Interpretation of SCPTu Data in Stiff Soils and Soft Rock

Similar documents
Soil Behaviour Type from the CPT: an update

CPT Data Interpretation Theory Manual

Cone Penetration Test (CPT) Interpretation

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Use of CPT for design, monitoring, and performance verification of compaction projects

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

Cone Penetration Testing in Geotechnical Practice

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE ESTIMATION OF FINES CONTENT FROM CPT PARAMETERS FOR CALCAREOUS SOILS OF WESTERN INDIAN OFFSHORE

Field measurement of shear wave velocity of soils

Fellenius, B. H., and Eslami, A.

Examples of CPTU results in other soil types. Peat Silt/ clayey sands Mine tailings Underconsolidated clay Other

GUIDE TO CONE PENETRATION TESTING

Interpretation of in-situ tests some insights

Canadian Geotechnical Journal. CPT-based Soil Behaviour Type (SBT) Classification System an update

Keywords: CPTu, pore water pressure, liquefaction analysis, Canterbury earthquake sequence

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6

Soil type identification and fines content estimation using the Screw Driving Sounding (SDS) data

USE OF CPT/CPTU FOR SOLUTION OF

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

CPT Applications - Liquefaction 2

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016

Introduction to Cone Penetration Testing

PROBABILISTIC APPROACH TO DETERMINING SOIL PARAMETERS

Evaluation of soil liquefaction using the CPT Part 2

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

CONE PENETRATION TEST DATA

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

O-CELL RESPONSE USING ELASTIC PILE AND SEISMIC PIEZOCONE TESTS

CPT PROFILING AND LABORATORY DATA CORRELATIONS FOR DERIVING OF SELECTED GEOTECHNICAL PARAMETER

CPT: _CPTU1. GEOTEA S.R.L. Via della Tecnica 57/A San Lazzaro di Savena (BO)

Evaluation of the undrained shear strength of Champlain Sea clays (Leda clay) in Ottawa using CPT

ScienceDirect. Correlations between cone penetration test and seismic dilatometer Marchetti test with common laboratory investigations


ABSTRACT. Use and Application of Piezocone Penetration Testing in Presumpscot Formation

GEOTECHNICAL SITE CHARACTERIZATION

Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

The CPT in unsaturated soils

Correlations between soil parameters and penetration testing results

Assessment of cyclic liquefaction of silt based on two simplified procedures from piezocone tests

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

Liquefaction potential of Rotorua soils

Influence of fines on the resistance to liquefaction of a clayey sand

Evaluation of Cone Penetration Resistance in Loose Silty Sand Using Calibration Chamber

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

SOME GEOTECHNICAL PROPERTIES OF KLANG CLAY

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Performance based earthquake design using the CPT

Vibroflotation Control of Sandy Soils using DMT and CPTU

APPENDIX A. Borehole Logs Explanation of Terms and Symbols

Evaluation of liquefaction resistance of non-plastic silt from mini-cone calibration chamber tests

G.A. Siemens 1, M. Gholami 1, A. Khoshand 1, S. Fraser 1, V. Paquin 1, K.P. Weber 1, R. W. Beddoe 2, H. Stewart 3, T. Peet 3

Chapter 12 Subsurface Exploration


Use of Dilatometer in Unusual Difficult Soils a Case Study

Cone Penetration Test Design Guide for State Geotechnical Engineers

Interpretation of the CPT in engineering practice

Seismic piezocone and seismic flat dilatometer tests at Treporti

Evaluation of soil liquefaction using the CPT Part 1

Geotechnical characterization of a heterogeneous unsuitable stockpile

From - To 0,00-4,90 4,90-6,40 6,40-8,60 8,60-9,60 9,60-10,50 10,50-12,00 12,00-14,80 14,80-15,80 15,80-19,30 19, ,00

Depth (ft) USCS Soil Description TOPSOIL & FOREST DUFF

Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments.

