh*

More information

I>aphnia galeata mendotae as a cryptic species complex with interspecific hybrids

I>aphnia galeata mendotae as a cryptic species complex with interspecific hybrids 658 Notes scattering layers and its significance to surface swarms. J. Plankton Res. 5: 129-143. SIMARD,~., R. DELADURANTAYE,AND J. THERRIAULT. 1986. Aggregation of euphausiids along a coastal shelf in

More information

Lab 13: Evolution and Natural Selection

Lab 13: Evolution and Natural Selection Lab 13: Evolution and Natural Selection The process of biological evolution can be accurately defined as descent with modification. This definition includes microevolution (changes in allele frequency

More information

Predation, competition, and zooplankton community structure: An experimental study1 2

Predation, competition, and zooplankton community structure: An experimental study1 2 Limnol. Oceanogr., 24(2), 1979,253-272 @ 1979, by the American Society of Limnology and Oceanography, Inc. Predation, competition, and zooplankton community structure: An experimental study1 2 Michael

More information

Competition between native and exotic Daphnia: in situ experiments

Competition between native and exotic Daphnia: in situ experiments Competition between native and exotic Daphnia: in situ experiments JENNIFER L. JOHNSON 1 AND JOHN E. HAVEL DEPARTMENT OF BIOLOGY, SOUTHWEST MISSOURI STATE UNIVERSITY, SPRINGFIELD, MO 65804, USA 1 PRESENT

More information

BioScience July-August 1989 v39 n7 p436(10) Page 1

BioScience July-August 1989 v39 n7 p436(10) Page 1 BioScience July-August 1989 v39 n7 p436(10) Page 1 by Stephen C. Stearns COPYRIGHT 1989 American Institute of Biological Sciences The Evolutionary Significance of Phenotypic Plasticity Phenotypic sources

More information

Variation in natural populations

Variation in natural populations Variation in natural populations 1) How much phenotypic variation is present in natural populations? 2) What is the genetic basis of variation? 3) Genetic covariance 4) Genetic and non-genetic polymorphisms

More information

MECHANISMS CREATING COMMUNITY STRUCTURE ACROSS A FRESHWATER HABITAT GRADIENT

MECHANISMS CREATING COMMUNITY STRUCTURE ACROSS A FRESHWATER HABITAT GRADIENT Annu. Rev. Ecol. Syst. 1996. 27:337 63 Copyright c 1996 by Annual Reviews Inc. All rights reserved MECHANISMS CREATING COMMUNITY STRUCTURE ACROSS A FRESHWATER HABITAT GRADIENT Gary A. Wellborn 1, David

More information

Environmental stress and local adaptation in Daphnia magna

Environmental stress and local adaptation in Daphnia magna Limnol. Oceanogr., 44(), 999, 393 4 999, by the American Society of Limnology and Oceanography, Inc. Environmental stress and local adaptation in Daphnia magna Maarten Boersma, Luc De Meester, and Piet

More information

Phenotypic plasticity of the filter screens in D&znia: Adaptation to a low-food environment

Phenotypic plasticity of the filter screens in D&znia: Adaptation to a low-food environment Limnol. Oceanogr., 39(5), 1994,997-1006 0 1994, by the American Society of Limnology and Oceanography, Inc. Phenotypic plasticity of the filter screens in D&znia: Adaptation to a low-food environment Winfried

More information

Experimental methods for measuring the effect of light acclimation on vertical migration by Daphnia in the field

Experimental methods for measuring the effect of light acclimation on vertical migration by Daphnia in the field 638 Notes Limnol Oceunogr., 38(3), 1993, 638-643 0 1993, by the American Soctety of Limnology and Oceanography, Inc Experimental methods for measuring the effect of light acclimation on vertical migration

More information

Competition in natural populations of Daphnia

Competition in natural populations of Daphnia Oecologia (1995) 103:309-318 9 Springer-Verlag 1995 Maarten Boersma Competition in natural populations of Daphnia Received: 1 December 1994 / Accepted: 29 March 1995 Abstract I investigated the competitive

More information

LIGHT PENETRATION INTO FRESH WATER.

