Package TO Symbol Parameter Value Unit Test Conditions Note. V GS =20 V, T C = 25 C Fig. 19 A 60 V GS =20 V, T C = 100 C.

Similar documents
Package TO Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 6 V GS = 20 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 24 V GS = 20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 40 V GS = 20 V, T C = 100 C.

Package. Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 15 V GS = 15 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note V GS = 15 V, T C = 25 C Fig. 19 A 7.5 V GS = 15 V, T C = 100 C.

Package. Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 40 V GS = 15 V, T C = 100 C.

Package. TAB Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 22.5 V GS = 15 V, T C = 100 C.

Package. TAB Drain S S G. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 13.5 V GS = 15 V, T C = 100 C

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS =20 V, T C = 25 C A 71 V GS =20 V, T C = 100 C. -40 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 46 V GS = 20 V, T C = 100 C. -40 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 12.5 V GS = 20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note 36 A 27 V GS = 20 V, T C = 100 C. -55 to +175

CAS120M12BM2 1.2kV, 13 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec Diode

CAS300M12BM2 1.2kV, 5.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

CAS300M17BM2 1.7kV, 8.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D05120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C5D05170H Silicon Carbide Schottky Diode Z-Rec Rectifier

C2D20120D Silicon Carbide Schottky Diode Zero Recovery Rectifier

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

Z-Rec Rectifier. C4D08120A Silicon Carbide Schottky Diode. Package. Features. Benefits. Applications

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

E4D20120A. Silicon Carbide Schottky Diode E-Series Automotive. Features. Package. Benefits. Applications. Maximum Ratings (T C V DS 900 V I D 11.

GCMS020A120B1H1 1200V 20 mohm SiC MOSFET Module

C3D04065A Silicon Carbide Schottky Diode Z-Rec Rectifier

C4D05120E Silicon Carbide Schottky Diode Z-Rec Rectifier

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

C3D08065A Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D16065D Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D04060F Silicon Carbide Schottky Diode Z-Rec Rectifier (Full-Pak)

C3D02060E Silicon Carbide Schottky Diode Z-Rec Rectifier

GC15MPS V SiC MPS Diode

LSIC1MO120E V N-channel, Enhancement-mode SiC MOSFET

GB2X100MPS V SiC MPS Diode

GB01SLT V SiC MPS Diode

CID Insulated Gate Bipolar Transistor with Silicon Carbide Schottky Diode Zero Recovery Rectifier

GAP3SLT33-220FP 3300 V SiC MPS Diode

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

GC2X8MPS V SiC MPS Diode

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

Complementary (N- and P-Channel) MOSFET

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM P3 Power-Transistor

GSID300A120S5C1 6-Pack IGBT Module

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

OptiMOS Small-Signal-Transistor

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

OptiMOS P2 Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

OptiMOS 2 Power-Transistor

OptiMOS TM Power-MOSFET

OptiMOS 2 Power-Transistor

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-MOSFET

OptiMOS 3 Power-Transistor


OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-MOSFET

OptiMOS 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS -P Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS Small-Signal-Transistor

CoolMOS TM Power Transistor

GSID040A120B1A3 IGBT Dual Boost Module

OptiMOS 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS TM 3 Power-Transistor

OptiMOS 2 Power-Transistor

SIPMOS Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 3 Power-MOSFET

OptiMOS TM 3 Power-Transistor

Dual N-Channel OptiMOS MOSFET

OptiMOS -P Small-Signal-Transistor

500V N-Channel MOSFET

CoolMOS Power Transistor

OptiMOS TM Power-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-MOSFET

CoolMOS Power Transistor

Transcription:

V DS 2 V C2M252D Silicon Carbide Power MOSFET C2M TM MOSFET Technology N-Channel Enhancement Mode Features Package I D @ 25 C R DS(on) 9 A 25 mω High Blocking Voltage with Low On-Resistance High Speed Switching with Low Capacitances Easy to Parallel and Simple to Drive Avalanche Ruggedness Resistant to Latch-Up Halogen Free, RoHS Compliant Benefits TO-247-3 Higher System Efficiency Reduced Cooling Requirements Increased Power Density Increased System Switching Frequency Applications Solar Inverters Switch Mode Power Supplies High Voltage DC/DC converters Battery Chargers Motor Drive Pulsed Power Applications Part Number C2M252D Package TO-247-3 Maximum Ratings (T C = 25 C unless otherwise specified) Symbol Parameter Value Unit Test Conditions Note V DSmax Drain - Source Voltage 2 V V GS = V, I D = μa V GSmax Gate - Source Voltage -/+25 V Absolute maximum values V GSop Gate - Source Voltage -5/+2 V Recommended operational values I D Continuous Drain Current 9 V GS =2 V, T C = 25 C Fig. 9 A 6 V GS =2 V, T C = C I D(pulse) Pulsed Drain Current 25 A Pulse width t P limited by T jmax Fig. 22 P D Power Dissipation 463 W T C =25 C, T J = 5 C Fig. 2 T J, T stg Operating Junction and Storage Temperature -55 to +5 C T L Solder Temperature 26 C.6mm (.63 ) from case for s M d Mounting Torque 8.8 Nm lbf-in M3 or 6-32 screw C2M252D Rev. B, -25

