A Warm Up Exercise. Mapping the Earth and Sky and the Motions of the Stars. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise

Size: px
Start display at page:

Download "A Warm Up Exercise. Mapping the Earth and Sky and the Motions of the Stars. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise"

Transcription

1 Mapping the Earth and Sky and the Motions of the Stars A person with a mass of 60 kg goes to the Moon. There she will have a mass of a) othing b) 10 kg c) 360 kg d) 60 kg e) 123 kg A person with a mass of 60 kg goes to the Moon. There she will have a mass of a) othing b) 10 kg c) 360 kg d) 60 kg e) 123 kg Gravity on the Moon is 1/6 that of Earth, so you would weigh 1/6 of your weight on Earth Comet C and comet D are the same distance from the Earth. If Comet C is 1 million km long, comet D is 2 million km long, and comet D subtends an angle of 6 degrees from Earth, then a) Comet C subtends an angle of 12 degrees b) Comet C subtends an angle of 2 degrees c) Comet C subtends an angle of 3 degrees d) Comet C subtends an angle of 6 degrees e) Comet C subtends an angle of 5 degrees Comet C and comet D are the same distance from the Earth. If Comet C is 1 million km long, comet D is 2 million km long, and comet D subtends an angle of 6 degrees from Earth, then a) Comet C subtends an angle of 12 degrees b) Comet C subtends an angle of 2 degrees c) Comet C subtends an angle of 3 degrees d) Comet C subtends an angle of 6 degrees e) Comet C subtends an angle of 5 degrees Key Ideas From Last Time Metric Units The difference between mass and weight The relationship between distance, size and angle angles are proportional to the ratio size/distance 1

2 Key Ideas: The Static Sky -- Constellations Terrestrial Coordinates: Longitude & Latitude Local Horizon & Zenith Celestial Sphere: Celestial Poles & Equator Declination Motions of the Stars - Circumpolar Star The Celestial Sphere To describe where you are and how you are moving you need to have a reference frame The stars provide a natural reference frame on the sky even to the naked eye (which can see about 6000 stars) Zodiacs and constellations were invented to help people locate things on the sky divide the sky into constellations and associate the brightest stars with a picture to help remember it. Orion Ursa Major Hevelius (1690) outside looking in Modern inside looking out Munich Astro Archive In fact, the whole sky is divided into 88 constellations Andromeda, Antlia, Apus, Aquarius.Vela, Virgo, Volans and Vulpecula all properly defined. Constellations as Art (Hevelius) The Constellations Are ot Fixed Rick Pogge But the changes are slow because stellar motions are small. Here is an animation of the changes in the Big Dipper from 100,000 BC to 100,000 AD using the known motions of the stars there are a few fast moving ones 2

3 Finding yourself... Age-old questions of geography: 1) here am I? 2) ho am I? 3) here is someplace else? 4) How do I get there from here? 5) How do I avoid driving through Chicago? Ancient maps usually gave locations in terms of distances and directions from a specific place (e.g., Rome or Alexandria). Fine for a flat earth approximation ot so good on a sphere Angular Coordinates on Spheres Since the Earth s surface is approximately spherical, we use a grid of arcs rather than a rectangular grid. System invented by Claudius Ptolemy (c 140AD), the Father of Modern Geography Ptolemy introduced the minute and second of arc, updating the Babylonian system of using fractions of 60 for subdividing the degree. Positions on the Earth Can be defined by Latitude = how many degrees orth or South of the Equator Longitude = how many degrees est of the prime meridian Columbus just orth of Library, close to the sundial Longitude 83 degrees 00 arcmin 54 arcseconds Latitude 40 degrees 00 arcmin 00 arcsec Prime Meridian? hile the equator (latitude=0 o ) and poles (latitudes= 90 o ) provide a natural way to define latitude, there is no natural way to define longitude you just have to start counting it from somewhere. Longitude=0 o is defined to be the meridian passing through the Greenwich Royal Observatory in England. orth Pole 40º orth Latitude Prime Meridian 40 th Parallel Equator 83º est Longitude Columbus, Ohio: 83º, 40º 3

