Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics

Size: px
Start display at page:

Download "Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics"

Transcription

1 Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION Mechanical Wave Measurements Electromagnetic Wave Techniques Mechanical Wave Measurements Crosshole Tests (CHT) Downhole Tests (DHT) Spectral Analysis of Surface Waves Seismic Refraction Suspension Logging Electromagnetic Wave Techniques Ground Penetrating Radar (GPR) Electromagnetic Conductivity (EM) Surface Resistivity (SR) Magnetometer Surveys (MT) Mechanical Wave Geophysics Nondestructive measurements (γ s < 1 - %) Both borehole geophysics and non-invasive types (conducted across surface). Measurements of wave dispersion: velocity, frequency, amplitude, attenuation. Determine layering, elastic properties, stiffness, damping, and inclusions Four basic wave types: Compression (P), Shear (S), Rayleigh (R), and Love (L). Mechanical Wave Geophysics Compression (P-) wave is fastest wave; easy to generate. Shear (S-) wave is second fastest wave. Is directional and polarized. Most fundamental wave to geotechnique. Rayleigh (R-) or surface wave is very close to S-wave velocity (9 to 9%). Hybrid P-S wave at ground surface boundary. Love (L-) wave: interface boundary effect Mechanical Body Waves Amplitude Mechanical Body Waves Initial S R Time P-wave Oscilloscope P Hammer Source Receiver (Geophone) S-wave Source Rich in Compression Mode

2 Amplitude Hammer Source Mechanical Body Waves Oscilloscope P S R Receiver (Geophone) Source Rich in Shear Mode Time Mechanical Waves (Compression) P - Wave Velocities Steel Intact Rocks Weathered Rocks Ice Till Sand Clay Sea Water Fresh Water Compression Wave Velocity, V p (m/s) Mechanical Waves (Shear) Geophysical Equipment S - Wave V elocities Steel Intact Rocks Weathered Rocks Ice Till Sand Clay Sea Water } V s = Fresh Water 1 3 Shear Wave Velocity, V S (m/s) Seismograph Portable Analyzer Spectrum Analyzer Velocity Recorder Seismic Reflection Seismic Reflection

3 Seismic Refraction Seismic Refraction ASTM D 777 Note: V p1 < V p Determine depth to rock layer, z R Source (Plate) x1 x x3 z R x oscilloscope t1 t Vertical Geophones t3 t Soil: V p1 Rock: V p t values Travel Time (seconds)..1.1 z x c = Seismic Refraction Horizontal Soil Layer over Rock V V V p + V c p p1 p1 V p = m/s x c = 1. m. 1 Depth to Rock: V p1 = 13 m/s z c =. m. 1 3 Distance From Source (meters) x values 1 Results from Seismic Refraction Shear Wave Velocity, V s Fundamental measurement in all solids (steel, concrete, wood, soils, rocks) Initial small-strain stiffness represented by shear modulus: G = ρ Τ V s (alias G dyn = G max = G ) Applies to all static & dynamic problems at small strains (γ s < 1 - ) Applicable to both undrained & drained loading cases in geotechnical engineering. Crosshole Seismic Testing Equipment (ASTM D )

4 Oscilloscope t Test Depth Downhole Hammer (Source) packer Note: Verticality of casing must be established by slope inclinometers to correct distances x with depth. PVC-cased Borehole Pump x = fctn(z) from inclinometers Shear Wave Velocity: V s = x/ t Slope Inclinometer x Crosshole Testing ASTM D PVC-cased Borehole Paul Mayne/GT Velocity Transducer (Geophone Receiver) Slope Inclinometer Results from Crosshole Seismic Tests Reference: McLamore, Anderson, & Espana (197), ASTM STP Downhole Seismic Setup and Testing Equipment Raw Downhole Seismic P-and S-Wave Data Wilson, et al., (197) Proceedings, Earthquake Engrg. & Soil Dynamics, ASCE Conference Pasadena, CA Wilson, et al., (197) ASCE EESD Oscilloscope Pump Downhole Testing Horizontal Plank with normal load In-Situ Surface Wave Testing Signal Analyzer t Hammer x Paul Mayne/GT Accelerometer Source Sensors z 1 z packer Layer 1 Test Depth Interval Shear Wave Velocity: V s = R/ t R 1 = z 1 + x R = z + x Horizontal Velocity Transducers (Geophone Receivers) Cased Borehole Rayleigh Surface Waves Layer Layer 3 Layer

5 Surface Wave Measurements Shear Wave Measurements Spectral Analysis of Surface Waves (transient) Continuous Surface Waves (CSW): variable excitation using surface vibrator Modal Analysis of Surface Waves (MASW) Passive Analysis of Surface Waves (low frequency content) Seismic Piezocone Test (SCPTu) Shear Wave Methods Seismic Piezocone Test Cost to Profile V s to 3 m depth: Crosshole $ 1, to $1, Downhole $, to $ 7, Obtains Four Independent Measurements with Depth: Hybrid of Penetrometer with Downhole Geophysics V s SASW $, to $3, Suspension Logging (deep > m) Cone Tip Stress, q t Penetration Porewater Pressure,u f s SCPTu $ 1, to $, which includes readings: q t, f s, u b, t, V s Sleeve Friction, f s Arrival Time of Downhole Shear Wave, t s u u 1 o q c

