Research Article Determination Permeability Coefficient from Piezocone

Similar documents
Soil Behaviour Type from the CPT: an update

Cone Penetration Test (CPT) Interpretation

CPT Data Interpretation Theory Manual

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

Cone Penetration Testing in Geotechnical Practice

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

SHEAR STRENGTH OF SOIL

Assessment of cyclic liquefaction of silt based on two simplified procedures from piezocone tests

Cavity Expansion Methods in Geomechanics

Keywords: CPTu, pore water pressure, liquefaction analysis, Canterbury earthquake sequence

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

CPT: _CPTU1. GEOTEA S.R.L. Via della Tecnica 57/A San Lazzaro di Savena (BO)

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato

Examples of CPTU results in other soil types. Peat Silt/ clayey sands Mine tailings Underconsolidated clay Other

Evaluation of liquefaction resistance of non-plastic silt from mini-cone calibration chamber tests

Evaluation of Cone Penetration Resistance in Loose Silty Sand Using Calibration Chamber

Research Article Size Effect and Material Property Effect of the Impactor on the Damage Modes of the Single-Layer Kiewitt-8 Reticulated Dome

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE ESTIMATION OF FINES CONTENT FROM CPT PARAMETERS FOR CALCAREOUS SOILS OF WESTERN INDIAN OFFSHORE

Canadian Geotechnical Journal. CPT-based Soil Behaviour Type (SBT) Classification System an update

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Offshore subsoil investigations

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

Geotechnical Properties of Soil

Strength-Flow Parameters of Loose Silty Sands From Piezocone Tests

Theory of Shear Strength

CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC

The CPT in unsaturated soils

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Theory of Shear Strength

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

CPT Applications - Liquefaction 2

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6

A practical method for extrapolating ambient pore pressures from incomplete pore pressure dissipation tests conducted in fine grained soils

Soil strength. the strength depends on the applied stress. water pressures are required

Interpretation of in-situ tests some insights

Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results

Chapter 7 Permeability and Seepage

LIQUEFACTION RESISTANCE OF SILTYSAND BASED ON LABORATORY UNDISTURBED SAMPLE AND CPT RESULTS

The San Jacinto Monument Case History

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Evaluation of soil liquefaction using the CPT Part 2

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

Delft University of Technology. Thermal Cone Penetration Test (T-CPT) Vardon, Phil; Baltoukas, Dimitris; Peuchen, Joek

Laboratory Testing Total & Effective Stress Analysis

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Wick Drain

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Monitoring of underground construction

Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand

GUIDE TO CONE PENETRATION TESTING

Soil Properties - II

Chapter 12 Subsurface Exploration

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

CONSOLIDATION BEHAVIOR OF PILES UNDER PURE LATERAL LOADINGS

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the

Research Article An Analysis of the Quality of Repeated Plate Load Tests Using the Harmony Search Algorithm

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

Faculty of Civil Engineering and Environmental, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia

Drawing up of a geotechnical dossier for the stabilization of historical quay walls along the river Scheldt in Antwerp

1.8 Unconfined Compression Test

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments.

Use of CPT for design, monitoring, and performance verification of compaction projects

Chapter 1 Introduction

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423

Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles

Geotechnical Properties of Sediments by In Situ Tests

Geotechnical characterization of a heterogeneous unsuitable stockpile

Predicting Settlement and Stability of Wet Coal Ash Impoundments using Dilatometer Tests

Fellenius, B. H., and Eslami, A.

Class Principles of Foundation Engineering CEE430/530

EFFECTIVENESS OF HYDROFRACTURE PREDICTION FOR HDD DESIGN

Numerical Analysis on Shaft Lining Stability during Aquifer Quick Drainage in Eastern Chinese Coal Mines

CPTu in Consolidating Soils PAULUS P. RAHARDJO. PROFESSOR OF GEOTECNICAL ENGINEERING, UNIVERSITAS KATOLIK PARAHYANGAN - INDONESIA

(Refer Slide Time: 02:18)

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

16 Rainfall on a Slope

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation

Module 1 : Site Exploration and Geotechnical Investigation

10. GEOTECHNICAL EXPLORATION PROGRAM

Finite Element Analysis of a Cofferdam with Bucket Foundations at Zhuanghai Artificial Island

Monotonic and dilatory excess pore water dissipations in silt following CPTU at variable penetration rate