4 Longitude and Latitude on Earth The circumference of the Earth is m so 1 degree =( m)/ km 1 arcmin =( m)/360/60 2 km (nautical mile) 1 arcsec =( m)/360/60/60 30 m Lost & Found Ptolemy s system was forgotten in Europe after the collapse of the Roman Empire: Flat Earth maps through the middle ages. Maps centered on Jerusalem. Ptolemy was rediscovered, with the Spherical Earth, about 1300: Prime Meridian is Greenwich Psalter Map Ptolemy s Map (1348 version) Features a flat earth centered on Jerusalem (from a medieval book of Psalms, c AD, in the British Museum); To Orient a map. Positions on the Sky Use the Same Idea as Latitude and Longitude Latitude = Declination = angle up or down from celestial equator Longitude = Right Ascension = angle from celestial meridian The Local Sky Standing on the Earth, we can only see half of the sky at any instant: One half stretches overhead to the Horizon. Other half is below the Horizon. Zenith: Point directly overhead. adir: Point opposite the Zenith, below you. Cardinal Points: orth, South, East & est. 4

5 The Local Sky Zenith S E Horizon avigation - Latitude Easiest to determine as the angle between the horizon and the pole star (i.e. something exactly at the orth Celestial Pole) in practice you can use anything with a known declination (celestial latitude) avigation Longitude Longitude is much harder because you must separate position from time suppose you know that a star lies on the prime meridian of celestial longitude and you note when it passes your local meridian. But knowing your celestial longitude is not enough to get your longitude on Earth because the Earth rotates you need to know your celestial longitude and the time. Simplest is to carry a clock that keeps time at the prime meridian in Greenwich when the clock says noon, it is noon in Greenwich. ow measure the time of your local noon on the Greenwich clock if it is 5:36pm, then you are at the longitude of Columbus but you need a good clock because an error of 1 second of time corresponds to 15 seconds of arc (24 hours versus 360 degrees) or 0.5 km on the Equator. H4 clock (1761) The Longitude Prize In 1714 the British government offered a 20,000 pound (about $2 million today) prize for a method to measure longitude with a precision of 0.5 o (=2 minutes of time=55km on the Equator). The board administering the prize was absolutely convinced that the solution lay in astronomy. An English clockmaker John Harrison was the first to suceed, with the H4 clock (he started with the H1 in 1730), which in a 60 day voyage to Jamaica was off by only 5 seconds. On a second trial it was of by 40 seconds, but that was still three times better than required. The board refused to pay out until overruled by King George III and Parliament. The first copy of the H4 was taken by Captain Cook on his second voyage to the Pacific in the three year voyage it was never off by more than 8 seconds of time, or about 3.5km. You can do it all with astronomy it involves lunars which use tables of the position of the moon relative to stars to work out (essentially) the time. The Modern ay -- GPS 31 satellites with atomic clocks, each broadcasting an encoded time and satellite position. Receiver computes distance from each satellite based on the satellite position and the time it took the signal to go from the satellite to the receiver limits your position to the surface of a sphere surrounding each satellite. Your position is where all the sphere s overlap in theory you want 4 satellites (to also correct your receiver s clock) but can use three if you know you are on the Earth s surface. 1 sphere 2 circle 3 point 5

6 The Daily Motion of the Stars Due to the rotation of the Earth hat you see (or can see) is controlled by your latitude Daily Motions Objects in the sky appear to rise in the East and set in the est each day. This apparent daily motion is a reflection of the Earth s rotation about its axis. Earth rotates once a day (24 hours) The sense of rotation is Eastward Facing orth, rotation is towards the Right. A very simple experiment to show the Earth rotates The Foucault Pendulum (1856) The plane in which a pendulum swings stays fixed, so you can see the Earth rotating relative to this fixed plane a common feature in science museums (including COSI), but invented an amazingly long time after the experiment became possible! Franklin Institute Apparent Paths of Stars The Apparent Paths of objects are parallel to the Celestial Equator. Their orientation depends on your latitude: At Equator: perpendicular to the horizon At Poles: parallel to the horizon Mid-Latitudes: Tilted by (90º Latitude) In Columbus (40º ): Apparent paths are tilted 50º from the horizon. At Latitude = 30º the paths are tilted by 90º 30º=60º At Latitude = 0º the paths are tilted by 90º 90º=0º 6