LIGHT PENETRATION INTO FRESH WATER. LIGHT PENETRATION INTO FRESH WATER. III. SEASONAL VARIATIONS IN THE LIGHT CONDITIONS IN WINDERMERE IN RELATION TO VEGETATION. BY W. H. PEARS ALL AND PHILIP ULLYOTT. {Received 29th May, 1933.) (With Three

More information

Effects of sexual reproduction of the inferior competitor Brachionus calycifl orus on its fitness against Brachionus angularis *

Effects of sexual reproduction of the inferior competitor Brachionus calycifl orus on its fitness against Brachionus angularis * Chinese Journal of Oceanology and Limnology Vol. 33 No. 2, P. 356-363, 215 http://dx.doi.org/1.17/s343-15-471-4 Effects of sexual reproduction of the inferior competitor Brachionus calycifl orus on its

More information

SATMINDER KAUR SUPERVISOR : DR HII YII SIANG

SATMINDER KAUR SUPERVISOR : DR HII YII SIANG INDUCTION OF DIAPAUSE IN Moina macrocopa INFLUENCE BY PHOTOPERIOD AND POPULATION DENSITY SATMINDER KAUR SUPERVISOR : DR HII YII SIANG INSTITUTE OF TROPICAL AQUACULTURE (satmin_27@yahoo.com) INTRODUCTION

More information

Diversity of Zooplankton in some Reserviours in and around Karwar- Uttara Kannada District Karnataka

Diversity of Zooplankton in some Reserviours in and around Karwar- Uttara Kannada District Karnataka Int. J. of Life Sciences, 2015, Vol. 3(2): 171-175 ISSN: 2320-7817 eissn: 2320-964X 215 RESEARCH ARTICLE Diversity of Zooplankton in some Reserviours in and around Karwar- Uttara Kannada District Karnataka

More information

BIOS 569: Practicum in Field Biology. Impact of DOC in the Zooplankton Community Composition. Amarilis Silva Rodriguez. Advisor: Patrick Kelly

BIOS 569: Practicum in Field Biology. Impact of DOC in the Zooplankton Community Composition. Amarilis Silva Rodriguez. Advisor: Patrick Kelly BIOS 569: Practicum in Field Biology Impact of DOC in the Zooplankton Community Composition Amarilis Silva Rodriguez Advisor: Patrick Kelly 2013 Abstract: Dissolved organic carbon (DOC) plays an important

More information

Year Two Annual Report (March 2008 February 2009) Introduction. Background

Year Two Annual Report (March 2008 February 2009) Introduction. Background Plankton Monitoring and Zooplankton Grazing Assessment in Vancouver Lake, WA Stephen Bollens and Gretchen Rollwagen-Bollens Washington State University Vancouver Year Two Annual Report (March 28 February

More information

Zooplankton for the production of biomass in Bioregenerative Life Support Systems (BLSS) in space

Zooplankton for the production of biomass in Bioregenerative Life Support Systems (BLSS) in space M. Knie, C. Laforsch Zooplankton for the production of biomass in Bioregenerative Life Support Systems (BLSS) in space 51 st ESLAB SYMPOSIUM 06.12.2017 ESTEC Bioregenerative Life Support Systems (BLSS)

More information

Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India

Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India 130 J. Mar. Biol. Ass. India, 53 (1) : 130-134, January - June 2011 Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India Central Marine Fisheries Research Institute,

More information

Ecology and evolution. Limnology Lecture 2

Ecology and evolution. Limnology Lecture 2 Ecology and evolution Limnology Lecture 2 Outline Lab notebooks Quick and dirty ecology and evolution review The Scientific Method 1. Develop hypothesis (general models) Null hypothesis Alternative hypothesis

More information

4. Identify one bird that would most likely compete for food with the large tree finch. Support your answer. [1]

4. Identify one bird that would most likely compete for food with the large tree finch. Support your answer. [1] Name: Topic 5B 1. A hawk has a genetic trait that gives it much better eyesight than other hawks of the same species in the same area. Explain how this could lead to evolutionary change within this species

More information

Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata

Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata By: Vincent C. Henrich and David L. Denlinger Henrich, V.C., and D.L. Denlinger (1982) Selection

More information

Climate Change Vulnerability Assessment for Species

Climate Change Vulnerability Assessment for Species Climate Change Vulnerability Assessment for Species SPECIES: Specify whether you are assessing the entire species or particular populations: This tool assesses the vulnerability or resilience of species

