Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

Size: px
Start display at page:

Download "Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)"

Transcription

1 Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Conventional Field Testing 1

2 Field Test: In-situ shear strength Testing In-situ shear strength tests Standard Penetration Test (SPT) Cone Penetration Test (CPT) Dynamic Cone Penetration Test (DCPT) Vane Shear Test (VST) Common In Situ Testing Devices SPT VST DCPT CPT In bore holes 4 2

3 Standard Penetration Test IS: Standard Penetration Test Components Drilling Equipment Inner diameter of hole 100 to 150 mm Casing may be used in case of soft/non-cohesive soils Split spoon sampler IS: Drive weight assembly Falling Weight = 63.5 Kg Fall height = 75 cm Others Lifting bail, Tongs, ropes, screw jack, etc. Procedure The bore hole is advanced to desired depth and bottom is cleaned. Split spoon sampler is attached to a drill rod and rested on bore hole bottom. Driving mass is dropped onto the drill rod repeatedly and the sampler is driven into soil for a distance of 450 mm. The number of blow for each 150 mm penetration are recorded. 3

4 Standard Penetration Test Procedure (Cont.) N-value First 150 mm penetration is considered as seating penetration The number of blows for the last two 150 mm penetration are added together and reported as N-value for the depth of bore hole. The split spoon sampler is recovered, and sample is collected from split barrel so as to preserve moisture content and sent to the laboratory for further analysis. SPT is repeated at every 750 mm or 1500 mm interval for larger depths. Under the following conditions the penetration is referred to as refusal and test is halted 100 blows are required for last 300 mm penetration Precautions during SPT The ht. of free fall Must be 750 mm The fall of hammer must be free, frictionless and vertical Cutting shoe of the sampler must be free from wear & tear The bottom of the bore hole must be cleaned to collect undisturbed sample When SPT is done in a sandy soil below water table, the water level in the bore hole MUST be maintained higher than the ground water level. Otherwise: QUICK condition!! Very Low N value 4

5 SPT Corrections Correction for Overburden Pressure : N ' C. N N' = Corrected value of observed N C N = Correction factor for overburden pressure Peck, Hanson and Thornburn (1974) N p' = Effective overburden pressure at a depth corresponding to N-value measurement SPT Corrections Correction for Overburden Pressure : (Alternative) Correction for Dilatancy : If the stratum consists of fine sand and silt below water table, for N' > 15, the dilatancy correction is applied as [ ] Alternative - 5

6 SPT Hammer Energy Correction Energy is dissipated in some fraction during the impact, and the output energy is usually in the range of 50% to 80% of energy input. For rope pully system with safety hammer E out E in 60% The N-value is standardized for 60 % energy output. For other hammers, the N-value may be corrected in ratio of their energy input N 60 E out Although IS is silent on this issue, the correction may be applied as per the requirement of the project. E 60 in %. N SPT Test Data No. of blows per 0.30m Data from different bore holes 6

7 SPT Test Data Interpretation from SPT IS

8 Interpretation from SPT: Cohesionless Soils N'' f' D r (%) consistency very loose loose medium dense > very dense Interpretation from SPT: Cohesive Soils not corrected for overburden c N in kpa N c u (kpa) consistency visual identification very soft Thumb can penetrate > 25 mm soft Thumb can penetrate 25 mm medium Thumb penetrates with moderate effort stiff Thumb will indent 8 mm very stiff Can indent with thumb nail; not thumb >30 >200 hard Cannot indent even with thumb nail Mayne and Kemper (1988) N OCR p ' MN/m 2 u 8

9 Total Settlement from SPT Data for Cohesionless soil Multiply the settlement by factor W' 17 Dynamic Cone Penetration Test (DCPT) Components: 1) Cone (dia = 50 mm) ~usually made of steel IS: 4968 (Part I, II) SPT DCPT 2) Driving rods/drill rods ~marked at every 100 mm Hollow (split spoon) Solid (no samples) 9

10 DCPT Procedure Cone drill rod driving head assembly is installed vertically on the ground and hammer is dropped from standard height repeatedly The blow counts are recorded for every 100 mm penetration. A sum of three consecutive values i.e. 300 mm is noted as the dynamic cone resistance, N cd at that depth. The cone is driven up to refusal or the project specified depth. In the end, the drill rod is withdrawn. The cone is left in the ground if unthreaded or recovered if threaded. No sample recovered Fast testing less project cost / cover large area in due time Use of bentonite slurry is optional, which is used to reduce friction on the driving rods. Modified cone is used in this case: diameter = 62.5 mm DCPT SPT Correlations for 50 mm dia. cone N cd = 1.5 N N cd = 1.75 N N cd = 2.0 N For depth < 3 m For depth 3 m to 6 m For depth > 6 m DCPT SPT Correlations for 62.5 mm dia cone Without bentonite slurry With circulating bentonite slurry N cbr = 1.5 N N cbr = 1.75 N N cbr = 2.0 N N cbr = N For depth < 4 m For depth 4 m to 9 m For depth > 9 m For all depths 10