Jose Brito, Cenor, Portugal

Interpretation of Seismic Cone Penetration Testing in Silty Soil


CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

The attitude he maintains in his relation to the engineer is very well stated in his own words:

Ohio Department of Transportation. Development of CPT Driven Pile Direct Design Methodology for ODOT

VIRTUAL LAB. Z Soil.PC report revised by R.F. Obrzud, A. Truty and K. Podleś. with contribution by S. Commend and Th.

Use of CPT in Geotechnical Earthquake Engineering

Technical Memorandum. Soil Borings

Soil Behaviour in Earthquake Geotechnics

The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

5th International Workshop "CPTU and DMT in soft clays and organic soils" Poznan, Poland, Sept , 2014

SOIL MECHANICS AND APPLIED FOUNDATION ENGINEERING FUNDAMENTAL FACTS OF SOIL BEHAVIOR

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE

General. DATE December 10, 2013 PROJECT No TO Mary Jarvis Urbandale/Riverside South Development Corporation

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM

Pile Drag Load and Downdrag in a Liquefaction Event

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS.

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC

Master Thesis, Department of Geosciences. Interpretation of CPTu results in silty clay and assessment of strength parameters

Geotechnical Report for Derwent Way Transfer Station, New Westminster, BC

REPORT OF PRELIMINARY GEOTECHNICAL EXPLORATION. Marion County Industrial Park Lot 4. Marion County, South Carolina S&ME Project No.

Importance of CPT in development of offshore windfarms

Ground Sampling and Laboratory Testing on Low Plasticity Clays

Halden silt site Status of work and plans for future. Roselyn Carroll 25 th November 2016

SOIL AND AGGREGATE FUNDAMENTALS STUDENT GUIDE AMRC April, 2006 AREA MANAGER ROADS CERTIFICATION PROGRAM FOR EDUCATIONAL PURPOSES ONLY

Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results

Set-up in Heavy Tamping Compaction of Sands

(C) Global Journal of Engineering Science and Research Management

Transcription:

GeoEdmonton'08/GéoEdmonton008 Interpretation of SCPTu Data in Stiff Soils and Soft Rock Elbanna, M AMEC Earth & Environmental, Nanaimo, British Columbia, Canada Woeller, D; Greig, J; Sharp, J; Grass, J ConeTec Investigations Ltd., Richmond, British Columbia, Canada ABSTRACT Recent advances in Cone Penetration Testing (CPT) probes and deployment rigs have allowed for testing to occur in much stiffer soil conditions than previously possible, including glacial tills and weathered rock. Many soil classification techniques rely on empirical relationships based on datasets with limited experience in these conditions. Investigations have been conducted at two Alberta sites, with CPTu, SCPTu and traditional Standard Penetration Testing (SPT). Six classification techniques were employed based on the CPT data and compared to the results of the SPT testing and laboratory testing. Appropriate classification charts are recommended based on the data set. It is recommended that additional CPTu and SCPTu data in these subsurface conditions be cross-correlated with physical samples in order to develop larger datasets and better empirical relationships between in-situ testing and soil classification in stiff soils RÉSUMÉ Les avances récentes dans les sondes d Évaluation de Pénétration au Cône (EPC) et les foreuse de déploiement pétrolières ont permis des essais dans des conditions de sol beaucoup plus rigides qu'auparavant, en incluant des tills glacial et la roche érodé. Beaucoup de techniques de classification de sol s appuient sur des relations empiriques basés sur des jeux de donnés avec de l'expérience limitée dans ces conditions. Des recherches ont été accomplies à deux sites en Alberta, avec CPTu, SCPTu et l Évaluation de Pénétration Standard traditionnelle (EPS). Six techniques de classification ont été employées basées sur les données d EPC. Ils ont eu des résultats comparables à celles de l EPS et du laboratoire. Des graphiques de classification appropriés sont recommandés basés sur le jeu de donnés obtenu. Il est recommandé que des jeux de donnés supplémentaire de CPTu et SCPTu dans ces conditions souterraine soient trans-corrélés avec des échantillons pour développé des plus grandes jeux de donnés et des meilleurs rapports empiriques entre l évaluation in-situ et la classification de sol dans des sols rigides. INTRODUCTION Cone Penetration Testing offers rapid, economical and continuous soil profiling for geotechnical and environmental site investigations. Traditionally, the CPT has been used for soft soil investigations due to relatively delicate equipment and small deployment equipment. Recent years have seen the development of large advanced CPT rigs that can now push into much harder soils including, but not limited to, stiff glacial tills and soft rock. In addition to the standard tip and sleeve measurements, pore pressure transducers have been added to cones in order to measure dynamic and static water pressures (CPTu). Geophones have been included in the cone body such that shear and compression wave velocities can be measured (SCPTu) as shown in Figure. SCPTu offers the potential to determine Soil Behaviour Type (SBT) using the measurement of cone tip resistance, sleeve friction, pore pressure and shear wave velocity (Robertson et al. 98; Robertson 990; Eslami and Fellenius 997; and Robertson et al 99). The interpretation of SCPTu data is dependant upon many geologic factors. For fine grained soils, the SCPTu response is dependant on changes in over consolidation (OCR), age, sensitivity, undrained strength and permeability. For coarse grained soils, the SCPTu response is dependant on OCR, age, cementation and friction angle. In addition, stress history, in situ stresses, stiffness, macrofabric, mineralogy and void ratio also influence the SCPTu and hence its interpretation as it relates to soil type and strength characteristics. This paper evaluates several CPT and SCPTu classification methods against traditional laboratory based testing methods at two sites located in Fort McMurray and Calgary, Alberta. In each case, the sites exhibited subsurface conditions that were of glacial origin. Geophone Load Cells Porous Filter Element Inclinometer Thermistor Friction Sleeve Pore Pressure Transducer Cone Tip Figure. Schematic of a ConeTec Seismic Piezocone

GeoEdmonton'08/GéoEdmonton008 a) b) Figure. a) Track Mounted Rig Used at Fort McMurray Site, b) Truck Mounted Rig Used at Calgary Site BACKGROUND At both test sites, a cm ConeTec SCPTu cone was used, as illustrated on the preceding page in Figure. Both test locations, employed the use of very large CPT rigs in order to achieve the desired design depths. The Fort McMurray site employed a ton tracked CPT rig due to soft surface conditions, while the Calgary site employed the use of a 0 ton truck mounted rig. Photographs of both are shown in Figures a and b. SBT CLASSIFICATION METHODS Attempts to correlate CPT data to soil classification were first made by Bergmann in 9. Over the years, researchers have proposed several methods to interpret soil types from CPT measurements. This is perhaps best described by Fellenius and Eslami (000), as it details the progression of the methods employed. Soil Behaviour Type (SBT) classification has traditionally relied on two parameters; the cone resistance qc, and the sleeve friction, fs. Recently, pore pressure transducers have been incorporated allowing for an increased understanding of the soil behaviour. Additionally, it allows for the correction of the tip resistance measurement, qc, by taking into account the pore water pressure against the shoulder of the conical tip. This correction is shown in Equation, where u represents the dynamic pore pressure reading, located behind the shoulder of the cone and a, the net area ratio, is a laboratory based variable that is specific to cone design. q t q c u a fs 00% qt Bq u uo qt vo [] Robertson 990 recommended the use of normalized tip resistance and friction sleeve parameters to compensate for the increased values that were observed to occur at deeper depths. It is suggested that this method be used at depths exceeding 0 metres. These calculations are denoted as Equation & and the normalized charts displayed as Figures a and b. Qt qt vo vo ' Fr fs 00 % q t vo [] [] Eslami and Fellenius 997 developed a classification chart, Figure, by plotting the effective tip resistance, qe, as a function of the sleeve friction, fs, shown in Equation. [] Robertson et al. 98, plotted the corrected tip resistance against the friction ratio, Rf. This calculation is displayed as Equation and the classification chart is displayed as Figure a. Rf Additionally, Robertson et al. 98, proposed the use of the pore pressure parameter, Bq, displayed as Equation and as Figure b. [] q E qt u [] The reasoning behind this method was to avoid plotting the variable, qt, against itself as Rf.