Interpretation of the CPT in engineering practice

CONE PENETRATION TEST DATA

SHEAR STRENGTH OF SOIL

Performance based earthquake design using the CPT

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History

Chapter (12) Instructor : Dr. Jehad Hamad

SOME GEOTECHNICAL PROPERTIES OF KLANG CLAY

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Oedometer and direct shear tests to the study of sands with various viscosity pore fluids

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil

Transcription:

Advances in Materials Science and Engineering, Article ID 396428, 7 pages http://dx.doi.org/.1155/2014/396428 Research Article Determination Permeability Coefficient from Piezocone Qiang Wang 1 and LiYuan Tong 2 1 Department of Civil Engineering, Anhui University of Science and Technology, Huainan Anhui 232001, China 2 Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 2096, China Correspondence should be addressed to Qiang Wang; wangqiang0711@163.com Received 8 January 2014; Accepted 27 March 2014; Published 27 April 2014 Academic Editor: John W. Gillespie Copyright 2014 Q. Wang and L. Tong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The permeability coefficient of soil profile is one of the problems concerned by engineers, and the determination of permeability coefficient method mainly relies on the laboratory permeability test and field pumping test, but these tests are time-consuming and inefficient, and especially the permeability coefficient of soil under the condition of partial drainage was difficult to determine; in this paper, the modern digital CPTU technology was used. Dimensional permeability K T was defined by using the dimensionless normalized cone tip resistance Q t, friction factor F r, and pore pressure ratio B q, these parameters enable plots of B q -Q t, F r -Q t, B q -F r to be contoured K T and hence for permeability coefficient. The relationship has been applied to Nanjing 4th Yangtze river bridge, and compared with laboratory penetration test. The results indicate that the method can accurately determine the permeability coefficient of soil under partial drainage condition and provide the theoretical basis for engineering application. 1. Introduction With the development of foundation pit engineering to larger and deeper and the surrounding environment is increasingly complex, especially in the city downtown area, some excavations close to the high-rise buildings, some excavations close to the subway tunnel. At the same time, the groundwater treatment around the excavation cannot be avoided, and the environmental problems around the excavation caused by dewatering are becoming more and more serious. How to arrange dewatering to reduce the impact as much as possible is the key issue for many scholars and technicians. In order to reasonably arrange the dewatering well, we must grasp permeability characteristics of each soil accurately. The key parameter of permeability characteristics is the permeability coefficient. The permeability coefficient is the relative strength index of soil. It is a basic parameter and it must be used for seepage calculation; therefore, the accurate determination of soil permeability coefficient is a very important work, and it plays an important role in the success of the excavation. The current methods for determining the permeability coefficient are routine laboratory permeability test, field pumping test, water pressure test, and so forth. Routine laboratory permeability test is divided into constant head permeability test and variable head permeability test. The laboratory permeability test is widely used, mainly because of its easy operation and simple equipment; however, it has some disadvantages: (1) soil disturbance, (2) inaccurate permeability test, especially sand inclusion or interbed, (3) not simulating field boundary conditions, and (4) the heavy workload and high cost. These drawbacks make much difference for the permeability coefficient between field test and laboratory test. Piezocone penetration test (CPTU) is a time-saving, little disturbance, convenient and economic method for permeability coefficient of soil. The permeability coefficient of the soil was able to relatively accurately obtain, especially mixed-layer or thin interbed experts and scholars at home and abroad dedicated to the study method that can accurately determine the permeability coefficient. 2. Methods Since the advent of multifunction, a lot of the relationships between permeability coefficient and multifunctional CPTU parameters have been proposed. The main methods of permeability coefficient of cohesive soil are divided into