11 DCPT Cone Penetration Test (CPT) IS: 4968 (Part III) 11

12 Depth Below Excavated Surface (m) CPT Procedure Push the sounding rod with cone into the ground for some specified depth. Then push the cone with friction sleeve for another specified depth (> 35 mm). Repeat the process with/without friction sleeve. Pushing rate = 1 cm/s Mantle tube is push simultaneously such that it is always above the cone and friction sleeve. Tip Load, Q c = Load from pressure gauge reading + Wt. of cone + Wt. of connecting sounding rods Tip resistance With friction sleeve add its self weight as well Q t = Q c + Q f Frictional resistance Friction Ratio f r Qc qc A q f q c q f c Qt Q A f x-sectional area off cone = 10 cm 2 c 10% Typical range 23 surface area of friction sleeve 0% Cohesive Granular 0 1 Interpreted Soil Profile Fine Sand w/ Shells (SP) CPT Cone Resistance, q c1 (MPa) SPT Blow Count, N 1(60) (Blows/300 mm) Relative Density, D r (%) Interbedded Fine Sand and Silty Sand (SP-SM) Fine Silty Sand (SM) Gray Silty Clay (CL) Sand (SP) Mean Mean-SD Mean+SD From CPT From SPT 12

13 Depth (m) CPT Profile for Piezocone Cone Tip 0 1 Interpreted Soil Profile EQ Drain Test Area 1 Sand Resistance, q c (MPa) Fricton Ratio, F r (%) Pore Pressure, u (kpa) Relative Density, D r Silty sand/sand Silt and Sandy Silt Sand to Silty Sand CPT Results & Soil Classification 13

14 Typical CPT Data CPT Versus SPT CPT: Advantages over SPT provides much better resolution, reliability versatility; pore water pressure, dynamic soil properties CPT: Disadvantages Does not give a sample Will not work with soil with gravel Need to mobilize a special rig 14

15 CPTU 29 Typical Measurements with CPTU 30 15

16 DOWNHOLE SEISMIC PIEZOCONE PENETRATION TEST (SCPTU) 31 Vane Shear Test (VST) bore hole measuring (torque) head For clays, and mainly for soft clays. Measure torque required to quickly shear the vane pushed into soft clay. undrained vane h2d torque undrained shear strength c u Typical d = mm. d soft clay 32 vane 16

17 Vane Shear Test Interpretation: Undrained shear strength - 2. T cu D 1 3. H 2. D. H. For H = 2.D c u T D 3 Test in Progress Failure surface Plate Load Test This test is used to estimate the Modulus of subgrade reaction and Bearing Capacity of soils. Bearing Capacity Estimation: The load is applied such that the rate of penetration remains constant. A load-settlement curve is produced. Equations have been developed to obtain undrained shear strength from ultimate bearing capacity. Modulus of Subgrade Reaction Estimation: The load is applied to the plate in increments of one fifth of the design load. Time-settlement and loadsettlement curves are then produced to estimate the 17

18 Plate Load Test IS: Bearing Plate: Rough mild steel bearing plate in circular or square shape Dimension: 30 cm, 45 cm, 60 cm, or 75 cm. Thickness > 25 mm Smaller size for stiff or dense soil. Larger size for soft or loose soil Bottom of the plate is grooved for increased roughness. Concrete blocks may be used to replace bearing plates. Plate Load Test IS: Test Pit: Usually to the depth of foundation level. Width equal to five times the test plate Carefully leveled and cleaned bottom. Protected against disturbance or change in natural formation Section Plan 18

19 IITGN Plate load test Plate Load Test: Bearing Capacity In case of dense cohesionless soil and highly cohesive soils ultimate bearing capacity may be estimated from the peak load in load-settlement curve. In case of partially cohesive soils and loose to medium dense soils the ultimate bearing capacity load may be estimated by assuming the load settlement curve so as to be a bilinear relationship

20 Plate Load Test: Bearing Capacity A more precise determination of bearing capacity load is possible if the load-settlement curve is plotted in log-log scale and the relationship is assume to be bilinear. The intersection point is taken as the yield point or the bearing capacity load. For cohesioless soil q q uf up B B f p For cohesive soil q uf q up Geophysical Methods Seismic Reflection Method Seismic Refraction Method Cross-Hole Test Down Hole Test & Up-Hole Test Spectral Analysis of Surface Wave (SASW) Seismic Cone Penetration Test (SCPT) 20

21 P Wave (Compression/Primary Wave) longitudinal, primary or compressional wave Material particles oscillate about a fixed point in the direction of wave propagation by compressional and dilatational strain. S Wave (Shear/Secondary Wave) transverse, secondary or shear wave Particle motion is at right angles to the direction of wave propagation and occurs by pure strain. 21