GeoEdmonton'08/GéoEdmonton008 a) b) Cone Resistence, q t (MPa) 00 0 9 8 0 7 0. 0 7 8 Cone Resistence, q t (MPa) 00 0 9, 0, or 0 9 8 7 0. -0. 0.0 0. 0. 0. 0.8.0.. Ft. McMurray-A Ft. McMurray-B Calgary-B Friction Ratio, R f (%) Pore Pressure Parameter, B q - sensitive fine grained - silty clay to clay 7- silty sand to sandy silt 0- gravely sand to sand - organic material - clayey silt to silty clay 8- sand to silty sand - very stiff fine grained* - clay - sandy silt to clayey silt 9- sand - sand to clayey sand* Figure a, b. SBT Classification Charts (after Robertson et al. 98) Range bars, in X and Y directions, represent ±standard deviation Every data point represents the average of tests except Calgary-B that represent only one test a) b) Normalized Cone Resistence, Q t (MPa) 000 7 8 9 00 0 0..0 0.0 Normalized Cone Resistence, Q t (MPa) 000 00 0 7 Ft. McMurray-A Ft. McMurray-B Calgary-B -0. 0.0 0. 0.8. Normalized Friction Ratio, Fr (%) Pore Pressure Parameter, B q - sensitive fine grained - silt mixtures clayey silt to silty clay 7- gravely sand to sand - organic soils-peats -sand mixtures -silty sand to sandy silt 8-very stiff sand to clayey sand - clays-clay to silty clay - sands-clean sands to silty sands 9- very stiff fine grained Figure a, b. SBT Classification Charts (after Robertson 990) Range bars, in X and Y directions, represent ±standard deviation Every data point represents the average of tests except Calgary-B that represent only one test