More information

Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue

Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue 939 Limnol. Oceanogr., 48(2), 2003, 939 943 2003, by the American Society of Limnology and Oceanography, Inc. Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent

More information

Goal of the Lecture. Lecture Structure. Tadpole Development, Ecology, and Metamorphosis

Goal of the Lecture. Lecture Structure. Tadpole Development, Ecology, and Metamorphosis Tadpole Development, Ecology, and Metamorphosis Matthew J. Gray, Ph.D. College of Agricultural Sciences and Natural Resources University of Tennessee-Knoxville Goal of the Lecture To familiarize students

More information

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18%

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18% 1. When testing the benefits of a new fertilizer on the growth of tomato plants, the control group should include which of the following? A Tomato plants grown in soil with no fertilizer B Tomato plants

More information

Testing the ecological relevance of Daphnia species designations

Testing the ecological relevance of Daphnia species designations Freshwater Biology (2004) 49, 55 64 Testing the ecological relevance of Daphnia species designations MEGHAN A. DUFFY, ALAN J. TESSIER AND MATTHEW A. KOSNIK* W. K. Kellogg Biological Station and Department

More information

PREDATION ON HERRING LARVAE BY THE COPEPOD CANDACIA ARMATA.

PREDATION ON HERRING LARVAE BY THE COPEPOD CANDACIA ARMATA. This paper not to be eited without prior rcferenee to the author. INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA C.M. 1983111 : 20 Pelagie Fish Committee Ref. Bio!. Oceanogr. Cltee PREDATION ON HERRING

More information

Irina Feniova, Yury Dgebuadze, Vladimir Razlutski, Anna Palash, Elena Sysova, Jacek Tunowski, Andrew Dzialowski

Irina Feniova, Yury Dgebuadze, Vladimir Razlutski, Anna Palash, Elena Sysova, Jacek Tunowski, Andrew Dzialowski Irina Feniova, Yury Dgebuadze, Vladimir Razlutski, Anna Palash, Elena Sysova, Jacek Tunowski, Andrew Dzialowski Studied cladoceran species in the order of body size from largest to smallest Sida crystallina

More information

Temperature and kairomone induced life history plasticity in coexisting Daphnia

Temperature and kairomone induced life history plasticity in coexisting Daphnia Aquat Ecol (26) 4:361 372 DOI 1.17/s1452-6-935-5 ORIGINAL PAPER Temperature and kairomone induced life history plasticity in coexisting Daphnia Randall J. Bernot Æ Walter K. Dodds Æ Michael C. Quist Æ

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

Potentials and limitations of adaptive plasticity in filtering screen morphology of Daphnia (Crustacea: Cladocera)

Potentials and limitations of adaptive plasticity in filtering screen morphology of Daphnia (Crustacea: Cladocera) Journal of Plankton Research plankt.oxfordjournals.org J. Plankton Res. (016) 8(5): 169 180.First published online July 5, 016 doi:10.109/plankt/fbw051 Potentials and limitations of adaptive plasticity

More information

Density-dependent predation of early instar Chaoborus feeding on multispecies prey assemblages l

Density-dependent predation of early instar Chaoborus feeding on multispecies prey assemblages l Limnol. Omanogr., 33(2), 1988, 256-268 0 1988, by the American Society of Limnology and Oceanography, Inc. Density-dependent predation of early instar Chaoborus feeding on multispecies prey assemblages

More information

The Ability of Daphnia magna to Maintain Homeostasis Despite Varying Toxicity Levels of Surrounding Environments

The Ability of Daphnia magna to Maintain Homeostasis Despite Varying Toxicity Levels of Surrounding Environments The Ability of Daphnia magna to Maintain Homeostasis Despite Varying Toxicity Levels of Surrounding Environments By: Kayla, Kenyana, Erin, and Paulina Mr.Scheman 1 st Period Daphnia magna Lab Purpose:

More information

Unit B1, B1.8. Evolution (2) (Total 4 marks)

Unit B1, B1.8. Evolution (2) (Total 4 marks) Evolution 1. Giraffes feed on the leaves of trees and other plants in areas of Africa. Lamarck explained the evolution of the long neck of the giraffe in terms of the animals stretching their necks to

More information

Resting egg production in Daphnia: food quality effects and clonal differences

Resting egg production in Daphnia: food quality effects and clonal differences Resting egg production in Daphnia: food quality effects and clonal differences Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Ulrike Eva Koch How have

More information

Temperature. (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species

Temperature. (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species Temperature (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species (2) controls concentrations (3) is relatively predictable over and can provide a basis for species.