7 S Z E Equator S CP Z CP CP Z orth Pole Circumpolar Stars Any star closer than your latitude to your visible celestial pole (north or south) will always be above your horizon. These are the Circumpolar Stars Ursa Major, Ursa Minor, & Draco are circumpolar constellations from Columbus The opposite pole s circumpolar stars for the same latitude never rise above your horizon. Ursa Major never rises for latitudes below 40º S 40º Latitude Above Horizon for 12 h Above Horizon for < 12 h S ever Rises Above Horizon for > 12 h E Zenith CP ever Sets CEq Summary of Daily Motions: Daily Motions of celestial objects reflect the Earth s daily rotation about its axis: Celestial objects to appear to rise in the East and set in the est. Their paths are parallel to the Celestial Equator. The inclinations of these paths relative to the horizon depends on the observer s latitude. Circumpolar objects are those always above or below the local horizon. Celestial Coordinates Latitude = Declination = angle up or down from celestial equator Longitude = Right Ascension = angle from celestial meridian But where do you count right ascension from? Clearly, Greenwich England is a bad idea since the earth spins.. You reference it to the stars it is defined to be the meridian of the Vernal Equinox (it s in the constellation Pisces) The Vernal what? 7

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION Before the invention of GPS technology, how were people on ships far at sea, out of the sight of land, able to tell where they were? For thousands of years

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment This

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated April 12, 2006 A. Geography: mapping the earth Geometry: measure

More information

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise A Warm Up Exercise The Motion of the Sun Which of the following is NOT true of a circumpolar star? a) It rises and sets from my latitude b) Its direction can be far North c) Its direction can be far South

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated 2014Jan11 A. Geography: mapping the earth Geometry: measure the

More information

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE To the naked eye, stars appear fixed on the sky with respect to one another. These patterns are often grouped into constellations. Angular measurements

More information

Introduction To Astronomy Lesson 1

Introduction To Astronomy Lesson 1 Introduction To Astronomy Lesson 1 Topics for this Lesson Earth Based Coordinates The Celestial Sphere and Sky Coordinates The North Star Measuring Distances on the Sky The Motion of Objects in the Sky

More information

Astronomy 100 Section 2 MWF Greg Hall. Class Web Page. Outline. Astronomy: The Big Picture

Astronomy 100 Section 2 MWF Greg Hall. Class Web Page. Outline. Astronomy: The Big Picture Astronomy 100 Section 2 MWF 1200-1300 100 Greg Hall Leslie Looney Phone: 217-244-3615 Email: lwl @ uiuc. edu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment Class Web Page

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated Sep 30, 2012 A. Geography: mapping the earth Geometry: measure

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System A. Geography: mapping the earth Geometry: measure the earth! 1) The earth

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles. Understanding The Sky Astronomy is full of cycles Like the day, the month, & the year In this section we will try to understand these cycles. For Example Why do we think of stars as nighttime objects?

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Local Coordinates. These are centered upon you, the observer.