GeoEdmonton'08/GéoEdmonton008 "effective" cone resistance, q E (MPa) 00 0 Ft. McMurray-A Ft. McMurray-B 0. 0 00 000 Sleeve Friction, fs (kpa) - collapsive soil - sensitive soil - silty sand sandy silt - soft clay soft silt - sand - gravel - silty clay stiff clay Figure. SBT Chart (after Eslami and Fellenius 997) Range bars represent ±standard deviation Every data point represents the average of tests The last classification method this paper will discuss was proposed by Robertson et al. 99, and involves the use of seismic data (Figure ). In this case the soil behaviour type is interpreted based on the normalized cone tip resistance, Q t, against the ratio of small strain shear modulus, G 0, to cone resistance (G 0/q t). The small strain shear modulus is directly related to the shear wave velocity, V s, by the relationship shown in Equation 7. G Where is the soil mass density All of these SBT classification methods have been evaluated for both Alberta sites discussed in this paper. Normalized Cone Resistence, Q t (MPa) o V s 000 00 0 Figure. Soil Behaviour Type Charts (Robertson et al. 99) 0 00 - organic - clay - silt mixture - sand mixture - sand - gravely sand Ratio G 0 /q t [7] CASE STUDY CPTu, SCPTu, SPT and conventional laboratory based soil testing data collected at both Alberta sites have been summarized in Figure 7. Parameters measured from drilling and lab testing include grain size distribution, Atterberg limits, Standard Penetration Testing and physical soil descriptions. CPTu and SCPTu parameters include tip resistance, sleeve friction, pore pressure (both u and u o) and shear wave velocity, for two of the four trials. Eslami and Fellenius 997 recommended the geometric averaging as it is more representative in non homogenous material. both arithmetic and geometric averaging for CPTu and SCPTu data have been used in the analysis. However, it was realized that there is no significant deference between the two averaging techniques, at least with the data presented in this paper. This is basically due to the consistency of the material. Therefore, only the results from the arithmetic averaging are presented in this paper. The authors, however, agree that the geometric averaging might be advantages with non homogenous material.. Site Descriptions The subsurface condition in Fort McMurray site is generally comprised of interbedded stiff to hard sandy silt and clay layers with medium to low plasticity. Two zones of material are considered in this paper where the material seemed to be very dense and hard to drill. These zones are referred to as Fort McMurray-A and Fort McMurray-B. The subsurface conditions at the Calgary site are comprised of interbedded sand, silt and silty clay that are lacustrine in origin, followed by very stiff to hard silty clay till. Soil samples indicate the till to be low plastic silty clay and silt containing trace amounts of sand, gravel and coal fragments. Data from this zone is referred to as Calgary- A. In this zone, Atterberg limits, moisture content, and SPT data are available. A very dense layer that is about meters thick was encountered at the Calgary site. This layer is described in the borehole logs as low plasticity silt with trace sand. Data from this zone is referred to as Calgary-B. CPT tip resistance and sleeve friction in this zone are approximately an order of magnitude higher than the silty clay zone (). Seismic CPT is available for this zone as well as SPT and moisture content. SPT refusal (greater than 0 blows per ) was encountered in this zone.. Analysis Summarized results for both sites are shown in Figure 7. A total of 0 CPT soundings associated with adjacent boreholes are presented in Figure 7. Shear wave velocity data is available only from two soundings (Fort McMurray- A and Calgary-B). 7

GeoEdmonton'08/GéoEdmonton008 At each sounding, excluding Calgary-B, the data points for q t, f s, R f, SPT and the laboratory test values represent the average of soundings/boreholes that were carried out in the same area. The range bars shown in Figure 7 represent ± standard deviation. The results are plotted in this fashion to illustrate the repeatability of the CPT data obtained from three different soundings in the same material. SBT interpreted for Fort McMurray-A, Fort McMurray-B and Calgary-B sites do not have the same degree of accuracy. Charts with pore pressure parameter B q, shown in fugure b, did not appear to provide accurate SBT in all trials. It is important to note the importance of sub-surface groundwater conditions when employing this method, Site Ft. McMurray-A Ft. McMurray-B Borehole soil description CLAYEY SILT, very dense, med. plastic, moist, gray SILT-SAND, some clay, trace gravel, moist, gray SILTY CLAY, trace sand, trace gravel (till), moist, grey q t (MPa) f s (MPa) Rf (%) VS (m/s) SPT (N) 0 0 0 0 0 0 0 00 00 000 0 0 0 0 0 >> Gravel (%) Sand (%) Silt (%) Clay (%) W c (%) W L (%) W P (%) 0 79 0 9 9 0 0 7 8 7 Calgary-B SILT, trace sand, very dense (till), wet, grey >> Figure 7. Data Summary Range bars represent ±standard deviation Every data point represents the average of tests except Calgary-B that represent only one test Averaging depth = 0.m and COV over the averaging depth ranges between % and 0% Although CPT data was collected at centimeter intervals, the results are arithmetically averaged over an interval of 0 centimeters. Over the averaging depth, the coefficient of variation (COV) ranges between -0% in both sleeve friction and tip resistance measurements, indicating consistent sub-surface conditions. SPT blow counts and laboratory data shown in Figure are obtained from within the 0 centimeter averaging interval of the CPT data. Figure 7 also shows that refusal was encountered with the SPT in Fort McMurray-A and Calgary-B sites. In addition, fairly wide scatter can be observed for SPT blow counts in Fort McMurray-B site. Recorded parameters from all CPTu and SCPTu soundings have been applied to all SBT classification techniques discussed in Section. The results have been superimposed on Figures - and can be compared to the physical samples shown in Figure 7.. Discussion Geometric averaging recommended by Eslami and Fellenius 997, was considered in the analyses. However, there was not an appreciable difference between the results of the two techniques with the data presented in this paper. This is due to the uniformity of the material. The authors agree that geometric averaging might be advantageous in non homogenous soils. The standard classification chart in Figure a, provides accurate soil behaviour type interpretations for. particularly in native Albertan soils. There are often very low water tables, dynamic hydrologeologic conditions and dilative soils that can make analysis through this method difficult. Charts with the normalized parameters Q t and F r, Figure a, provided accurate SBT interpretation in all the cases. Additionally, this method is able to accurately classify soils at depths less than 0 meters. The Eslami and Fellenius chart, Figure, shows accurate SBT interpretation for Fort McMurray-B and sites. It should be noted that the SBT of extremely stiff material such as that encountered in Calgary-B site can not be captured with Eslami and Fellenius charts. In this case f s, which was over 00kPa, is beyond the 000kPa sleeve friction limit of the chart. Interpretations based on the seismic based chart in Figure were not accurate for this case study. However, this chart has been recommended for identification of unusual soils such as cemented, highly compressible and aged soils (Lunne et al. 997). CONCLUSIONS CPTu and SCPTu testing can provide fast, reliable and continuous soil profiling. Advances in rig and cone design have allowed testing to occur in very stiff soil conditions, not previously possible. Several empirical relationships have been developed in the past decades which correlate several cone 8