22 Rayleigh Waves (used in MASW) Love Waves 22

23 Wave Velocities P-wave velocity V p Shear Wave velocity V s V p > V s Soil Properties from Wave Velocity Shear Modulus G 2. V s Density of soil Constrained Modulus, M 2. V p V 3V 4V Young s Modulus, E 2 2 V V V Poisson s Ratio, 2 V s p s 2V p 2 2 p s V 2 2 p s s 23

24 Typical Wave Velocities in Geomaterials 47 Seismic Measurement-Systems 1. Geophone 2. Cable 3. Hammer (Source) 4. Processing and Control Unit 24

25 Seismic Reflection Method Depths greater than ~50 feet Seismic reflection is particularly suited to marine applications (e.g. lakes, rivers, oceans, etc.) The inability of water to transmit shear waves makes collection of high quality reflection data possible even at very shallow depths that would be impractical to impossible on land. Seismic Refraction Method Depths less than ~100 feet Cost Effective as compared to Reflection method (<3to5 times) Used for computation of layer thickness of soil 25

26 Differences in Seismic Reflection and Seismic Refraction Method Seismic Reflection uses field equipment similar to seismic refraction, but field and data processing procedures are employed to maximize the energy reflected along near vertical ray paths by subsurface density contrasts. Seismic Refraction involves measuring the travel time of the component of seismic energy which travels down to the top of rock (or other distinct density contrast), is refracted along the top of rock, and returns to the surface. 26

27 Cross-Hole Test Sensors are placed at one elevation in one or more boring. Source is triggered in another boring at the same elevation. S wave travels horizontally from source to receiving hole, and the arrivals of S waves are noted Shear wave velocity (Vs) is calculated by dividing the distance between the bore holes and the travel time. Cross-Hole Test 27

28 Down Hole Test Down Hole method: Sensors are placed at various depths in the boring. Source is located above the receivers, at the ground surface. Only one bore hole is required. A source rich in S wave should be used (P wave travels faster than S wave) Up-Hole method: source of energy is deep in boring and the receiver is at the ground surface Down Hole Test 28

29 Seismic Cone Penetration Test (SCPT) Seismic cone is pushed into the ground During the penetration, shear wave is generated and the time required for the shear wave to reach the seismometer in the seismic cone is measured Computer in the SCPT rig collects and processes all the data & shear wave velocity is measured Seismic Cone Penetration Test (SCPT) 29

30 Seismic Cone Penetration Test (SCPT) Seismic Cone Penetration Test (SCPT) 30

31 Seismic Cone Penetration Test (SCPT) Seismic Cone Penetration Test (SCPT) 31

32 32

33 SASW Test (Spectral Analysis of Surface Waves) SASW does not require Boring like other tests Sensors are spread along a line on the surface & the source is also located on the surface Sensors receive Rayleigh waves, which are the surface waves Dispersion curve (phase velocity Vs frequency) is created. Then individual dispersion curves from all receivers are combined into a single composite dispersion curve, called field dispersion curve. Forward-modeling procedure is then used to match the field dispersion curve with a onedimensional layered system of varying soil layer stiffnesses and thicknesses. The shear wave velocity profile that generates a dispersion curve that most closely matches the field dispersion curve is then presented as the shear wave velocity profile for the site. MASW Test (Multichannel Analysis of Surface Waves) 33

34 MASW Test (Multichannel Analysis of Surface Waves) MASW does not require Boring like SASW. 24 or more channels (Sensors) are placed over a few to a few meters of distance (eg: m) Sensors receive Rayleigh waves, which are the surface waves. Dispersion curve (phase velocity Vs frequency) from each sensor is created. MASW deals with various frequencies range (eg: 3-30 Hz) Active MASW method generates surface waves actively through an impact source like sledge hammer, where as Passive MASW method utilizes surface waves generated by traffic, thunder, tidal motions etc. Investigation depth is usually shallower than 30 m with the active method. MASW utilizes dispersion properties of surface waves for the purpose of shear wave velocity (Vs) profiling in 1D (depth) or 2D (depth and surface location) of soil strata. Thank You 34

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

Chapter 12 Subsurface Exploration

Chapter 12 Subsurface Exploration Page 12 1 Chapter 12 Subsurface Exploration 1. The process of identifying the layers of deposits that underlie a proposed structure and their physical characteristics is generally referred to as (a) subsurface

More information

UNIT I SITE INVESTIGATION AND SELECTION OF FOUNDATION Types of boring 1.Displacement borings It is combined method of sampling & boring operation. Closed bottom sampler, slit cup, or piston type is forced

More information

GEOTECHNICAL SITE CHARACTERIZATION

GEOTECHNICAL SITE CHARACTERIZATION GEOTECHNICAL SITE CHARACTERIZATION Neil Anderson, Ph.D. Professor of Geology and Geophysics Richard W. Stephenson, P.E., Ph.D. Professor of Civil, Architectural and Environmental Engineering University

More information

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 05 Field Tests Hello viewers, welcome back to the course on Foundation