Electrical Characteristics (T C = 25 C unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V (BR)DSS Drain-Source Breakdown Voltage 2 V V GS = V, I D = μa V GS(th) Gate Threshold Voltage 2. 2.6 4 V V DS = V GS, I D = 5mA 2. V V DS = V GS, I D = 5mA, T J = 5 C I DSS Zero Gate Voltage Drain Current 2 μa V DS = 2 V, V GS = V I GSS Gate-Source Leakage Current 6 na V GS = 2 V, V DS = V R DS(on) g fs Drain-Source On-State Resistance Transconductance 25 34 V GS = 2 V, I D = 5 A mω 43 V GS = 2 V, I D = 5 A, T J = 5 C 23.6 V DS= 2 V, I DS= 5 A S 2.7 V DS= 2 V, I DS= 5 A, T J = 5 C C iss Input Capacitance 2788 V GS = V Fig. C oss Output Capacitance 22 pf V DS = V 7,8 C rss Reverse Transfer Capacitance 5 f = MHz E oss C oss Stored Energy 2 μj VAC = 25 mv Fig 6 E AS Avalanche Energy, Single Pluse 3.5 J I D = 5A, V DD = 5V Fig. 29 Fig. Fig. 4,5,6 Fig. 7 E ON Turn-On Switching Energy.4 E OFF Turn Off Switching Energy.3 mj V DS = 8 V, V GS = -5/2 V, I D = 5A, R G(ext) = 2.5Ω,L= 42 μh Fig. 25 t d(on) Turn-On Delay Time 4 t r Rise Time 32 t d(off) Turn-Off Delay Time 29 t f Fall Time 28 ns V DD = 8 V, V GS = -5/2 V I D = 5 A, R G(ext) = 2.5 Ω, R L = 6 Ω Timing relative to V DS Per IEC6747-8-4 pg 83 Fig. 27 R G(int) Internal Gate Resistance. Ω f = MHz, V AC = 25 mv, ESR of C ISS Q gs Gate to Source Charge 46 Q gd Gate to Drain Charge 5 Q g Total Gate Charge 6 nc V DS = 8 V, V GS = -5/2 V I D = 5 A Per IEC6747-8-4 pg 83 Fig. 2 Reverse Diode Characteristics Symbol Parameter Typ. Max. Unit Test Conditions Note V SD Diode Forward Voltage 3.3 V V GS = - 5 V, I SD = 25 A 3. V V GS = - 5 V, I SD = 25 A, T J = 5 C Fig. 8, 9, I S Continuous Diode Forward Current 9 T C = 25 C Note t rr Reverse Recovery Time 45 ns Q rr Reverse Recovery Charge 46 nc I rrm Peak Reverse Recovery Current 3.5 A Note (): When using SiC Body Diode the maximum recommended V GS = -5V Thermal Characteristics V GS = - 5 V, I SD = 5 A,T J = 25 C VR = 8 V dif/dt = A/µs Note Symbol Parameter Typ. Max. Unit Test Conditions Note R θjc Thermal Resistance from Junction to Case.24.27 R θjc Thermal Resistance from Junction to Ambient 4 C/W Fig. 2 2 C2M252D Rev. B, -25