6 Manual Shear Wave Sources Automated Seismic Sources Downhole Shear Wave Velocity Amplitude Time (ms) Downhole Shear Waves Left Strike Right Strike CROSSOVER Method. Anchoring System Automated Source Polarized Wave Downhole V s with excellent soil coupling. Amplitude Time (ms) Shear Wave at.1 m Shear Wave at 9. m CROSSCORRELATION Maximum crosscorrelation at Dt =.7 ms Shear wave velocity = 1 m/s Time shift (ms) - - Complete Set of Shear Wave Trains Mud Island Site A, Memphis TN Comparison of Shear Wave Methods Shear Wave Velocity, Vs (m/s) 1 3 Reflection/Refraction 1 SH Refraction Depth (m) 1 Downhole (SCPTu) Mud Island, (Site B) Geophysics Comparisons 3

7 SCPTU Sounding Memphis, Shelby County, TN qt (MPa) fs (kpa) u (kpa) Vs (m/sec) d = 3.7 mm V s More Measurements Depth (m) f s u is More Better q t Specialized In-Situ Tests Borehole Shear Test (BHT) Push-In Pressuremeter Lateral Stress Cone Vibrocone Penetrometer for Liquefaction Self-Boring Pressuremeter Tests Iowa Stepped Blade (ISB) Vision Cone (VisCPT) Torsional Impulse Shear Device Cone Pressuremeter (CPMT) Push-in Total Stress Cells (TSC) Hydraulic Fracturing (HF) Hybrid In-Situ Tests Combination of Two Tests: Cone Pressuremeter (CPT + PMT) Seismic Cone Penetrometer (SCPTù) with dissipation (DHT + CPTu) Seismic Flat Dilatometer (SDMTà) with dissipation (DHT + DMT) Resistivity Piezocone (RCPTu): combine electrical conductivity + CPTu. Dilatocone (DMT + CPT) Saturated Unit Weight of Geomaterials (Burns & Mayne, TRR 199)

8 Unit Weight Evaluation for Saturated Geomaterials (Mayne, In-Situ Measurement 1 Bali) Sat. Unit Weight, γt (kn/m 3 ) Saturated Soil Materials: Additional z (m) = n = 13 γt (kn/m 3 ) =.3 log Vs Log z 1 Rock with Vs (m/s) and depth z (m) Materials n = 77 r 1 =. S.E. = Intact Clays Fissured Clays Silts Peat 1 Sands Gravels Weathered Rx Intact Rocks Seismic Flat Dilatometer (SDMT) Shear Wave Velocity, V s (m/s) Seismic DMTs at UMASS, Amherst True-Interval Seismic Dilatometer (SDMT) Lift-off Pressure p o (bars) Expansion Pressure p1 (bars) 1 1 Travel Time of Shear Wave (ms) SDMT1 SDMT SDMT Depth (m) SDMT 1 DMT 3 DMT SDT 3 SDMT SDMT SDMT in Layered Soils of Venetian Lagoon DMT Pressures (kpa) Shear Wave, V s (m/s) Seismic Piezocone in Soft Chicago Clays Northwestern University Tip Resistance q T (MPa) 1 1 Sleeve Friction f s (kpa) Porewater Pressure u (kpa) 1 1 Friction Ratio FR (%) 1 Shear Wave Velocity V s (m/s) 1 3 Depth (meters) 1 1 Po P1 1 1 True- SDMT Pseudo- SCPT Treporti Embankment Depth (m)

9 Depth (m) Tip Stress, q T (MPa) FREQUENT INTERVAL V s METHOD Shear Wave, V s (m/s) Pseudo SCPTu True- Interval Probe Lake Michigan Special True- Interval V s Probe in Soft Chicago Clays, Northwestern University Electromagnetic Wave Geophysics Surface Mapping Techniques: Ground Penetrating Radar (GPR) Electrical Resistivity (ER) Surveys Electromagnetic Conductivity (EM) Magnetometer Surveys (MS) Downhole Techniques Resistivity probes, MIPs, RCPTu -d and 3-d Tomography Electromagnetic Wave Geophysics Nondestructive methods Non-invasive; conducted across surface. Measurements of electrical & magnetic properties of the ground: resistivity (conductivity), permittivity, dielectric, and magnetic fields. Cover wide spectrum in frequencies (1 Hz < f < 1 Hz). Ground Penetrating Radar (GPR) Xadar Sensors & Software GeoRadar Electrical Resisitivity Measurements Electrical Resisitivity Measurements