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI-01-031 Federal Highway Administration Washington, DC Geotechnical Site Characterization July 2001 by Paul W. Mayne,

More information

Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics

Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION Mechanical Wave Measurements Electromagnetic Wave Techniques Mechanical Wave Measurements Crosshole Tests (CHT) Downhole Tests (DHT) Spectral Analysis

More information

CPT Data Interpretation Theory Manual

CPT Data Interpretation Theory Manual CPT Data Interpretation Theory Manual 2016 Rocscience Inc. Table of Contents 1 Introduction... 3 2 Soil Parameter Interpretation... 5 3 Soil Profiling... 11 3.1 Non-Normalized SBT Charts... 11 3.2 Normalized

More information

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013 Gregg Drilling & Testing, Inc. Site Investigation Experts CPT Applications - Deep Foundations Dr. Peter K. Robertson Webinar #6 2013 CPT Guide 5 th Edition Robertson & Cabal (Robertson) 5 th Edition 2012

More information

SITE INVESTIGATION 1

SITE INVESTIGATION 1 SITE INVESTIGATION 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally referred to as site investigation.

More information

Cone Penetration Testing in Geotechnical Practice

Cone Penetration Testing in Geotechnical Practice Cone Penetration Testing in Geotechnical Practice Table Of Contents: LIST OF CONTENTS v (4) PREFACE ix (2) ACKNOWLEDGEMENTS xi (1) SYMBOL LIST xii (4) CONVERSION FACTORS xvi (6) GLOSSARY xxii 1. INTRODUCTION

More information

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History M.R. Lewis & J. Clemente Bechtel Corporation, California, USA I.A. Weemees ConeTec, Inc., British Columbia,

More information

Advanced Foundation Engineering

Advanced Foundation Engineering 2013 Advanced Foundation Engineering Prof.T.G. Sitharam Indian Institute of Science, Bangalore CHAPTER 1: Soil Exploration 1.1 Introduction 1.2 Boring of Holes 1.2.1 Auger Method 1.2.1.1 Hand Operated

More information

Module 1 : Site Exploration and Geotechnical Investigation

Module 1 : Site Exploration and Geotechnical Investigation Objectives In this section you will learn the following Displacement borings Wash boring Auger boring Rotary drilling Percussion drilling Continuous sampling Boring methods of exploration The boring methods

More information

IN SITU SPECIFIC GRAVITY VS GRAIN SIZE: A BETTER METHOD TO ESTIMATE NEW WORK DREDGING PRODUCTION

IN SITU SPECIFIC GRAVITY VS GRAIN SIZE: A BETTER METHOD TO ESTIMATE NEW WORK DREDGING PRODUCTION IN SITU SPECIFIC GRAVITY VS GRAIN SIZE: A BETTER METHOD TO ESTIMATE NEW WORK DREDGING PRODUCTION Nancy Case O Bourke, PE 1, Gregory L. Hartman, PE 2 and Paul Fuglevand, PE 3 ABSTRACT In-situ specific gravity

More information

Gotechnical Investigations and Sampling

Gotechnical Investigations and Sampling Gotechnical Investigations and Sampling Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Investigations for Structural Engineering 12 14 October, 2017 1 Purpose of

More information

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423 Enhanced In-Situ Testing for Geotechnical Site Characterization SPT, VST, DMT, PMT, CHT, DHT, CPT Graduate Course CEE 6423 Paul W. Mayne, PhD, P.E. Professor, Geosystems Program Civil & Environmental Engineering

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

VMS-GeoMil. Background

VMS-GeoMil. Background Background When using a drilling rig for cone penetration testing, a mechanical clamp can be mounted to the drilling head (by means of a special transition piece). The depth than can be achieved depends

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

From - To 0,00-4,90 4,90-6,40 6,40-8,60 8,60-9,60 9,60-10,50 10,50-12,00 12,00-14,80 14,80-15,80 15,80-19,30 19, ,00

From - To 0,00-4,90 4,90-6,40 6,40-8,60 8,60-9,60 9,60-10,50 10,50-12,00 12,00-14,80 14,80-15,80 15,80-19,30 19, ,00 Závěrka 12,Praha 6,169 00 Log of Boring BH1 Project ID: 2018_A-017 Annex no.: A.1G Drilling equipment: Hütte 202 TF Location: Prague 12 Overall depth: 2 m Borehole position: Date start: 22.11.2017 Foreman:

More information

The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally referred to as sub surface investigation 2 1 For proper

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

GEOTECHNICAL INVESTIGATION REPORT

GEOTECHNICAL INVESTIGATION REPORT GEOTECHNICAL INVESTIGATION REPORT SOIL INVESTIGATION REPORT FOR STATIC TEST FACILITY FOR PROPELLANTS AT BDL, IBRAHIMPATNAM. Graphics Designers, M/s Architecture & Engineering 859, Banjara Avenue, Consultancy

More information

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. Portland, Oregon In situ testing of soil, which essentially consists of evaluating