2 Advances in Materials Science and Engineering q t σ h f s =μσh +c σ 0 q t u 0 u2 Figure 1: Tip local conditions. Cone expansion stress is q t. two categories: (1) to estimate permeability coefficient based on the soil classification and (2) to estimate permeability coefficient based on the pore pressure dissipation test. The correct tip resistance q t, pore pressure ratio B q and sleeve friction f s were modified to determine the type of soil [1 3] and (Olsen [4]). The permeability coefficient was estimated from soil classification [5]. And by the pore pressure ratio B q [6] and by the side friction f s to determinate the permeability coefficient of soil, the coefficient of permeability coefficient was directly determined by using the cone tip resistance and side friction [7, 8]. View of the calculation of consolidation coefficient is less than 7.1 5 m/s 2, the consolidation coefficient of the cohesive soil can be determined by the pore pressure dissipation in the completely undrained condition, and then the permeability coefficient can be determined by the consolidation coefficient according to the relationship between permeability coefficient and consolidation coefficient. However, the consolidation coefficient between 7.1 5 m/s 2 and 1.4 2 m/s 2 was taken for the part of drainage condition, so the pressure dissipation was not used. The partial drainage state boundary range B q Q t < 1.2 Q t F r < 0.3 B q /F r <4was proposed. Based on the partial drainage condition given by Elswroth [9], the permeability coefficient was put forward to determine by using CPTU data. 2.1. Cavity Expansion Theory. For the saturated clay under undrained conditions, cylindrical cavity expansion stress was proposed by using [] σ r =σ V0 + 4 3 S u [1 + ln ( G S u )], (1) where G is shear modulus, G = E/2(1+μ), μ is Poisson s ratio, E is elastic modulus, S u is undrained shear strength, kpa, and σ V0 is overburden stress, kpa. Under undrained conditions, the excess pore pressure caused by cavity expansion can be calculated using the average total stress increment Δσ m Δu = u 2 u 0 =Δσ m = 1 3 (Δσ r +2Δσ θ )= 4 3 S u ln ( G S u ), (2) where u 2 is cone shoulder pressure, u 0 is hydrostatic pressure, and q t is the correct cone tip resistance. In the CPTU penetration process, the horizontal stress is assumed to be equal to the cavity expansion stress. For the cohesionless soil c=0, the normalized friction ratio F r and pore pressure were established relationships, and noticed the sleeve friction, f s = μσ h, σ h = σ h u 2, c, φ were the soil strength parameters. The friction factor is assumed to be μ= tan φ as shown in Figure 1 f s = (σ h u 2 ) tan φ. (3) 2.2. Dimensionless Parameters. CPTU sounding yields profiles of the correct tip cone resistance, q t, cone shoulder pore pressures, u 2,andsleevefriction,f s, with depth. These dimensional metrics may be defined as normalized magnitudes of tip resistance, Q t, pore pressure ratio, B q,andfriction ratio, F r,as Q t = σ V0, B q = u 2 u 0, F r = f s, where σ V0 is the effective overburden stress, kpa, u 0 is hydrostatic pressure, kpa, and u 2 is cone shoulder pressure, kpa. Iftheadhesionoftheconesleeveisassumedtobeequalto the undrained shear strength, f s =S u, then the magnitudes of nondimensional cone metrics of end-bearing, sleeve friction, andporepressureratiomaybedeterminedbysubstituting(1) and (2)into(4)to yield B q = u 2 u 0 = Q t = σ V0 F r = ln (G/S u) 1+ln (G/S u ) (4) (5) = 4S u 3σV0 [1+ln ( G )] (6) S u f s = tan φ (1+ 1 Q t B q ) (7) B q Q t = u 2 u 0 σv0 = 4S u 3σV0 ln ( G ). (8) S u

Advances in Materials Science and Engineering 3 2r 0 q t 2r 0 Elestic zone u=u 0 U u 0 u u 0 u=u 0 Plastic zone R Udt q n (a) (b) Figure 2: Geometry of process zone surrounding advancing penetrometer. LIU HE QI XIA CXNA-ZK23 CXNA-ZK22 60.03 62.62 5.14 4.54/1.00 1.94/3.60 1.86/7.40 2.86/8.40 1 0 11 1 2 5.11 3.31/2.20 4.29/9.80 6.49/12.00 2 3 33.06/38.60 33.39/38.90 45.16/50.70 7 3 46.99/52.50 54.49/60.03 57.11/62.62 Figure 3: The soil profile of north anchorage of the Yangtze river 4th bridge A 0 =Clay,A 1 =siltyclay,a 2 =silt,b 3 = silty clay with fine sand interbed, G 3 =bedrock.