10 Electromagnetic Conductivity (EM) References on Geophysics Application of Geophysical Methods to Highway Related Problems (FHWA Manual DTFH--P-3; 3) Soils and Waves by Santamarina, Klein, and Fam (1, Wiley & Sons) ISSMGE TC 1 Geophysics in Geotechnical Engineering: RCPTu Seismic Resistivity Soundings (SRCPTu) Combined RCPTu1 and SCPTu at Mud Island, Memphis Shear Wave Tip Resistance Sleeve Friction Pore Pressure Conductivity V s (m/s) q T (MPa) f s (kpa) U 1 and (kpa) k (ms/m) SB-1 SB-1 SB- u SB- u Depth (m) ss Resistivity (or Conductivity) Penetrometers Dielectric (or Permittivity) Penetrometers Applicability of In-Situ Tests Subsurface Profile Developed from Geotechnical Investigations In-Situ Test Method CLAYS SILTS SANDS GRAVELS Cobbles/ Boulders SPT CPT DMT PMT VST Geophysics Grain Size (mm) Elevation (meters MSL) SPT-N Horizontal Distance (meters) Boring HB- HB- HB- HB- HB Clay Crust 11 Excavation Subgrade Alluvial Clayey 1 7 SILT (ML) Silty SAND (SM) 31 GRAY SAND (SP) 3 31 Eocene CLAY (CH) 9

11 Drilling & Sampling Geophysics Constitutive Models Fully Integrated Ground Behavior Subsurface Profile Laboratory Testing Analytical Modeling Soil Parameters Evaluation e o, γ T, σ vo, D R, σ p, OCR, G o, D, K o, ν, φ, Ψ, Λ, Γ, c, k, c v, K, M, G, E, C c, C r, C s, C α, s u, E u Constitutive Models In-Situ Testing Numerical Simulation Silty CLAY: φ = 9.1 o E = 1 MPa K o =.7 Silty SAND: φ = 39.1 o E = 9 MPa K o = 1. Sandy SILT: φ = 37 o E = MPa K o =.7

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423 Enhanced In-Situ Testing for Geotechnical Site Characterization SPT, VST, DMT, PMT, CHT, DHT, CPT Graduate Course CEE 6423 Paul W. Mayne, PhD, P.E. Professor, Geosystems Program Civil & Environmental Engineering

More information

GEOTECHNICAL SITE CHARACTERIZATION

GEOTECHNICAL SITE CHARACTERIZATION GEOTECHNICAL SITE CHARACTERIZATION Neil Anderson, Ph.D. Professor of Geology and Geophysics Richard W. Stephenson, P.E., Ph.D. Professor of Civil, Architectural and Environmental Engineering University

More information

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Conventional Field Testing 1 Field Test: In-situ shear strength

More information

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI-01-031 Federal Highway Administration Washington, DC Geotechnical Site Characterization July 2001 by Paul W. Mayne,

More information

Chapter 12 Subsurface Exploration

Chapter 12 Subsurface Exploration Page 12 1 Chapter 12 Subsurface Exploration 1. The process of identifying the layers of deposits that underlie a proposed structure and their physical characteristics is generally referred to as (a) subsurface

More information

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves

More information

Seismic piezocone and seismic flat dilatometer tests at Treporti

Seismic piezocone and seismic flat dilatometer tests at Treporti Proceedings ISC- on Geotechnical and Geophysical Site Characterization, Viana da Fonseca & Mayne (eds.) Millpress, Rotterdam, ISBN 9 59 9 9 Seismic piezocone and seismic flat dilatometer tests at Treporti

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) FLOW PROPERTIES Soils exhibit flow properties that control hydraulic conductivity (k), rates of consolidation, construction

More information

Cone Penetration Testing in Geotechnical Practice

Cone Penetration Testing in Geotechnical Practice Cone Penetration Testing in Geotechnical Practice Table Of Contents: LIST OF CONTENTS v (4) PREFACE ix (2) ACKNOWLEDGEMENTS xi (1) SYMBOL LIST xii (4) CONVERSION FACTORS xvi (6) GLOSSARY xxii 1. INTRODUCTION

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. Portland, Oregon In situ testing of soil, which essentially consists of evaluating

More information

CPT Data Interpretation Theory Manual

CPT Data Interpretation Theory Manual CPT Data Interpretation Theory Manual 2016 Rocscience Inc. Table of Contents 1 Introduction... 3 2 Soil Parameter Interpretation... 5 3 Soil Profiling... 11 3.1 Non-Normalized SBT Charts... 11 3.2 Normalized

More information

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History M.R. Lewis & J. Clemente Bechtel Corporation, California, USA I.A. Weemees ConeTec, Inc., British Columbia,

More information

VMS-GeoMil. Background

VMS-GeoMil. Background Background When using a drilling rig for cone penetration testing, a mechanical clamp can be mounted to the drilling head (by means of a special transition piece). The depth than can be achieved depends

More information

Introduction to Cone Penetration Testing

Introduction to Cone Penetration Testing Gregg Drilling & Testing, Inc. Site Investigation Experts Introduction to Cone Penetration Testing Peter K. Robertson Webinar 2012 History of CPT First developed in 1930 s as mechanical cone Electric cones

More information

Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments.

Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments. Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments. Zbigniew Młynarek, Sławomir Gogolik August Cieszkowski Agricultural University of Poznań, Poland Diego Marchetti

More information

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION LECTURE 10 3.6 GEOPHYSICAL INVESTIGATION In geophysical methods of site investigation, the application of the principles of physics are used to the study of the ground. The soil/rock have different characteristics

More information

Correlating the Shear Wave Velocity with the Cone Penetration Test

Correlating the Shear Wave Velocity with the Cone Penetration Test Proceedings of the 2 nd World Congress on Civil, Structural, and Environmental Engineering (CSEE 17) Barcelona, Spain April 2 4, 2017 Paper No. ICGRE 155 ISSN: 2371-5294 DOI: 10.11159/icgre17.155 Correlating

More information

Cone Penetration Test Design Guide for State Geotechnical Engineers

Cone Penetration Test Design Guide for State Geotechnical Engineers Cone Penetration Test Design Guide for State Geotechnical Engineers Author: David Saftner Report Number: 2018-32 Date Published: November 2018 Minnesota Department of Transportation Research Services &

More information

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0) This Cone Penetration Test (CPT) Sounding follows ASTM D 5778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was

More information

Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan Abstract This article discusses the possibility

More information

Soil Behaviour in Earthquake Geotechnics

Soil Behaviour in Earthquake Geotechnics Soil Behaviour in Earthquake Geotechnics KENJI ISHIHARA Department of Civil Engineering Science University of Tokyo This publication was supported by a generous donation from the Daido Life Foundation

More information

Cone Penetration Test (CPT) Interpretation

Cone Penetration Test (CPT) Interpretation Cone Penetration Test (CPT) Interpretation Gregg uses a proprietary CPT interpretation and plotting software. The software takes the CPT data and performs basic interpretation in terms of soil behavior

More information

Determining G-γ decay curves in sand from a Seismic Dilatometer Test (SDMT)

Determining G-γ decay curves in sand from a Seismic Dilatometer Test (SDMT) Geotechnical and Geophysical Site Characterization 4 Coutinho & Mayne (eds) 213 Taylor & Francis Group, London, ISBN 978--415-62136-6 Determining G-γ decay curves in sand from a Seismic Dilatometer Test

More information

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0) This Cone Penetration Test (CPT) Sounding follows ASTM D 778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was

More information

5th International Workshop "CPTU and DMT in soft clays and organic soils" Poznan, Poland, Sept , 2014

5th International Workshop CPTU and DMT in soft clays and organic soils Poznan, Poland, Sept , 2014 5th International Workshop "CPTU and DMT in soft clays and organic soils" Poznan, Poland, Sept. 22-23, 2014 THE SEISMIC DILATOMETER FOR IN SITU SOIL INVESTIGATIONS Diego Marchetti, Senior Eng., Studio

More information

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date: The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT

More information

CPT: _CPTU1. GEOTEA S.R.L. Via della Tecnica 57/A San Lazzaro di Savena (BO)

CPT: _CPTU1. GEOTEA S.R.L. Via della Tecnica 57/A San Lazzaro di Savena (BO) 468 - San Lazzaro di Savena (BO) +39.51.655377 Project: CPeT-IT v.1.7.6.4 - CPTU data presentation & interpretation software - Report created on: 5/1/16, 11.51.3 Project file: \\Server\server\GEOTEA\LAVORI\16\16.8_FA.TA.

More information

Geotechnical / Geophysical Investigation

Geotechnical / Geophysical Investigation FEATURES TerraDol provides innovative geotechnical and geophysical exploration for civil construction projects including highway, railroad, subway, tunnel, bridge, port, and underground storage projects.

More information

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils Neil Anderson 1, Thanop Thitimakorn 1, David Hoffman 2, Richard Stephenson 2, Ronaldo Luna 2 Geological Sciences

More information

O-CELL RESPONSE USING ELASTIC PILE AND SEISMIC PIEZOCONE TESTS

O-CELL RESPONSE USING ELASTIC PILE AND SEISMIC PIEZOCONE TESTS O-CELL RESPONSE USING ELASTIC PILE AND SEISMIC PIEZOCONE TESTS P W MAYNE Georgia Institute of Technology, Civil & Environmental Engrg., 79 Atlantic Drive, Atlanta, Georgia 3332-355 USA; email: pmayne@ce.gatech.edu

More information

Lateral impact loading and snap-back testing to estimate linear and nonlinear dynamic response of near-shore piles

Lateral impact loading and snap-back testing to estimate linear and nonlinear dynamic response of near-shore piles 2th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement for the Economic Upturn Benevento, Italy, September 15-17,

More information

CYCLIC BEHAVIOUR of SOILS. Atilla Ansal

CYCLIC BEHAVIOUR of SOILS. Atilla Ansal CYCLIC BEHAVIOUR of SOILS Atilla Ansal Ground Motion Characterization Proper design of earthquake-resistant structures requires estimation of the level of ground shaking to which they will be subjected

More information

Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study.

Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study. Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study. Crystal COX a, b and Paul MAYNE a GeoEnvironmental Resources, Inc. b Georgia Institute

More information

DMT-predicted vs measured settlements under a full-scale instrumented embankment at Treporti (Venice, Italy)

DMT-predicted vs measured settlements under a full-scale instrumented embankment at Treporti (Venice, Italy) Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization, Viana da Fonseca & Mayne (eds.) 2004 Millpress, Rotterdam, ISBN 90 5966 009 9 DMT-predicted vs measured settlements under a full-scale

More information

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016 ISC 5 5 9 SEPT 2016 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA Fillippo Gaone James Doherty Susan Gourvenec Centre for Offshore Foundation Systems, UWA School of Civil,

More information

Field measurement of shear wave velocity of soils

Field measurement of shear wave velocity of soils GeoEdmonton08/GéoEdmonton2008 Field measurement of shear wave velocity of soils Fanyu Zhu, K.R. Peaker and Shaheen Ahmad Shaheen and Peaker Limited, Toronto, Ontario, Canada ABSTRACT In this study, S-wave

More information

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests APPENDIX F 1 APPENDIX F CORRELATION EQUATIONS F 1 In-Situ Tests 1. SPT (1) Sand (Hatanaka and Uchida, 1996), = effective vertical stress = effective friction angle = atmosphere pressure (Shmertmann, 1975)

More information

Measuring and comparing soil parameters for a large bridge on East coast of United States

Measuring and comparing soil parameters for a large bridge on East coast of United States Geotechnical and Geophysical Site Characterisation 5 Lehane, Acosta-Martínez & Kelly (Eds) 2016 Australian Geomechanics Society, Sydney, Australia, ISBN 978-0-9946261-2-7 Measuring and comparing soil parameters

More information

Use of CPT in Geotechnical Earthquake Engineering

Use of CPT in Geotechnical Earthquake Engineering Use of CPT in Geotechnical Earthquake Engineering Prof. Scott M. Olson, PhD, PE Use of Cone Penetration Test for Foundation Analysis and Design 2006 Annual Meeting Transportation Research Board Geotechnical

More information

Chapter 3 SUBSOIL EXPLORATION. Omitted parts: Sections & 3.24, 3.25 Examples 3.3, 3.4,3.5

Chapter 3 SUBSOIL EXPLORATION. Omitted parts: Sections & 3.24, 3.25 Examples 3.3, 3.4,3.5 Chapter 3 SUBSOIL EXPLORATION Omitted parts: Sections 3.2-3.10 & 3.24, 3.25 Examples 3.3, 3.4,3.5 GENERAL OBSERVATION Soil does not posses a unique or linear stress-strain relationship. Soil behavior depends

More information

In Situ Subsurface Testing

In Situ Subsurface Testing PDHonline Course C268 (4 PDH) In Situ Subsurface Testing Instructor: John Poullain, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6 Engineering Units Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10 +3 Mega (M) = 10 +6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft 2 ) square meter (m 2 ) Force pounds

More information

Interpretation of Seismic Cone Penetration Testing in Silty Soil

Interpretation of Seismic Cone Penetration Testing in Silty Soil Interpretation of Seismic Cone Penetration Testing in Silty Soil Rikke Holmsgaard 1, Lars Bo Ibsen, and Benjaminn Nordahl Nielsen 3 1 PhD. Fellow, Master of Science in Civil Engineering, Aalborg University,

More information

VIRTUAL LAB. Z Soil.PC report revised by R.F. Obrzud, A. Truty and K. Podleś. with contribution by S. Commend and Th.

VIRTUAL LAB. Z Soil.PC report revised by R.F. Obrzud, A. Truty and K. Podleś. with contribution by S. Commend and Th. VIRTUAL LAB 120201 report revised 15.04.2016 by R.F. Obrzud, A. Truty and K. Podleś with contribution by S. Commend and Th. Zimmermann since 1985 Zace Services Ltd, Software engineering P.O.Box 224, CH-1028

More information

Estimation of Shear Wave Velocity Using Correlations

Estimation of Shear Wave Velocity Using Correlations Estimation of Shear Wave Velocity Using Correlations Pranav Badrakia P.G. Student, Department of Civil Engineering, Maharashtra Institute of Technology, Pune, Maharashtra, India 1 ABSTRACT: Shear wave

More information

Empirical Estimation of Soil Unit Weight and Undrained Shear Strength from Shear Wave Velocity Measurements

Empirical Estimation of Soil Unit Weight and Undrained Shear Strength from Shear Wave Velocity Measurements 5 th Intl Conf on Geotechnical & Geophysical Site Characterisation Empirical Estimation of Soil Unit Weight and Undrained Shear Strength from Shear Wave Velocity Measurements Sung Woo Moon and Taeseo Ku*

More information

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013 Gregg Drilling & Testing, Inc. Site Investigation Experts CPT Applications - Deep Foundations Dr. Peter K. Robertson Webinar #6 2013 CPT Guide 5 th Edition Robertson & Cabal (Robertson) 5 th Edition 2012

More information

GEOTECHNICAL INVESTIGATIONS AT THREE SITES IN THE SOUTH CAROLINA COASTAL PLAIN THAT DID NOT LIQUEFY DURING THE 1886 CHARLESTON EARTHQUAKE

GEOTECHNICAL INVESTIGATIONS AT THREE SITES IN THE SOUTH CAROLINA COASTAL PLAIN THAT DID NOT LIQUEFY DURING THE 1886 CHARLESTON EARTHQUAKE Clemson University TigerPrints All Theses Theses 5-2008 GEOTECHNICAL INVESTIGATIONS AT THREE SITES IN THE SOUTH CAROLINA COASTAL PLAIN THAT DID NOT LIQUEFY DURING THE 1886 CHARLESTON EARTHQUAKE Ronald

More information

KDOT Geotechnical Manual Edition. Table of Contents

KDOT Geotechnical Manual Edition. Table of Contents KDOT Geotechnical Manual 2007 Edition The KDOT Geotechnical Manual is available two volumes. Both volumes are very large electronic (pdf) files which may take several minutes to download. The table of

More information

Station Description Sheet GRA

Station Description Sheet GRA Station Description Sheet GRA 1. General Information 2. Geographical Information / Geomorphology 3. Geological Information 4. Geotechnical Site Characterization 5. Geophysical Site Characterization 6.