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

REPORT OF GEOTECHNICAL INVESTIGATION FOR CONSTRUCTION OF AIIMS AT GUNTUR, ANDHRA PRADESH

REPORT OF GEOTECHNICAL INVESTIGATION FOR CONSTRUCTION OF AIIMS AT GUNTUR, ANDHRA PRADESH REPORT OF GEOTECHNICAL INVESTIGATION FOR CONSTRUCTION OF AIIMS AT GUNTUR, ANDHRA PRADESH REPORT NO : GT 1764 CLIENT: DEPUTY GENERAL MANAGER (CIVIL) HSCC (INDIA) LTD. (A Govt. Of India Enterprise) (CONSULTANTS

More information

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests APPENDIX F 1 APPENDIX F CORRELATION EQUATIONS F 1 In-Situ Tests 1. SPT (1) Sand (Hatanaka and Uchida, 1996), = effective vertical stress = effective friction angle = atmosphere pressure (Shmertmann, 1975)

More information

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS 1 2 C. Vipulanandan 1, Ph.D., M. ASCE and Omer F. Usluogullari 2 Chairman, Professor, Director of Center for Innovative Grouting Materials

More information

Correlations between soil parameters and penetration testing results

Correlations between soil parameters and penetration testing results 1 A 1 6 Correlations between soil parameters and penetration testing results Corrélation entre paramètres du sol et résultats de sondage J. FORMAZIN, Director, VEB SBK Wasserbau, KB Baugrund Berlin, Berlin,

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date: The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT

More information

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0) This Cone Penetration Test (CPT) Sounding follows ASTM D 5778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was

More information

Soil type identification and fines content estimation using the Screw Driving Sounding (SDS) data

Soil type identification and fines content estimation using the Screw Driving Sounding (SDS) data Mirjafari, S.Y. & Orense, R.P. & Suemasa, N. () Proc. th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Soil type identification and fines content estimation using the Screw Driving Sounding

More information

SCOPE OF INVESTIGATION Simple visual examination of soil at the surface or from shallow test pits. Detailed study of soil and groundwater to a

SCOPE OF INVESTIGATION Simple visual examination of soil at the surface or from shallow test pits. Detailed study of soil and groundwater to a Lecture-5 Soil Exploration Dr. Attaullah Shah 1 Today s Lecture Purpose of Soil Exploration Different methods 1. Test trenches and Pits 2. Auger and Wash Boring 3. Rotary Drilling 4. Geophysical Methods

More information

Geotechnical Subsoil Investigation for the Design of Water Tank Foundation

Geotechnical Subsoil Investigation for the Design of Water Tank Foundation International Journal of Scientific and Research Publications, Volume 4, Issue 3, March 2014 1 Geotechnical Subsoil Investigation for the Design of Water Tank Foundation * Ngerebara Owajiokiche Dago, **

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

Introduction to Cone Penetration Testing

Introduction to Cone Penetration Testing Gregg Drilling & Testing, Inc. Site Investigation Experts Introduction to Cone Penetration Testing Peter K. Robertson Webinar 2012 History of CPT First developed in 1930 s as mechanical cone Electric cones

More information

Cyclic Behavior of Sand and Cyclic Triaxial Tests. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Cyclic Behavior of Sand and Cyclic Triaxial Tests. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Cyclic Behavior of Sand and Cyclic Triaxial Tests Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Causes of Pore Pressure Buildup due to Cyclic Stress Application Stress are due

More information

Chapter 3 SUBSOIL EXPLORATION. Omitted parts: Sections & 3.24, 3.25 Examples 3.3, 3.4,3.5

Chapter 3 SUBSOIL EXPLORATION. Omitted parts: Sections & 3.24, 3.25 Examples 3.3, 3.4,3.5 Chapter 3 SUBSOIL EXPLORATION Omitted parts: Sections 3.2-3.10 & 3.24, 3.25 Examples 3.3, 3.4,3.5 GENERAL OBSERVATION Soil does not posses a unique or linear stress-strain relationship. Soil behavior depends

More information

Geotechnical Indications Of Eastern Bypass Area In Port Harcourt, Niger Delta

Geotechnical Indications Of Eastern Bypass Area In Port Harcourt, Niger Delta Geotechnical Indications Of Eastern Bypass Area In Port Harcourt, Niger Delta Warmate Tamunonengiyeofori Geostrat International Services Limited, Rivers State, Nigeria www.geostratinternational.com info@geostratinternational.com,

More information

Geotechnical Testing Methods I

Geotechnical Testing Methods I Geotechnical Testing Methods I Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Hiding World of Geotechnical Engg!! Foundations Shoring Tunneling Soil Exploration Geotechnical Engg Structures

More information

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx 2365 Haggerty Road South * Canton, Michigan 48188 P: 734-397-3100 * F: 734-397-3131 * www.manniksmithgroup.com August 29, 2012 Mr. Richard Kent Washtenaw County Parks and Recreation Commission 2330 Platt

More information

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1146 EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE Shun-ichi Sawada 1 ABSTRACT