4 Advances in Materials Science and Engineering Hole 4 ZK22 ZK23 ZK24 ZK25 Hole 2 Hole 5 Medline ZK21 ZK30 ZK31 Hole 6 ZK32 Hole 1 Hole 3 ZK26 ZK27 ZK28 ZK29 Technological drilling General drilling CPTu drilling Figure 4: Layout diagram of CPTu holes in Yangtze River four bridge north anchorage. q t (MPa) f s (kpa) u 2 (kpa) 0 0 5 15 20 0 0 50 0 150 200 0 0 200 400 600 800 5 5 5 Water table 15 15 15 Depth (m) 20 20 20 25 25 25 30 30 30 35 35 35 40 40 40 Figure 5: Results of CPTu. It is assumed that the penetration of a standard cone has a stable speed (i.e., 20 mm/s). According to the fluid continuity theorem and the Darcy law, the water volume is equal to the cone penetration volume in unit time, as shown in (9) and u r is the hydrostatic pressure where r = r h it is assumed that the permeability coefficient has a small variation in the penetration process. At the same time, when r h and r 0 /r h 0, the pore pressure is hydrostatic pressure u 0, namely, () calculation diagram as shown in Figure 2. Consider u 2 u r = γ w 4πK h r 0 (1 r 0 r h )dv= Ur 0γ w 4K h (1 r 0 r h ) (9) u 2 u 0 = γ w 4πK h r 0 dv = Ur 0γ w 4K h. () Take into consideration and assumption that Obtain B q Q t = u 2 u 0 σ V0 = u 2 u 0 σv0, (11) B q Q t = 1 K T. (12) K h = Ur 0γ w K T 4 σv0, (13) where U is penetration rate of m/s; r 0 is cone radius m; K T is the dimensionless permeability index; K h is permeability coefficient, m/s.

Advances in Materials Science and Engineering 5 00 00 F r = 0.02 F r Q t = 2.0 0 B q Q t =6.0 0 Q t B q Q t = 0.2 Q t F r Q t = 0.3 F r Q t = 0.2 B q Q t = 1.0 F r Q t = 0.7 1 0.2 0.0 0.2 0.4 0.6 0.8 1.0 B q 1 1E 3 0.01 0.1 F r (a) 0.1 (b) Bq/F r = 0.4 Bq/F r = 4.0 F r 0.01 Bq/F r = 8.0 1E 3 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Bq (c) Figure 6: Contoured plots of B q -Q t, F r -Q t,andb q -F r. Substitute B q =1/Q t K T into (7) K T = 1 B q ( F r tan φ 1+B q), (14) K T = 1 Q t (1 + 1/Q t F r / tan φ), (15) where B q is the pore pressure ratio, Q t is the normalized tip resistance, F r is resistance ratio, K T is the dimensionless permeability index, and K h is the permeability coefficient, m/s. Equation (14) showed that the friction ratio F r and pore pressure ratio B q can calculate the dimensionless permeability index K T.Equation(15) showsthatk T canbecalculated by the frictional ratio F r and the normalized tip resistance Q t. According to k h =Ur 0 γ w K T /4 σ V0,thesoilpermeability coefficient can be calculated in partially drained conditions by using the obtained K T values. 3. Engineering Examples 3.1. Engineering Overview. South and North Anchorage of the 4th Nanjing Yangtze River Bridge are located in the Yangtze River levee on both sides of south and North, belongingtothelowerreachesoftheyangtzeriveralluvialfloodplain. The site of north anchor of the 4th Nanjing Yangtze River Bridg is located in Nanjing fine mag Technology Co. Ltd. factory area, the ground elevation is about 5.5 6.1 m. The northern boundary of south anchor is apart from dyke and river more than 60 meters and 200 meters respectively. The north anchorage ground elevation is about 4.5 5.2 m, the site and the surrounding for forest, the southern boundary of north anchor is apart from the dyke and river about 120 m and 120 m respectively. The Quaternary loose sediment thickness is more than 60 m in north anchor. 3.2.ResultsofCPTUTest. From June 17, 2007, to June 23, 2007, the CPTU tests (six holes) were carried out in north anchor of Nanjing 4th Yangtze River Bridge. The soil profile of north anchorageoftheyangtzeriver4thbridgeisshowninfigure3.