More information

EXPERIMENTS WITH FRESHWATER INVERTEBRATE ZOOPLANKTIVORES: QUALITY OF STATISTICAL ANALYSES. Stuart H. Hurlbert and Michael D.

EXPERIMENTS WITH FRESHWATER INVERTEBRATE ZOOPLANKTIVORES: QUALITY OF STATISTICAL ANALYSES. Stuart H. Hurlbert and Michael D. BULLETIN OF MARINE SCIENCE. 53(l): 128-153. 1993 EXPERIMENTS WITH FRESHWATER INVERTEBRATE ZOOPLANKTIVORES: QUALITY OF STATISTICAL ANALYSES Stuart H. Hurlbert and Michael D. White ABSTRACT We examined the

More information

Guide to the Macroinvertebrates Collected in Strayer et al. (2003)

Guide to the Macroinvertebrates Collected in Strayer et al. (2003) Guide to the Macroinvertebrates Collected in Strayer et al. (2003) The Role in Ecosystem column below is based on the following classifications by feeding group: Herbivores: Feed on live plant tissues.

More information

Competition in zooplankton communities: Suppression of small species by Daphvlia pulex1

Competition in zooplankton communities: Suppression of small species by Daphvlia pulex1 Limnol. Oceanogr., 31(5), 1986, 1039-1056 0 1986, by the American Society of Limnology and Oceanography, Inc. Competition in zooplankton communities: Suppression of small species by Daphvlia pulex1 Michael

More information

Pesticide e ects on freshwater zooplankton: an ecological perspective

Pesticide e ects on freshwater zooplankton: an ecological perspective Environmental Pollution 112 (2001) 1±10 Review Pesticide e ects on freshwater zooplankton: an ecological perspective T. Hanazato Suwa Hydrobiological Station, Shinshu University, 5-2-4 Kogandori, Suwa

More information

Medical waste causing problems on a micro scale: The impact of antibiotics on the metabolic processes of Daphnia pulicaria

Medical waste causing problems on a micro scale: The impact of antibiotics on the metabolic processes of Daphnia pulicaria Larson 1 Medical waste causing problems on a micro scale: The impact of antibiotics on the metabolic processes of Daphnia pulicaria Practicum in Field Biology Camryn Larson Advisor: Bret Coggins 2018 Larson

More information

'Adaptation in natural populations: tools and mechanisms'

'Adaptation in natural populations: tools and mechanisms' SFB 680 / 17. Seminar Day 'Adaptation in natural populations: tools and mechanisms' Tuesday, May 31, 2011 Luc De Meester Title: Life in a mosaic of stressors: an evolving metacommunity approach Ecological

More information

Grandidierella japonica (Amphipoda: Gammaridea)

Grandidierella japonica (Amphipoda: Gammaridea) Reproduction and Population Dynamics of Grandidierella japonica in Upper Newport Bay Grandidierella japonica (Amphipoda: Gammaridea) is a common amphipod in the sandy intertidal and sub-tidal sediments

More information

Advanced Placement Biology Union City High School Summer Assignment 2011 Ecology Short Answer Questions

Advanced Placement Biology Union City High School Summer Assignment 2011 Ecology Short Answer Questions Summer Assignment 2011 Ecology Short Answer Questions 1. Each of the terrestrial biomes have very different characteristics that determine the niches of the organisms that live within that biome. (a) Select

More information

Rearing Honeybee Queens in, Apis Mellifera L. Colonies During the Activity Season of Oriental Wasps Vespa Orientalis L

Rearing Honeybee Queens in, Apis Mellifera L. Colonies During the Activity Season of Oriental Wasps Vespa Orientalis L International Journal of Agricultural Technology 2016 Vol. 12(4):667-674 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Rearing Honeybee Queens in, Apis Mellifera L. Colonies During

More information

Polymorphism of the Southern Green Stink Bug Nezara viridula Linnaeus, 1758 (Hemiptera: Pentatomidae) In Vietnam