More information

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils Neil Anderson 1, Thanop Thitimakorn 1, David Hoffman 2, Richard Stephenson 2, Ronaldo Luna 2 Geological Sciences

More information

Chapter 7 GEOMECHANICS

Chapter 7 GEOMECHANICS Chapter 7 Final SCDOT GEOTECHNICAL DESIGN MANUAL August 2008 Table of Contents Section Page 7.1 Introduction...7-1 7.2 Geotechnical Design Approach...7-1 7.3 Geotechnical Engineering Quality Assurance...7-2

More information

www.novotechsoftware.com The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test procedure

More information

GUIDE TO CONE PENETRATION TESTING

GUIDE TO CONE PENETRATION TESTING GUIDE TO CONE PENETRATION TESTING www.greggdrilling.com Engineering Units Multiples Micro (µ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10 +3 Mega (M) = 10 +6 Imperial Units SI Units Length feet (ft) meter (m)

More information

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS.

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS. N B-1 SYMBOLS: Exploratory Boring Location Project Mngr: BORE LOCATION PLAN Project No. GK EXHIBIT Drawn By: 115G1063.02 GK Scale: Checked By: 1045 Central Parkway North, Suite 103 San Antonio, Texas 78232

More information

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0) This Cone Penetration Test (CPT) Sounding follows ASTM D 778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was

More information

Use of CPT in Geotechnical Earthquake Engineering

Use of CPT in Geotechnical Earthquake Engineering Use of CPT in Geotechnical Earthquake Engineering Prof. Scott M. Olson, PhD, PE Use of Cone Penetration Test for Foundation Analysis and Design 2006 Annual Meeting Transportation Research Board Geotechnical

More information

SOIL MECHANICS AND APPLIED FOUNDATION ENGINEERING FUNDAMENTAL FACTS OF SOIL BEHAVIOR

SOIL MECHANICS AND APPLIED FOUNDATION ENGINEERING FUNDAMENTAL FACTS OF SOIL BEHAVIOR SOIL MECHANICS AND APPLIED FOUNDATION ENGINEERING The Subsurface is Unknown to many and Blind Guesswork cannot be used to Determine the Character and Behavior of the Underlying Soil Conditions. FUNDAMENTAL

More information

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete.

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete. Chapter 8 Shear Strength Dr. Talat Bader May 2006 Soil and Rock Strength Unconfined compressive strength (MPa) Steel Concrete 20 100 250 750 0.001 0.01 Soil 0.1 1.0 10 Rock 100 250 F y = 250 to 750 MPa

More information

Pierce County Department of Planning and Land Services Development Engineering Section

Pierce County Department of Planning and Land Services Development Engineering Section Page 1 of 7 Pierce County Department of Planning and Land Services Development Engineering Section PROJECT NAME: DATE: APPLICATION NO.: PCDE NO.: LANDSLIDE HAZARD AREA (LHA) GEOLOGICAL ASSESSMENT REPORT

More information

APPENDIX C HYDROGEOLOGIC INVESTIGATION

APPENDIX C HYDROGEOLOGIC INVESTIGATION Figure B-5.7 Figure B-5.8 Preliminary Geotechnical and Environmental Report Appendix C Hydrogeologic Investigation APPENDIX C HYDROGEOLOGIC INVESTIGATION December 21, 2011 WESTSIDE SUBWAY EXTENSION PROJECT

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 4 Dynamic Soil Properties Lecture - 23 Cyclic Stress Ratio, Evaluation of CRR, Correction

More information

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016 ISC 5 5 9 SEPT 2016 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA Fillippo Gaone James Doherty Susan Gourvenec Centre for Offshore Foundation Systems, UWA School of Civil,

More information

Measuring and comparing soil parameters for a large bridge on East coast of United States

Measuring and comparing soil parameters for a large bridge on East coast of United States Geotechnical and Geophysical Site Characterisation 5 Lehane, Acosta-Martínez & Kelly (Eds) 2016 Australian Geomechanics Society, Sydney, Australia, ISBN 978-0-9946261-2-7 Measuring and comparing soil parameters

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Soil Behaviour in Earthquake Geotechnics

Soil Behaviour in Earthquake Geotechnics Soil Behaviour in Earthquake Geotechnics KENJI ISHIHARA Department of Civil Engineering Science University of Tokyo This publication was supported by a generous donation from the Daido Life Foundation

More information

Soil Mechanics Brief Review. Presented by: Gary L. Seider, P.E.