Typical Performance 5 2 9 6 3 T J = -55 C tp < 2 µs V GS = 8 V V GS = 2 V V GS = 6 V V GS = 4 V V GS = 2 V V GS = V 5 2 9 6 3 tp < 2 µs V GS = 6 V V GS = 2 V V GS = 8 V V GS = 4 V V GS = 2 V V GS = V. 2.5 5. 7.5.. 2.5 5. 7.5. Figure. Output Characteristics T J = -55 C Figure 2. Output Characteristics 5 2 9 6 3 T J = 5 C tp < 2 µs V GS = 2 V V GS = 6 V V GS = 8 V V GS = 4 V V GS = 2 V V GS = V On Resistance, R DS On (P.U.).8.6.4.2..8.6.4 I DS = 5 A V GS = 2 V t p < 2 µs.2. 2.5 5. 7.5.. -5-25 25 5 75 25 5 Junction Temperature, T J ( C) Figure 3. Output Characteristics T J = 5 C Figure 4. Normalized On-Resistance vs. Temperature 8 7 V GS = 2 V t p < 2 µs 6 5 I DS = 5 A t p < 2 µs On Resistance, R DS On (mohms) 6 5 4 3 2 T J = 5 C T J = -55 C On Resistance, R DS On (mohms) 4 3 2 V GS = 8 V V GS = 2 V V GS = 6 V V GS = 4 V 3 6 9 2 5 Figure 5. On-Resistance vs. Drain Current For Various Temperatures -5-25 25 5 75 25 5 Junction Temperature, T J ( C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 3 C2M252D Rev. B, -25

Typical Performance 8 6 4 2 V DS = 2 V tp < 2 µs T J = 5 C T J = -55 C -5-4 -3-2 - V GS = -5 V V GS = -2 V V GS = V Condition: T J = -55 C t p < 2 µs -2-4 -6-8 2 4 6 8 2 4 Gate-Source Voltage, V GS (V) Drain-Source Voltage, V DS (A) - Figure 7. Transfer Characteristic For Various Junction Temperatures Figure 8. Body Diode Characteristic at -55 ºC -5-4 -3-2 - V GS = -5 V V GS = V V GS = -2 V Condition: t p < 2 µs -2-4 -6-8 -5-4 -3-2 - V GS = -5 V V GS = -2 V V GS = V Condition: T J = 5 C t p < 2 µs -2-4 -6-8 Drain-Source Voltage, V DS (A) - Drain-Source Voltage, V DS (A) - Figure 9. Body Diode Characteristic at 25 ºC Figure. Body Diode Characteristic at 5 ºC Threshold Voltage, V th (V) 3.5 3. 2.5 2..5..5 Conditions VV DS DS = = V GS V I DS I DS = = 5.5 ma ma Gate-Source Voltage, V GS (V) 25 2 5 5 I DS = 5 A I GS = ma V DS = 8 V. -5-25 25 5 75 25 5 Junction Temperature T J ( C) -5 2 4 6 8 2 4 6 8 Gate Charge, Q G (nc) Figure. Threshold Voltage vs. Temperature Figure 2. Gate Charge Characteristic 4 C2M252D Rev. B, -25

Typical Performance -5-4 -3-2 - T J = -55 C tp < 2 µs V GS = V V GS = 5 V V GS = 2 V V GS = V V GS = 5 V -2-4 -6-8 -5-4 -3-2 - tp < 2 µs V GS = V V GS = 5 V V GS = 2 V V GS = V V GS = 5 V -2-4 -6-8 - - Figure 3. 3rd Quadrant Characteristic at -55 ºC Figure 4. 3rd Quadrant Characteristic at 25 ºC -5-4 -3-2 - T J = 5 C tp < 2 µs V GS = V V GS = 5 V V GS = V V GS = 5 V V GS = 2 V -2-4 -6-8 Stored Energy, E OSS (µj) 5 2 9 6 3-2 4 6 8 2 Drain to Source Voltage, V DS (V) Figure 5. 3rd Quadrant Characteristic at 5 ºC Figure 6. Output Capacitor Stored Energy C iss C iss Capacitance (pf) C oss C rss V AC = 25 mv f = MHz Capacitance (pf) C oss V AC = 25 mv f = MHz C rss 5 5 2 2 4 6 8 Figure 7. Capacitances vs. Drain-Source Voltage (-2 V) Figure 8. Capacitances vs. Drain-Source Voltage (- V) 5 C2M252D Rev. B, -25