More information

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to : DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC Presented to : TERRATECH 455, René-Lévesque Blvd. West Montreal, Québec HZ 1Z3 Presented by : GEOPHYSICS GPR INTERNATIONAL

More information

The use of multichannel analysis of surface waves in determining G max for soft clay

The use of multichannel analysis of surface waves in determining G max for soft clay The use of multichannel analysis of surface waves in determining G max for soft clay S. Donohue, M. Long & K. Gavin Dept. of Civil Engineering, University College Dublin, Ireland P. O Connor Apex Geoservices,

More information

GUIDE TO CONE PENETRATION TESTING

GUIDE TO CONE PENETRATION TESTING GUIDE TO CONE PENETRATION TESTING www.greggdrilling.com Engineering Units Multiples Micro (µ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10 +3 Mega (M) = 10 +6 Imperial Units SI Units Length feet (ft) meter (m)

More information

IN SITU TESTING IN GEOMECHANICS. Fernando Schnaid Universidade Federal do Rio Grande do Sul

IN SITU TESTING IN GEOMECHANICS. Fernando Schnaid Universidade Federal do Rio Grande do Sul IN SITU TESTING IN GEOMECHANICS Fernando Schnaid Universidade Federal do Rio Grande do Sul Patologia das Fundações Geotechnical investigation British Practice (Weltman & Head,1981): Sufficient finance

More information

Use of CPT for design, monitoring, and performance verification of compaction projects

Use of CPT for design, monitoring, and performance verification of compaction projects Cone Stress, q t (MPa) 2 3 Sleeve Friction (KPa) 2 4 Pore Pressure (KPa) 2 7, Friction Ratio (%) 2 3 4 Profile Mixed Y 2 2 2 2 CLAY 3 3 3 3 4 4 4 4 SAN D Use of CPT for design, monitoring, and performance

More information

Geotechnical characterization of a heterogeneous unsuitable stockpile

Geotechnical characterization of a heterogeneous unsuitable stockpile Geotechnical characterization of a heterogeneous unsuitable stockpile K. Rengifo & F. Herrera Knight Piésold Consultores, Lima, Perú L. de la Cruz Minera La Zanja S.R.L., Lima, Perú ABSTRACT: Typically,

More information

Depth (ft) USCS Soil Description TOPSOIL & FOREST DUFF

Depth (ft) USCS Soil Description TOPSOIL & FOREST DUFF Test Pit No. TP-6 Location: Latitude 47.543003, Longitude -121.980441 Approximate Ground Surface Elevation: 1,132 feet Depth (ft) USCS Soil Description 0 1.5 1.5 5.0 SM 5.0 8.0 SM Loose to medium dense,

More information

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the 1. WHAT IS CPT? A CPT is carried out by pushing a calibrated cone vertically into the ground and measuring the forces applied on its conical tip, the friction on the sides of the cone and, if using a piezocone,

More information

Johns Hopkins University NSF Workshop Nov 2005 Integrated Site Characterization: In-Situ & Lab Testing with Constitutive Modeling Framework

Johns Hopkins University NSF Workshop Nov 2005 Integrated Site Characterization: In-Situ & Lab Testing with Constitutive Modeling Framework Johns Hopkins University NSF Workshop 03-04 Nov 2005 Integrated Site Characterization: In-Situ & Lab Testing with Constitutive Modeling Framework Paul W. Mayne Professor, Geosystems Engineering Georgia

More information

Soil Behaviour Type from the CPT: an update

Soil Behaviour Type from the CPT: an update Soil Behaviour Type from the CPT: an update P.K. Robertson Gregg Drilling & Testing Inc., Signal Hill, California, USA ABSTRACT: One of the most common applications of CPT results is to evaluate soil type

More information

ScienceDirect. Correlations between cone penetration test and seismic dilatometer Marchetti test with common laboratory investigations

ScienceDirect. Correlations between cone penetration test and seismic dilatometer Marchetti test with common laboratory investigations Available online at www.sciencedirect.com ScienceDirect Energy Procedia 85 (2016) 399 407 Sustainable Solutions for Energy and Environment, EENVIRO - YRC 2015, 18-20 November 2015, Bucharest, Romania Correlations

More information

Soil type identification and fines content estimation using the Screw Driving Sounding (SDS) data

Soil type identification and fines content estimation using the Screw Driving Sounding (SDS) data Mirjafari, S.Y. & Orense, R.P. & Suemasa, N. () Proc. th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Soil type identification and fines content estimation using the Screw Driving Sounding

More information

SITE INVESTIGATION 1

SITE INVESTIGATION 1 SITE INVESTIGATION 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally referred to as site investigation.