Soil Mechanics Brief Review. Presented by: Gary L. Seider, P.E. Soil Mechanics Brief Review Presented by: Gary L. Seider, P.E. 1 BASIC ROCK TYPES Igneous Rock (e.g. granite, basalt) Rock formed in place by cooling from magma Generally very stiff/strong and often abrasive

More information

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6 Engineering Units Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10 +3 Mega (M) = 10 +6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft 2 ) square meter (m 2 ) Force pounds

More information

Soils. Technical English - I 10 th week

Soils. Technical English - I 10 th week Technical English - I 10 th week Soils Soil Mechanics is defined as the branch of engineering science which enables an engineer to know theoretically or experimentally the behavior of soil under the action

More information

Cone Penetration Test (CPT) Interpretation

Cone Penetration Test (CPT) Interpretation Cone Penetration Test (CPT) Interpretation Gregg uses a proprietary CPT interpretation and plotting software. The software takes the CPT data and performs basic interpretation in terms of soil behavior

More information

CPT: _CPTU1. GEOTEA S.R.L. Via della Tecnica 57/A San Lazzaro di Savena (BO)

CPT: _CPTU1. GEOTEA S.R.L. Via della Tecnica 57/A San Lazzaro di Savena (BO) 468 - San Lazzaro di Savena (BO) +39.51.655377 Project: CPeT-IT v.1.7.6.4 - CPTU data presentation & interpretation software - Report created on: 5/1/16, 11.51.3 Project file: \\Server\server\GEOTEA\LAVORI\16\16.8_FA.TA.

More information

Estimation of Shear Wave Velocity Using Correlations

Estimation of Shear Wave Velocity Using Correlations Estimation of Shear Wave Velocity Using Correlations Pranav Badrakia P.G. Student, Department of Civil Engineering, Maharashtra Institute of Technology, Pune, Maharashtra, India 1 ABSTRACT: Shear wave

More information

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the 1. WHAT IS CPT? A CPT is carried out by pushing a calibrated cone vertically into the ground and measuring the forces applied on its conical tip, the friction on the sides of the cone and, if using a piezocone,

More information

ABSTRACT. Use and Application of Piezocone Penetration Testing in Presumpscot Formation

ABSTRACT. Use and Application of Piezocone Penetration Testing in Presumpscot Formation ABSTRACT Use and Application of Piezocone Penetration Testing in Presumpscot Formation Presumpscot Formation is commonly referred to as glacial marine clay found along the coastline of eastern New England.

More information

Safe bearing capacity evaluation of the bridge site along Syafrubesi-Rasuwagadhi road, Central Nepal

Safe bearing capacity evaluation of the bridge site along Syafrubesi-Rasuwagadhi road, Central Nepal Bulletin of the Department of Geology Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, Vol. 12, 2009, pp. 95 100 Safe bearing capacity evaluation of the bridge site along

More information

Chapter (11) Pile Foundations

Chapter (11) Pile Foundations Chapter (11) Introduction Piles are structural members that are made of steel, concrete, or timber. They are used to build pile foundations (classified as deep foundations) which cost more than shallow

More information

DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY

DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY Uma Maheswari R 1, Boominathan A 2 and Dodagoudar G.R 3 1 Research Scholar,

More information

Interpretation of Pile Integrity Test (PIT) Results

Interpretation of Pile Integrity Test (PIT) Results Annual Transactions of IESL, pp. 78-84, 26 The Institution of Engineers, Sri Lanka Interpretation of Pile Integrity Test (PIT) Results H. S. Thilakasiri Abstract: A defect present in a pile will severely

More information

Lateral impact loading and snap-back testing to estimate linear and nonlinear dynamic response of near-shore piles

Lateral impact loading and snap-back testing to estimate linear and nonlinear dynamic response of near-shore piles 2th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement for the Economic Upturn Benevento, Italy, September 15-17,

More information

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Offshore subsoil investigations

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Offshore subsoil investigations Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering Offshore subsoil investigations Addis Ababa, September 2010 Offshore subsoil investigations Presentation

More information

OVERVIEW REVIEW OF FOUNDATIONS & SOILS ENG.

OVERVIEW REVIEW OF FOUNDATIONS & SOILS ENG. Soil Borings. 14.485 CAPSTONE DESIGN OVERVIEW REVIEW OF 14.431 FOUNDATIONS & SOILS ENG. Geotechnical Report (not covered). Bearing Pressure Calculations. Settlement Calculations. Lateral Earth Pressure

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) FLOW PROPERTIES Soils exhibit flow properties that control hydraulic conductivity (k), rates of consolidation, construction

More information

Geotechnical verification of impact compaction

Geotechnical verification of impact compaction PII-73 Geotechnical verification of impact compaction P. J. Waddell1, R. A. Moyle2 & R. J. Whiteley1 1 2 Coffey Geotechnics, Sydney, Australia Coffey Geotechnics, Harrogate, UK Abstract Remediation of

More information

Geotechnical Site Assessment by Seismic Piezocone Test in North of Denmark

Geotechnical Site Assessment by Seismic Piezocone Test in North of Denmark Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (2013) - Seventh International Conference on Case Histories in Geotechnical

More information

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01 patersongroup May 19, 2016 File: PG3733-LET.01 Hydro Ottawa Limited c/o Cresa Toronto 170 University Avenue, Suite 1 Toronto, Ontario M5H 3B3 Attention: Ms. Barbara Wright Consulting Engineers 154 Colonnade