Local Coordinates. These are centered upon you, the observer. Astronomy 30, Observing #3 Name: Lab Partners: Date: Materials: This lab, with the star chart completed from the pre-lab. Some sheets of paper for sketches. A pencil with eraser. A small flashlight, ideally

More information

WHAT ARE THE CONSTELLATIONS

WHAT ARE THE CONSTELLATIONS CONSTELLATIONS WHAT ARE THE CONSTELLATIONS In popular usage, the term constellation is used to denote a recognizable grouping of stars. Astronomers have redefined the constellations as 88 regions of the

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) How do we locate stars in the heavens? 2. Descriptive Astronomy ( Astronomy Without a Telescope ) What stars are visible from a given location? Where is the sun in the sky at any given time? Where are

More information

The Sky. Day sky: the Sun, occasionally the Moon. Night Sky: stars, and sometimes the Moon

The Sky. Day sky: the Sun, occasionally the Moon. Night Sky: stars, and sometimes the Moon The Sky Day sky: the Sun, occasionally the Moon Night Sky: stars, and sometimes the Moon So MANY objects.how Do We Make Sense of it ALL?? Goal How to describe the locations of objects in the sky To understand

More information

Using Angles. Looking at the Night Sky. Rising and Setting Stars. Nightly Motion of the Stars. Nightly Motion of the Stars

Using Angles. Looking at the Night Sky. Rising and Setting Stars. Nightly Motion of the Stars. Nightly Motion of the Stars Looking at the Night Sky How to find your way around: Position -> where is that object? Distance -> how much space between these two things? Motion -> where will that object be later tonight? Bright/faint

More information

Astronomy 101: 9/18/2008

Astronomy 101: 9/18/2008 Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative General Physical Science Chapter 15 Place and Time Space and Time Einstein Space and time related Single entity Time is the 4 th dimension! Cartesian Coordinates Need some system to tell us where something

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) 2. Descriptive Astronomy ( Astronomy Without a Telescope ) http://apod.nasa.gov/apod/astropix.html How do we locate stars in the heavens? What stars are visible from a given location? Where is the sun

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

Welcome back. Scale. Week 2 Updates. PHYS 1302 Astronomy of the Solar System

Welcome back. Scale. Week 2 Updates. PHYS 1302 Astronomy of the Solar System Week 2 Updates Two in-class quizzes now completed Introductions List-serve Quick review of Chapter 1 Discuss Chapter 2 Chapter 3 next week (9/9). Welcome back Week 2 of PHYS 1302 Como se dice The h Syllabus:

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

Summary Sheet #1 for Astronomy Main Lesson

Summary Sheet #1 for Astronomy Main Lesson Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.

More information

The Celestial Sphere. GEK1506 Heavenly Mathematics: Cultural Astronomy

The Celestial Sphere. GEK1506 Heavenly Mathematics: Cultural Astronomy The Celestial Sphere GEK1506 Heavenly Mathematics: Cultural Astronomy Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/ The

More information

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Name Class Date. For each pair of terms, explain how the meanings of the terms differ. Skills Worksheet Chapter Review USING KEY TERMS 1. Use each of the following terms in a separate sentence: year, month, day, astronomy, electromagnetic spectrum, constellation, and altitude. For each pair

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations Lecture 3: The Sun & Constellations Professor Kenny L. Tapp Early history of astronomy Birth of modern astronomy Noted scientist Johannes Kepler (1571-1630) Ushered in new astronomy Planets revolve around

More information

Astronomy 311 Professor Menningen January 2, Syllabus overview books & supplies course goals assignments & grading About the professor

Astronomy 311 Professor Menningen January 2, Syllabus overview books & supplies course goals assignments & grading About the professor 1 Astronomy 311 Professor Menningen January 2, 2014 Syllabus overview books & supplies course goals assignments & grading About the professor 2 How to Learn Astronomy Stay curious Interact with the same

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Oberth: Energy vs. Momentum

Oberth: Energy vs. Momentum 1 2 The Oberth Effect 3 Oberth: Energy vs. Momentum 4 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2-dimensional surface the Celestial Sphere. 5 The Celestial

More information

A2 Principi di Astrofisica. Coordinate Celesti

A2 Principi di Astrofisica. Coordinate Celesti A2 Principi di Astrofisica Coordinate Celesti ESO La Silla Tel. 3.6m Celestial Sphere Our lack of depth perception when we look into space creates the illusion that Earth is surrounded by a celestial sphere.