More information

Challenges in the Interpretation of the DMT in Tailings

Challenges in the Interpretation of the DMT in Tailings Challenges in the Interpretation of the DMT in Tailings Fernando Schnaid Federal University of Rio Grande do Sul, Porto Alegre, Brazil. E-mail: fschnaid@gmail.com Edgar Odebrecht State University of Santa

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

Predicting Settlement and Stability of Wet Coal Ash Impoundments using Dilatometer Tests

Predicting Settlement and Stability of Wet Coal Ash Impoundments using Dilatometer Tests Predicting Settlement and Stability of Wet Coal Ash Impoundments using Dilatometer Tests Chris Hardin, P.E. CH2M Hill, Charlotte, North Carolina, E-mail: Chris.Hardin@ch2m.com Roger Failmezger, P.E., F.

More information

From - To 0,00-4,90 4,90-6,40 6,40-8,60 8,60-9,60 9,60-10,50 10,50-12,00 12,00-14,80 14,80-15,80 15,80-19,30 19, ,00

From - To 0,00-4,90 4,90-6,40 6,40-8,60 8,60-9,60 9,60-10,50 10,50-12,00 12,00-14,80 14,80-15,80 15,80-19,30 19, ,00 Závěrka 12,Praha 6,169 00 Log of Boring BH1 Project ID: 2018_A-017 Annex no.: A.1G Drilling equipment: Hütte 202 TF Location: Prague 12 Overall depth: 2 m Borehole position: Date start: 22.11.2017 Foreman:

More information

Examples of CPTU results in other soil types. Peat Silt/ clayey sands Mine tailings Underconsolidated clay Other

Examples of CPTU results in other soil types. Peat Silt/ clayey sands Mine tailings Underconsolidated clay Other Examples of : CPTU profiles other soil types Unusual behaviour Use of non-standard equipment Examples of CPTU results in other soil types Peat Silt/ clayey sands Mine tailings Underconsolidated clay Other

More information

Geotechnical Site Assessment by Seismic Piezocone Test in North of Denmark

Geotechnical Site Assessment by Seismic Piezocone Test in North of Denmark Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (2013) - Seventh International Conference on Case Histories in Geotechnical

More information

www.novotechsoftware.com The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test procedure

More information

Geotechnical verification of impact compaction

Geotechnical verification of impact compaction PII-73 Geotechnical verification of impact compaction P. J. Waddell1, R. A. Moyle2 & R. J. Whiteley1 1 2 Coffey Geotechnics, Sydney, Australia Coffey Geotechnics, Harrogate, UK Abstract Remediation of

More information

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1146 EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE Shun-ichi Sawada 1 ABSTRACT

More information

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete.

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete. Chapter 8 Shear Strength Dr. Talat Bader May 2006 Soil and Rock Strength Unconfined compressive strength (MPa) Steel Concrete 20 100 250 750 0.001 0.01 Soil 0.1 1.0 10 Rock 100 250 F y = 250 to 750 MPa

More information

In-situ measurement of shear wave velocities at two soft soil sites in Singapore

In-situ measurement of shear wave velocities at two soft soil sites in Singapore In-situ measurement of shear wave velocities at two soft soil sites in Singapore E.C. Leong, S. Anand, H.K. Cheong and T.C. Pan Nanyang Technological University, Protective Technology Research Centre,

More information

Interpretation of SCPTu Data in Stiff Soils and Soft Rock

Interpretation of SCPTu Data in Stiff Soils and Soft Rock GeoEdmonton'08/GéoEdmonton008 Interpretation of SCPTu Data in Stiff Soils and Soft Rock Elbanna, M AMEC Earth & Environmental, Nanaimo, British Columbia, Canada Woeller, D; Greig, J; Sharp, J; Grass, J

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

Geo-imaging: An Introduction to Engineering Geophysics

Geo-imaging: An Introduction to Engineering Geophysics Geo-imaging: An Introduction to Engineering Geophysics Chih-Ping Lin Distinguished Professor, Department of Civil Engineering & Natural Hazard Mitigation Research Center National Chiao Tung University,

More information

TigerPrints. Clemson University. Aaron Geiger Clemson University,

TigerPrints. Clemson University. Aaron Geiger Clemson University, Clemson University TigerPrints All Theses Theses 5-2010 Liquefaction Analysis of Three Pleistocene Sand Deposits that did not Liquefy During the 1886 Charleston, South Carolina Earthquake based on Shear

More information

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01 patersongroup May 19, 2016 File: PG3733-LET.01 Hydro Ottawa Limited c/o Cresa Toronto 170 University Avenue, Suite 1 Toronto, Ontario M5H 3B3 Attention: Ms. Barbara Wright Consulting Engineers 154 Colonnade

More information

The San Jacinto Monument Case History

The San Jacinto Monument Case History Picture obtained from http://www.laanba.net/photoblog/ January05/sanjacinto.jpg Jean-Louis Briaud Texas A&M University The San Jacinto Monument Case History 1 2 CREDITS Phillip King Fugro Briaud J.-L.,

More information

Early Applications of DMT in Dubai in Two Main Projects for Natural and Artificial Earthfill Silty Sand