Typical Performance Drain-Source Continous Current, I DS (DC) (A) 2 8 6 4 2 T J 5 C Maximum Dissipated Power, P tot (W) 5 45 4 35 3 25 2 5 5 T J 5 C -55-3 -5 2 45 7 95 2 45 Case Temperature, T C ( C) -55-3 -5 2 45 7 95 2 45 Case Temperature, T C ( C) Figure 9. Continuous Drain Current Derating vs. Case Temperature Figure 2. Maximum Power Dissipation Derating vs. Case Temperature Junction To Case Impedance, Z thjc ( o C/W) E-3 E-3 E-3.5.3..5.2. SinglePulse E-6 E-6 E-6 E-6 E-3 E-3 E-3 Time, t p (s)... Limited by R DS On ms µs. T C = 25 C D =, Parameter: t p.. ms µs Figure 2. Transient Thermal Impedance (Junction - Case) Figure 22. Safe Operating Area Switching Energy (mj) 4 3.5 3 2.5 2.5.5 V DD = 8 V R G(ext) = 6.8 Ω V GS = -5/+2 V FWD = C4D22A L = 42 μh E Total E On E Off Switching Loss (mj) 2.5 2.5.5 V DD = 6 V R G(ext) = 6.8 Ω V GS = -5/+2 V FWD = C4D22A L = 42 μh E Total E On E Off 2 3 4 5 6 7 Drain to Source Current, I DS (A) 2 3 4 5 6 7 Drain to Source Current, I DS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V DD = 8V) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (V DD = 6V) 6 C2M252D Rev. B, -25

Typical Performance Switching Loss (mj) 5 4.5 4 3.5 3 2.5 2.5.5 V DD = 8 V I DS = 5 A V GS = -5/+2 V FWD = C4D22A L = 42 μh E Total E On E Off Swithcing Loss (mj) 4 3.5 3 2.5 2.5.5 I DS = 5 A V DD = 8 V R G(ext) = 6.8 Ω V GS = -5/+2 V FWD = C4D22A L = 42 µh E Total E On E Off 5 5 2 25 3 External Gate Resistor RG(ext) (Ohms) -5-25 25 5 75 25 5 Junction Temperature, T J ( C) Figure 25. Clamped Inductive Switching Energy vs. R G(ext) Figure 26. Clamped Inductive Switching Energy vs. Temperature 9 8 7 V DD = 8 V R L = 6 Ω V GS = -5/+2 V t d (off) Time (ns) 6 5 4 3 2 t r t f t d (on) 4 8 2 6 2 External Gate Resistor, R G(ext) (Ohms) Figure 27. Switching Times vs. R G(ext) Figure 28. Switching Times Definition 2 Conditons: V DD = 5 V Avalanche Current (A) 8 6 4 2 25 5 75 25 5 75 2 Time in Avalanche T AV (us) Figure 29. Single Avalanche SOA curve 7 C2M252D Rev. B, -25

Test Circuit Schematic L=42 uh D C4D22A 2A, 2V SiC Schottky V DC C DC =42.3 uf Q D.U.T C2M252D Figure 3. Clamped Inductive Switching Waveform Test Circuit Q V DC C DC =42.3 uf L=42 uh V GS =-5V D.U.T C2M252D Q 2 C2M252D Figure 3. Body Diode Recovery Test Circuit ESD Ratings ESD Test Total Devices Sampled Resulting Classification ESD-HBM All Devices Passed V 2 (>2V) ESD-MM All Devices Passed 4V C (>4V) ESD-CDM All Devices Passed V IV (>V) 8 C2M252D Rev. B, -25

T V Package Dimensions Package TO-247-3 Recommended Solder Pad Layout U W Pinout Information: Pin = Gate Pin 2, 4 = Drain Pin 3 = Source Inches Millimeters POS Min Max Min Max A.9.25 4.83 5.2 A.9. 2.29 2.54 A2.75.85.9 2.6 b.42.52.7.33 b.75.95.9 2.4 b2.75.85.9 2.6 b3.3.33 2.87 3.38 b4.3.23 2.87 3.3 c.22.27.55.68 D.89.83 2.8 2. D.64.695 6.25 7.65 D2.37.49.95.25 E.62.635 5.75 6.3 E.56.557 3. 4.5 E2.45.2 3.68 5. E3.39.75..9 E4.487.529 2.38 3.43 e.24 BSC 5.44 BSC N 3 3 L.78.8 9.8 2.32 L.6.73 4. 4.4 ØP.38.44 3.5 3.65 Q.26.236 5.49 6. S.238.248 6.4 6.3 T 9 9 U 9 9 V 2 8 2 8 W 2 8 2 8 Part Number Package Marking C2M252D TO-247-3 C2M252 TO-247-3 9 C2M252D Rev. B, -25

Notes RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2/65/ EC (RoHS2), as implemented January 2, 23. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright 24 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. Cree, Inc. 46 Silicon Drive Durham, NC 2773 USA Tel: +.99.33.53 Fax: +.99.33.545 www.cree.com/power C2M252D Rev. B, -25