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

Astronomy 101 Lab Manual. Victor Andersen Community College of Aurora

Astronomy 101 Lab Manual. Victor Andersen Community College of Aurora Astronomy 101 Lab Manual Victor Andersen Community College of Aurora victor.andersen@ccaurora.edu January 8, 2013 2 Contents 1 Angular Measures 5 1.1 Introduction............................ 5 1.1.1 Degrees,

More information

Guiding Questions. Discovering the Night Sky. iclicker Qustion

Guiding Questions. Discovering the Night Sky. iclicker Qustion Guiding Questions Discovering the Night Sky 1 1. What methods do scientists use to expand our understanding of the universe? 2. What makes up our solar system? 3. What are the stars? Do they last forever?

More information

The Celestial Sphere. From our perspective on Earth the stars appear embedded on a distant 2 dimensional surface the Celestial Sphere.

The Celestial Sphere. From our perspective on Earth the stars appear embedded on a distant 2 dimensional surface the Celestial Sphere. 1 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2 dimensional surface the Celestial Sphere. 2 The Celestial Sphere Although we know better, it is helpful to

More information

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017 Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Topic Guide: The Celestial Sphere GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) The Celestial Sphere Contents Specification Points 1 The Astronomy 2 Equatorial coordinates

More information

Chapter 3: Coordinates & time; much of this chapter is based on earlier work by Katherine Bracher

Chapter 3: Coordinates & time; much of this chapter is based on earlier work by Katherine Bracher Intro Astro - Andrea K Dobson - Chapter 3 - August 2018 1! /! 12 Chapter 3: Coordinates & time; much of this chapter is based on earlier work by Katherine Bracher celestial sphere and celestial coordinates

More information

Discovering the Universe

Discovering the Universe Discovering the Universe Astronomy and human culture have always been intertwined Astronomical events define the rhythms of human life and have inspired myths and religion stories Attempts to explain astronomical

More information

Lecture 4: August 30, 2010

Lecture 4: August 30, 2010 Lecture 4: August 30, 2010 How many hospitals are there in the USA? Announcements: First homework has been posted Due Friday (10 th ) First Observatory Opportunity Thursday Night September 2, 8:30pm Will

More information

Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN

Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN I. The Apparent Annual Motion of the Sun A star always rises and sets at the same place on the horizon and, hence, it is above the horizon for the same

More information

2. Knowing the Heavens

2. Knowing the Heavens 2. Knowing the Heavens Ancient naked-eye astronomy Eighty-eight constellations The sky s ever-changing appearance The celestial sphere Celestial coordinates Seasons: Earth s axial tilt Precession of Earth

More information

Sky, Celestial Sphere and Constellations

Sky, Celestial Sphere and Constellations Sky, Celestial Sphere and Constellations Last lecture Galaxies are the main building blocks of the universe. Consists of few billions to hundreds of billions of stars, gas clouds (nebulae), star clusters,

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener Observing the Sky Lecture 8 Chapter 2 Opener 1 Figure 2.1 Figure 2.2 2 Figure 2.6 Figure 2.4 Annotated 3 The Celestial Sphere The celestial sphere is the vast hollow sphere on which the stars appear fixed.

More information

Discovering the Universe

Discovering the Universe Discovering the Universe Astronomy and human culture have always been intertwined Astronomical events day and night, seasons -- have defined the rhythms of human life They have inspired great myths and

More information

Discovering the Universe

Discovering the Universe Discovering the Universe Astronomy and human culture have always been intertwined Astronomical events day and night, seasons -- have defined the rhythms of human life They have inspired great myths and

More information

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory Astronomy 122 Section 1 TR 1300-1350 Outline 1320 Digital Computer Laboratory Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: T 10:30-11:30 a.m. or by appointment

More information

CHAPTER 2 A USER'S GUIDE TO THE SKY

CHAPTER 2 A USER'S GUIDE TO THE SKY CHAPTER 2 A USER'S GUIDE TO THE SKY MULTIPLE CHOICE 1. Seen from the northern latitudes (mid-northern hemisphere), the star Polaris a. is never above the horizon during the day. b. always sets directly

More information

4 Solar System and Time

4 Solar System and Time 4 olar ystem and Time 4.1 The Universe 4.1.1 Introduction The Universe consists of countless galaxies distributed throughout space. The bodies used in astro navigation belong to the Galaxy known as the

More information

6/17. Universe from Smallest to Largest:

6/17. Universe from Smallest to Largest: 6/17 Universe from Smallest to Largest: 1. Quarks and Leptons fundamental building blocks of the universe size about 0 (?) importance: quarks combine together to form neutrons and protons. One of the leptons

More information

Science : Introduction to Astronomy. Lecture 2 : Visual Astronomy -- Stars and Planets. Robert Fisher

Science : Introduction to Astronomy. Lecture 2 : Visual Astronomy -- Stars and Planets. Robert Fisher Science 3210 001 : Introduction to Astronomy Lecture 2 : Visual Astronomy -- Stars and Planets Robert Fisher Items Add/Drop Day Office Hours Vote 5 PM Tuesday 5 PM Thursday 12 Noon Friday Course Webpage

More information

IESO 2011 ASTRONOMY PRACTICAL TEST STOP 11

IESO 2011 ASTRONOMY PRACTICAL TEST STOP 11 IESO 2011 ASTRONOMY PRACTICAL TEST STOP 11 NAME:- COUNTRY: On Friday, September 9, 2011, you will perform 3 trials. Each trial is individual, but in some cases you will have to work together with some

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) AST326, 2010 Winter Semester Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) Practical Assignment: analyses of Keck spectroscopic data from the instructor (can

More information

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0 Lecture Outline Chapter 0 Charting the Heavens Earth is average we don t occupy any special place in the universe Universe: Totality of all space, time, matter, and energy Astronomy: Study of the universe

More information

The Rotating Sky Student Guide

The Rotating Sky Student Guide III. Horizon Coordinates The Rotating Sky Student Guide Don t write your answers on here! 1.) Complete the following table involving the horizon coordinate system. You should predict the answers and then

More information

lightyears observable universe astronomical unit po- laris perihelion Milky Way

lightyears observable universe astronomical unit po- laris perihelion Milky Way 1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

More information

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets Astronomy is the oldest science! In ancient times the sky was not well understood! Eclipses Bad Omens? Comets 1 The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY

2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY 2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY 1 2.1 The Sky Above Did you ever lie flat on your back in an open field and look up? If so, what did the sky look like? Most people think it appears to look

More information

Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM

Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM Equipment needed: A celestial globe showing positions of bright stars and Messier Objects. I. Introduction There are several different ways of representing

More information

CHAPTER 2 A USER'S GUIDE TO THE SKY

CHAPTER 2 A USER'S GUIDE TO THE SKY CHAPTER 2 A USER'S GUIDE TO THE SKY MULTIPLE CHOICE 1. In one way of naming stars, a letter indicates its brightness relative to the other stars in the constellation. a. English b. Arabic c. Greek d. Cyrillic

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES Structure 6.1 Introduction Objectives 6.2 References 6.3 Apparent Annual Motion of the Sun and the Concept of the Ecliptic and the Obliquity

More information

The sky and the celestial sphere

The sky and the celestial sphere Chapter 1 The sky and the celestial sphere The Sun, and sometimes the Moon are, by and large, the only astronomical objects visible in the day sky. Traditionally, astronomy has been a nocturnal activity.

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride Celestial Coordinates and the Day Aileen A. O Donoghue Priest Associate Professor of Physics Reference Points Poles Equator Prime Meridian Greenwich,

More information

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate.