Early Applications of DMT in Dubai in Two Main Projects for Natural and Artificial Earthfill Silty Sand Early Applications of DMT in Dubai in Two Main Projects for Natural and Artificial Earthfill Silty Sand Sharif, Emad, B.Sc, M.Sc, Geotechnical Engineer ACES Manager (Dubai & Oman). E-mail: e.sharif@aces-dubai.ae

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLE LIST OF FIGURES LIST OF SYMBOLS LIST OF APENDICES i ii iii iv v

More information

Interpretation of Pile Integrity Test (PIT) Results

Interpretation of Pile Integrity Test (PIT) Results Annual Transactions of IESL, pp. 78-84, 26 The Institution of Engineers, Sri Lanka Interpretation of Pile Integrity Test (PIT) Results H. S. Thilakasiri Abstract: A defect present in a pile will severely

More information

UChile - LMMG Shear Wave Velocity (V S. ): Measurement, Uncertainty, and Utility in Seismic Hazard Analysis. Robb Eric S. Moss, Ph.D., P.E.

UChile - LMMG Shear Wave Velocity (V S. ): Measurement, Uncertainty, and Utility in Seismic Hazard Analysis. Robb Eric S. Moss, Ph.D., P.E. UChile - LMMG 2015 Shear Wave Velocity (V S ): Measurement, Uncertainty, and Utility in Seismic Hazard Analysis Robb Eric S. Moss, Ph.D., P.E. Assoc. Prof. of Earthquake, Geotechnical, and Risk Engineering

More information

Chapter 7 GEOMECHANICS

Chapter 7 GEOMECHANICS Chapter 7 Final SCDOT GEOTECHNICAL DESIGN MANUAL August 2008 Table of Contents Section Page 7.1 Introduction...7-1 7.2 Geotechnical Design Approach...7-1 7.3 Geotechnical Engineering Quality Assurance...7-2

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Consolidation lateral stress ratios in clay from flat Dilatometer tests

Consolidation lateral stress ratios in clay from flat Dilatometer tests Consolidation lateral stress ratios in clay from flat Dilatometer tests Alan J. Lutenegger University of Massachusetts, Amherst, Massachusetts, USA Keywords: stress ratio, clay, consolidation, Dilatometer

More information

LABORATORY MEASUREMENTS OF STIFFNESS OF SOFT CLAY USING BENDER ELEMENTS

LABORATORY MEASUREMENTS OF STIFFNESS OF SOFT CLAY USING BENDER ELEMENTS LABORATORY MEASUREMENTS OF STIFFNESS OF SOFT CLAY USING BENDER ELEMENTS ABSTRACT: S. H. Oh 1, D. S. Park 2, B. J. Kim 3, E. J. Kim 1 and Y. J. Mok 4 1 Research Assistant, Dept. of Civil Eng., Kyunghee

More information

Site Response Analysis in the STM-M6 Industrial Area of the City of Catania (Italy)

Site Response Analysis in the STM-M6 Industrial Area of the City of Catania (Italy) Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (23) - Seventh International Conference on Case Histories in Geotechnical

More information

H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE)

H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE) DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE) Parsons P:\Honeywell -SYR\444576 2008 Capping\09

More information

Investigation of Liquefaction Behaviour for Cohesive Soils

Investigation of Liquefaction Behaviour for Cohesive Soils Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICGRE 134 DOI: 10.11159/icgre18.134 Investigation of Liquefaction

More information

Interpretation of in-situ tests some insights

Interpretation of in-situ tests some insights Interpretation of in-situ tests some insights P.K. Robertson Gregg Drilling & Testing Inc., Signal Hill, CA, USA ABSTRACT: The use and application of in-situ testing has continued to expand in the past

More information

Links between small and large strain behavior of Presumpscot clay

Links between small and large strain behavior of Presumpscot clay Links between small and large strain behavior of Presumpscot clay C.D.P. Baxter Depts. of Ocean/Civil and Environmental Engineering, University of Rhode Island, Narragansett, RI Y. Guadalupe Torres Centre

More information

Soils. Technical English - I 10 th week

Soils. Technical English - I 10 th week Technical English - I 10 th week Soils Soil Mechanics is defined as the branch of engineering science which enables an engineer to know theoretically or experimentally the behavior of soil under the action

More information

Transactions on the Built Environment vol 3, 1993 WIT Press, ISSN

Transactions on the Built Environment vol 3, 1993 WIT Press,  ISSN Resonant column and cyclic triaxial testing of tailing dam material S.A. Savidis*, C. Vrettos", T. Richter^ "Technical University of Berlin, Geotechnical Engineering Institute, 1000 Berlin 12, Germany

More information

Project S4: ITALIAN STRONG MOTION DATA BASE. Deliverable # D3. Definition of the standard format to prepare descriptive monographs of ITACA stations

Project S4: ITALIAN STRONG MOTION DATA BASE. Deliverable # D3. Definition of the standard format to prepare descriptive monographs of ITACA stations Agreement INGV-DPC 2007-2009 Project S4: ITALIAN STRONG MOTION DATA BASE Responsibles: Francesca Pacor, INGV Milano Pavia and Roberto Paolucci, Politecnico Milano http://esse4.mi.ingv.it Deliverable #

More information