Polymorphism of the Southern Green Stink Bug Nezara viridula Linnaeus, 1758 (Hemiptera: Pentatomidae) In Vietnam Biological Forum An International Journal 7(1): 276-281(2015) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Polymorphism of the Southern Green Stink Bug Nezara viridula Linnaeus, 1758 (Hemiptera:

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

Reproductive allocation in Daphnia exposed to toxic cyanobacteria

Reproductive allocation in Daphnia exposed to toxic cyanobacteria Journal of Plankton Research Vol.21 no.8 pp.1553 1564, 1999 Reproductive allocation in Daphnia exposed to toxic cyanobacteria Marko Reinikainen 1,2,3, Jaana Hietala 2 and Mari Walls 2 1 University of Helsinki,

More information

BODY SIZE, FOOD AVAILABILITY AND SEASONAL ROTIFER COMMUNITY STRUCTURE IN DEER LAKE, BRITISH COLUMBIA. Dorothee Schreiber. B.A. Dartmouth College, 1995

BODY SIZE, FOOD AVAILABILITY AND SEASONAL ROTIFER COMMUNITY STRUCTURE IN DEER LAKE, BRITISH COLUMBIA. Dorothee Schreiber. B.A. Dartmouth College, 1995 BODY SIZE, FOOD AVAILABILITY AND SEASONAL ROTIFER COMMUNITY STRUCTURE IN DEER LAKE, BRITISH COLUMBIA by Dorothee Schreiber B.A. Dartmouth College, 1995 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

More information

1 of 13 8/11/2014 10:32 AM Units: Teacher: APBiology, CORE Course: APBiology Year: 2012-13 Chemistry of Life Chapters 1-4 Big Idea 1, 2 & 4 Change in the genetic population over time is feedback mechanisms

More information

Testing for Grazer Adaptation to Toxic Algae

Testing for Grazer Adaptation to Toxic Algae Testing for Grazer Adaptation to Toxic Algae by Michael B. Finiguerra, Hans G. Dam, and David E. Avery Part I Introduction and Background Phytoplankton, microscopic single-celled algae, are natural components

More information

Inverse model method for estimating assimilation by aquatic invertebrates

Inverse model method for estimating assimilation by aquatic invertebrates Aquat.sci.63 (2001) 168 181 1015-1621/01/020168-14 $ 1.50+0.20/0 Birkhäuser Verlag, Basel, 2001 Aquatic Sciences Inverse model method for estimating assimilation by aquatic invertebrates John T. Lehman*,

More information

Differences between two species of Daphnia in the use of 10 - species of algae in Lake Washington

Differences between two species of Daphnia in the use of 10 - species of algae in Lake Washington Limnol. Oceanogr., 3(5), 1985, 153159 1985, by the American Society of Limnology and Oceanography, Inc. Differences between two species of Daphnia in the use of 1 species of algae in Lake Washington Aida

More information

The reproductive success of an organism depends in part on the ability of the organism to survive.

The reproductive success of an organism depends in part on the ability of the organism to survive. The reproductive success of an organism depends in part on the ability of the organism to survive. How does the physical appearance of these organisms help them survive? A. Their physical appearance helps

More information

NATURAL SELECTION FOR GRAZER RESISTANCE TO TOXIC CYANOBACTERIA: EVOLUTION OF PHENOTYPIC PLASTICITY?

NATURAL SELECTION FOR GRAZER RESISTANCE TO TOXIC CYANOBACTERIA: EVOLUTION OF PHENOTYPIC PLASTICITY? Evolution, 55(), 200, pp. 2203 224 NATURAL SELECTION FOR GRAZER RESISTANCE TO TOXIC CYANOBACTERIA: EVOLUTION OF PHENOTYPIC PLASTICITY? N. G. HAIRSTON, JR.,,2 C. L. HOLTMEIER, 3 W. LAMPERT, 4 L. J. WEIDER,

More information

Champaign-Urbana 1999 Annual Weather Summary

Champaign-Urbana 1999 Annual Weather Summary Champaign-Urbana 1999 Annual Weather Summary ILLINOIS STATE WATER SURVEY 2204 Griffith Dr. Champaign, IL 61820 wxobsrvr@sws.uiuc.edu Maria Peters, Weather Observer A major snowstorm kicked off the new

More information