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate. Section 2 Locating Astronomical Objects in the Night Sky Section 2 Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Learning Outcomes In this section, you will Construct

More information

Tutoring information, as announced in class

Tutoring information, as announced in class Announcements Register for Connect, register your iclickers - Register iclickers at https://www1.iclicker.com/ or REEF account profile - Purchase the REEF polling app, create an account, register and get

More information

Now on to scales in the. Let s change scale by TWO orders of magnitude at a time and see what happens.

Now on to scales in the. Let s change scale by TWO orders of magnitude at a time and see what happens. Announcements Read 2.1 (Magnitude & Flux), 3.1, 3.2, 3.3 In-class Quiz #1 on Tuesday, January 29. Homework #2 due in class on Thursday, January 31. Disability Services is in need of a note taker for this

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp September 21, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer Mercury What is the closest Planet to the

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) 2. Descriptive Astronomy ( Astronomy Without a Telescope ) http://apod.nasa.gov/apod/astropix.html How do we locate stars in the heavens? What stars are visible from a given location? Where is the sun

More information

Observing the Night Sky: Locating Objects

Observing the Night Sky: Locating Objects Observing the Night Sky: Locating Objects As I left the house this morning, there was a bright bluish light above and to the left of my neighbors house (approximately East) and a big very bright object

More information

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an 1. The diagram below represents some constellations and one position of Earth in its orbit around the Sun. These constellations are visible to an observer on Earth at different times of the year. When

More information

Astronomy 1143 Quiz 1 Review

Astronomy 1143 Quiz 1 Review Astronomy 1143 Quiz 1 Review Prof. Pradhan September 7, 2017 I What is Science? 1. Explain the difference between astronomy and astrology. Astrology: nonscience using zodiac sign to predict the future/personality

More information

THE SKY. Sc. Sec. di primo grado M. Codermatz - Trieste August, 2008

THE SKY. Sc. Sec. di primo grado M. Codermatz - Trieste August, 2008 THE SKY G. Iafrate (a), M. Ramella (a) and V. Bologna (b) (a) INAF - Astronomical Observatory of Trieste (b) Istituto Comprensivo S. Giovanni Sc. Sec. di primo grado M. Codermatz - Trieste August, 2008

More information

Chapter 1: Supplemental Questions

Chapter 1: Supplemental Questions Chapter 1: Supplemental Questions 1. a. How old is a person who has lived 22,630 days in years? (365 days = 1 year) b. How old is a 13-year-old in days? 2. Motion of the earth and moon give the three easiest

More information

Discovering the Universe

Discovering the Universe Discovering the Universe Astronomy and human culture have always been intertwined Astronomical events have defined the cycles of human life They have inspired great religion stories The scientific revolution

More information

Precession and The Celestial Poles

Precession and The Celestial Poles 1 Precession and The Celestial Poles The North Celestial Pole lies overhead for an observer at the North Pole and on the horizon for an observer on the Equator The altitude of the pole equals your latitude.

More information

Using the Star Wheel Laboratory 2

Using the Star Wheel Laboratory 2 Objective: Using the Star Wheel Laboratory 2 This laboratory introduces the Star Wheel; which is a common tool used in backyard observing. This tool helps approximate the location of constellations and

More information

ANNOUNCEMENTS CLASS WEBSITE UP AND

ANNOUNCEMENTS CLASS WEBSITE UP AND ANNOUNCEMENTS CLASS WEBSITE UP AND RUNNING @ http://casaweb.colorado.edu/astr2000/ Not D2L!! OPTIONAL OBSERVING SESSION TONIGHT AT SOMMERS-BAUSCH OBSERVATORY (SBO) AT 8:30pm (weather permitting!). I will

More information

Astr 1050 Mon. Jan. 31, 2017

Astr 1050 Mon. Jan. 31, 2017 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on

More information

The Nature of Stars. The Nature of Stars

The Nature of Stars. The Nature of Stars The Nature of Stars The total number of stars is beyond our ability to count Only a few stars have been studied in detail. To understand the nature of stars, we will compare and catalog the stars by: Physical

More information

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Exercise: Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Objectives In Part 1 you learned about Celestial Sphere and how the stars appear to move across the night

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information