More information

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

The Bearing Capacity of Soils. Dr Omar Al Hattamleh The Bearing Capacity of Soils Dr Omar Al Hattamleh Example of Bearing Capacity Failure Omar Play the move of bearing Capacity failure The Philippine one Transcona Grain Silos Failure - Canada The Bearing

More information

Soil Behaviour Type from the CPT: an update

Soil Behaviour Type from the CPT: an update Soil Behaviour Type from the CPT: an update P.K. Robertson Gregg Drilling & Testing Inc., Signal Hill, California, USA ABSTRACT: One of the most common applications of CPT results is to evaluate soil type

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils Soil strength Most of problems in soil engineering (foundations, slopes, etc.) soil withstands shear stresses. Shear strength of a soil is defined as the capacity to resist shear

More information

Seismic piezocone and seismic flat dilatometer tests at Treporti

Seismic piezocone and seismic flat dilatometer tests at Treporti Proceedings ISC- on Geotechnical and Geophysical Site Characterization, Viana da Fonseca & Mayne (eds.) Millpress, Rotterdam, ISBN 9 59 9 9 Seismic piezocone and seismic flat dilatometer tests at Treporti

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY

ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY Kevin M. Martin, P.E. KMM Geotechnical Consultants, LLC 7 Marshall Road Hampstead, NH 0384 603-489-6 (p)/ 603-489-8 (f)/78-78-4084(m) kevinmartinpe@aol.com

More information

Cone Penetration Test Design Guide for State Geotechnical Engineers

Cone Penetration Test Design Guide for State Geotechnical Engineers Cone Penetration Test Design Guide for State Geotechnical Engineers Author: David Saftner Report Number: 2018-32 Date Published: November 2018 Minnesota Department of Transportation Research Services &

More information

Chapter (5) Allowable Bearing Capacity and Settlement

Chapter (5) Allowable Bearing Capacity and Settlement Chapter (5) Allowable Bearing Capacity and Settlement Introduction As we discussed previously in Chapter 3, foundations should be designed for both shear failure and allowable settlement. So the allowable

More information

Evaluation of soil liquefaction using the CPT Part 2

Evaluation of soil liquefaction using the CPT Part 2 Evaluation of soil liquefaction using the CPT Part 2 P.K. Robertson 2013 Definitions of Liquefaction Cyclic (seismic) Liquefaction Zero effective stress (during cyclic loading) Flow (static) Liquefaction

More information

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to : DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC Presented to : TERRATECH 455, René-Lévesque Blvd. West Montreal, Québec HZ 1Z3 Presented by : GEOPHYSICS GPR INTERNATIONAL

More information

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18 Lesson 25 Static Pile Load Testing, O-cell, and Statnamic Reference Manual Chapter 18 STATIC LOAD TESTING Most accurate method to determine static pile capacity Perform at design or construction stage

More information

USE OF CPT/CPTU FOR SOLUTION OF

USE OF CPT/CPTU FOR SOLUTION OF USE OF CPT/CPTU FOR SOLUTION OF PRACTICAL PROBLEMS Tom Lunne, NGI USE OF CPT/CPTU FOR SULUTION OF PRACTICAL PROBLEMS Indirect design method: Interprete CPT/CPTU results to arrive at soil design parameters

More information

Mitigation of Liquefaction Potential Using Rammed Aggregate Piers

Mitigation of Liquefaction Potential Using Rammed Aggregate Piers ASCE 2011 557 Mitigation of Liquefaction Potential Using Rammed Aggregate Piers R.W. Rudolph, M. ASCE, G.E. 1, B. Serna, M. ASCE, P.E. 2, and T. Farrell, M. ASCE, G.E. 3 1 Principal Consultant, ENGEO,

More information

A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and /

A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and / DOI 10.1007/s40030-017-0246-7 ORIGINAL CONTRIBUTION A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and / V. A. Sakleshpur 1 C. N. V. Satyanarayana Reddy 1 Received: 9 January

More information

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM C A U T I O N!! (THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM EQLique&Settle2. THE AUTHOR IS HEREBY RELEASED OF ANY LIABILITY FOR ANY INCORRECT USE OF THIS SAMPLE

More information

Geotechnical characterization of a heterogeneous unsuitable stockpile

Geotechnical characterization of a heterogeneous unsuitable stockpile Geotechnical characterization of a heterogeneous unsuitable stockpile K. Rengifo & F. Herrera Knight Piésold Consultores, Lima, Perú L. de la Cruz Minera La Zanja S.R.L., Lima, Perú ABSTRACT: Typically,

More information

CPT Applications - Liquefaction 2

CPT Applications - Liquefaction 2 CPT Applications - Liquefaction 2 Peter K. Robertson CPT in Geotechnical Practice Santiago, Chile July, 2014 Definitions of Liquefaction Cyclic (seismic) Liquefaction Zero effective stress (during cyclic

More information