GeoEdmonton'08/GéoEdmonton008 parameters to soil classification and soil behaviour categorization. As many of these methods come from different data sets and can be specialized towards particular subsurface conditions, care should be taken when selecting classification techniques. Robertson, P.K., Sasitharan, S., Cunning, J.C., and Segs, D.C., (99), Shear Wave Velocity to Evaluate Flow Liquefaction. Journal of Geotechnical Engineering, ASCE, (), -7. Additionally, collecting as many parameters as possible greatly increases the ability to accurately classifying soil types. It is the opinion of the authors that increased data collection and cross correlation to traditional drilling and laboratory based testing should occur. This will develop stronger empirical relationships between CPTu and SCPTu parameters in stiff soils and greatly aide in soil classification. Future work will include the development of a stiff soil behaviour type chart. ACKNOWLEDGEMENTS The authors would like to thank the Calgary Health Region for permission to use for the data presented in this paper. The writers are grateful for assistance provided by Ms. Brooke Reilly for translation services. REFERENCES Begemann, H.K.S., (9), The Friction Jacket Cone as an Aid in Determining the Soil Profile. Proceedings of the th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Montreal, September 8 -, Vol., pp. 7-0. Eslami, A. and Fellenius, B.H. (997). Pile Capacity by Direct CPT and CPTu Methods Applied to 0 Case Histories, Canadian Geotechnical Journal (), 88-90. Fellenius, B.H., and Eslami, A., (000), Soil Profile Interpreted From CPTu Data. Year 000 Geotechnics Geotechnical Engineering Conference, Asian Institute of Technology, Bangkok, Thailand, November 7-0, 000, 8 p. Lunne, T., Robertson, P.K. and Powell, J.J.M., (997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic and Professional. Robertson, P.K., Campanella, R.G., Gillespie, D., and Grieg, J., (98), Use of Piezometer Cone Data. Proceedings of American Society of Civil Engineers, ASCE, In-Situ 8 Specialty Conference, Edited by S. Clemence, Blacksburg, June -, Geotechnical Special Publication GSP No., pp. - 80. Robertson, P.K., (990), Soil Classification Using the Cone Penetration Test. Canadian Geotechnical Journal, Vol. 7, No., pp. - 8. 9