6 Advances in Materials Science and Engineering Table 1:Estimated soilpermeability (k) based on normalized CPTsoilbehavior type (SBTn) byrobertson [2] (modified from Lunne et al., [11]). SBTn zone SBTn Range of k (m/s) I c 1 Sensitive fine grained 3 to 3 8 NA 2 Organic soils clay 1 to 1 8 I c > 3.60 3 Clay 1 9 to 1 9 2.95 < I c < 3.60 4 Silt mixture 3 9 to 1 7 2.60 < I c < 2.95 5 Sand mixture 1 7 to 1 5 2.05 < I c < 2.60 6 Sand 1 5 to 1 3 1.31 < I c < 2.05 7 Dense sand gravelly sand 1 3 to 1 I c < 1.31 8 Very dense/stiff soil 1 8 to 3 5 NA 9 Verystifffine-grainedsoil 1 9 to 3 7 NA Overconsolidated and/or cemented. Depth (m) 15 20 25 30 35 40 9 8 7 6 5 4 3 Permeability coefficient (m/s) Laboratory test This method Figure 7. As seen from Figure 6, the permeability coefficients from the laboratory test and the CPTU test were consistent andthetrendisbasicallysame.thepermeabilitycoefficient using the presented method to calculate was in accordance with the scope of permeability coefficient in Table 1 [2]. 4. Conclusion The dimensionless penetration index K T was derived through the normalized tip resistance Q t, frictional ratio F r,and the pore pressure ratio B q relationship in partial drainage conditions; based on K T, the permeability coefficient can be calculated. Comparing the results of laboratory test and the CPTU test, we can see the permeability coefficient in the range of 4 m/s 7 m/s from the test results of soil under partially drained conditions and more than 4 m/s in complete drainage conditions and less than 7 m/s in undrained condition the permeability coefficient can be calculated through the pore pressure dissipation test. The engineering application shows that the permeability coefficients obtained from the pumping test and CPTU test are identical. This method can provide the reference for practical foundation pit dewatering. Figure 7: Curve of permeability coefficient changing with depth. The hole position is shown in Figure 4. The CPTU test results were as shown in Figure 5.FromFigure6,itcanbeseenthat themeasuringpointsofthesandlayerarelocatedintherange of 0<B q Q t < 0.2, Q t F r < 0.2 0.7, B q /F r <4, F r < 0.2,which belongs to the section of the partial drainage conditions, so itcancalculatethesoilpermeabilitycoefficientaccordingto (12) (15). Based on laboratory tests, the internal friction angle of slit is 30.9,andtheinternalfrictionangleoffinesandis 32.5 and the internal friction angle of silty soil is 31.The permeability coefficient related to the depth can be calculated by the equation (13). Figure7 shows the comparison between the calculated results and the laboratory test ones, shown in Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments The work described in this paper was supported by the Outstanding Youth Fund of the Education Department of Anhui Province (Project no. 2011SQRL045), Master/Doctor Fund of the Anhui University of Science and Technology, Young ScholarFundoftheAnhuiUniversityofScienceandTechnology, and the National Natural Science Foundation of China (Project no. 51208005).

Advances in Materials Science and Engineering 7 References [1] Douglas, B. J, Olsen, and R. S, Soil classification using electric cone penetrometer. Cone penetration testing and experience, in Proceedings of the ASCE National Convention (ASCE 81),pp. 209 227, New York, NY, USA, 1981. [2] P. K. Robertson, Soil classification using the cone penetration test, Canadian Geotechnical Journal, vol. 27, no. 1, pp. 151 158, 1990. [3] P. K. Robertson and C. E. Wride, Evaluating cyclic liquefaction potential using the cone penetration test, Canadian Geotechnical Journal,vol.35,no.3,pp.442 459,1998. [4] R.S.OlsenandJ.V.Farr, Sitecharacterizationusingthecone penetrometer test, in UseofinSituTestsinGeotechnicalEngineering, pp. 854 868, American Society of Civil Engineers (ASCE), New York, NY, USA, 1986. [5] M. Manassero, Hydraulic conductivity assessment of slurry wall using piezocone test, Geotechnical Engineering, vol.120,no.,pp.1725 1746,1994. [6] R. S. Olsen, Normalization and prediction of geotechnical properties using the cone penetrometer test, Tech. Rep. GL-94-29,U.S.ArmyCorpsofEngineers,WES,Vicksburg,Miss,USA, 1994. [7] J.M.Smythe,P.B.Bedient,R.A.Klopp,andC.Y.Chiang, An advanced technology for the in situ measurement of heterogeneous aquifers, in Proceedings of the Conference on New Field Techniques for Quantifying the Physical and Chemical Properties of Heterogeneous Aquifer,pp.605 628,1989. [8] C. Y. Chiang, K. R. Loos, and R. A. Klopp, Field determination of geological/chemical properties of an aquifer by cone penetrometry and headspace analysis, Ground Water, vol. 30, no. 3, pp. 428 436, 1992. [9] D. Elsworth and D. S. Lee, Permeability determination from on-the-fly piezocone sounding, Geotechnical and Geoenvironmental Engineering,vol.131,no.5,pp.643 653,2005. [] R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK, 1983. [11] T. Lunne, P. K. Robertson, and J. J. M. Powell, Cone Penetration Testing Geotechnical Practicem, Chapman and Hall, London, UK; Spon press Taylor & Francis Group, New York, NY, USA, 1997.

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials