I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. Cells Manipulation and Detection.

Similar documents
Laboratory-on-chip based sensors Part 2: Capacitive measurements

I. Introduction II. Biochemistry III. Microfluidic Packaging IV. Capacitive Sensors V. On-Chip Cells Detection and Manipulation.

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz. Sept Hui Wang and Patrick P.

Microelectronics Main CMOS design rules & basic circuits

EE247 Lecture 16. Serial Charge Redistribution DAC

Microelectronics Part 1: Main CMOS circuits design rules

Nyquist-Rate A/D Converters

A novel Capacitor Array based Digital to Analog Converter

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Discrete-Time Filter (Switched-Capacitor Filter) IC Lab

Simulation of CMOS compatible sensor structures for dielectrophoretic biomolecule immobilization

Systematic Design of Operational Amplifiers

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Exercise 1: Capacitors

Analog and Mixed-Signal Center, TAMU

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

Electricity and Magnetism. Capacitance

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

ECEN 610 Mixed-Signal Interfaces

A Microfluidic Electroosmotic Mixer and the Effect of Potential and Frequency on its Mixing Efficiency

IXTF1N450 = 4500V. High Voltage Power MOSFET = 0.9A 80. R DS(on) (Electrically Isolated Tab) N-Channel Enhancement Mode.

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

DATASHEET CD4093BMS. Features. Pinout. Functional Diagram. Applications. Description. CMOS Quad 2-Input NAND Schmitt Triggers

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Core Technology Group Application Note 3 AN-3

Successive Approximation ADCs

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

IXTH3N150 V DSS. High Voltage Power MOSFET = 1500V I D25 = 3A 7.3. R DS(on) N-Channel Enhancement Mode. Avalanche Rated. Fast Intrinsic Diode TO-247

Slide Set Data Converters. Digital Enhancement Techniques

3/24/11. Introduction! Electrogenic cell

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

Towards Fully Integrated Power Management

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999

IXTK5N250 IXTX5N250 = 2500V = 5A < 8.8Ω. High Voltage Power MOSFET w/ Extended FBSOA. Advance Technical Information. R DS(on)

EE115C Digital Electronic Circuits Homework #4

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab)

Optimization of 2D and 3D MIM Capacitors Design for High Frequency Applications using QUEST

An Analysis on a Pseudo- Differential Dynamic Comparator with Load Capacitance Calibration

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept

BJT - Mode of Operations

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

CS 152 Computer Architecture and Engineering

Features / Advantages: Applications: Package: TO-240AA

IXFN56N90P. = 900V = 56A 145m 300ns. Polar TM HiPerFET TM Power MOSFET V DSS I D25. R DS(on) t rr

Volterra Series: Introduction & Application

DC and AC modeling of minority carriers currents in ICs substrate

Features / Advantages: Applications: Package: SOT-227B (minibloc)

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V

2N5545/46/47/JANTX/JANTXV

The K-Input Floating-Gate MOS (FGMOS) Transistor

Introduction to AC Circuits (Capacitors and Inductors)

IXFR18N90P V DSS. Polar TM HiPerFET TM Power MOSFET = 900V I D25 = 10.5A. R DS(on) 300ns. t rr

IXFH400N075T2 IXFT400N075T2

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

ECE 546 Lecture 11 MOS Amplifiers

Long-channel MOSFET IV Corrections

IXTN600N04T2. TrenchT2 TM GigaMOS TM Power MOSFET = 40V = 600A. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

µtrenchmos standard level FET Low on-state resistance in a small surface mount package. DC-to-DC primary side switching.

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

MMIX1F520N075T2 = 75V = 500A. 1.6m. TrenchT2 TM GigaMOS TM HiperFET TM Power MOSFET. (Electrically Isolated Tab)

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ELEN 610 Data Converters

Electromagnetic Modelling Process to Improve Cabling of Power Electronic Structures

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Fundamentals of ANALOG TO DIGITAL CONVERTERS: Part I.3. Technology

Hrudya Nair. COBDEN RESEARCH GROUP Nanodevice Physics Lab CAPACITOR BRIDGE

FEATURES SYMBOL QUICK REFERENCE DATA

Piezoelectric Resonators ME 2082

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

(V DD =3.3V,Ta=25 C) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNIT Operating Current I DD fosc=16mhz,c L =30pF 8 ma Oscillation Stopping Current

Last Name _Di Tredici_ Given Name _Venere_ ID Number

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3

ELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling

Lecture 12: MOSFET Devices

Advance Technical Information IXFN80N60P3 V DSS. High Power Density Easy to Mount Space Savings Symbol Test Conditions Characteristic Values (T J

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Micro/nano and precision manufacturing technologies and applications

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

E18 DR. Giorgio Mussi 14/12/2018

MOS Transistor Theory

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

Electrical Characterization with SPM Application Modules

IXTT440N04T4HV V DSS

Dynamics of Dickson Charge Pump Circuit

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory

Choice of V t and Gate Doping Type

High Efficiency Standard Rectifier

Pipelined multi step A/D converters

Lecture Notes 7 Fixed Pattern Noise. Sources of FPN. Analysis of FPN in PPS and APS. Total Noise Model. Correlated Double Sampling

IXTN200N10L2 V DSS = 100V = 178A. Linear L2 TM Power MOSFET w/ Extended FBSOA. Advance Technical Information

Technology Brief 9: Capacitive Sensors

Transcription:

March 2011 Laboratory-on-hip : Outline I. Introduction II. Biochemistry III. Microfluidic Packaging IV. apacitive Sensors V. ells Manipulation and Detection. GBM8320 - Dispositifs Médicaux Intelligents 2 Laboratory-on-hip : apacitive sensors GBM8320 - Dispositifs Médicaux Intelligents 3 1

Laboratory-on-hip : apacitor sensors apacitive sensors for Lo applications do not require determining a single value of the sensing capacitance, but to distinguish between the device behavior in the presence rather than in the absence of analyte in microfluidic channel. 3D ccelerometer Low complexity rray of capacitive sensors Offset cancellation Sandia National Laboratories, SUMMiT TM Technologyies apacitive sensor LO E.coli Bacteria Ghafar-Zadeh & Sawan, IEEE-IMST3W 2008 GBM8320 - Dispositifs Médicaux Intelligents 4 Lo : harge-based apacitive Measurement Interconnect or sensing capacitance can be retrieved/measured from the following equation: (I S! I R ) = f "V dd " # where Originated = s - 0, and 0 = R U Berkeley Year 1997 External tools Main application Resolution Frequency! D mmeter apacitance characterization Sub femtofarad <15 MHz! R M3 BM M1 Is B S M4 M2 GBM8320 - Dispositifs Médicaux Intelligents 5 Lo : BM-based capacitive sensor urrent mirror and integrating capacitor instead of dc mmeter. (! VTP ) S VS = (! VTP )! dv K x (! VTP ) t + S S 2 S = K x!( Vgs " VTP ) -Vs=Vgs 2 dt [(! VTP ) S ] K x I 1 I( S, t) " 2,! Low [ K x (! VTP ) t + S ] V d d V d d Is M 3 M 4 I(s,t) I S Is M 1 M 1 Vs in in s M 2 M 2 Ghafar-zadeh, Sawan, IEEE TBioS, 2007 GBM8320 - Dispositifs Médicaux Intelligents 6 2

Lo : BM-based capacitive sensor in d dt = I S dv S dt s = S I! + 0 = I " ( # VTP ) + V0 in ancellation of 0 (0 >>! ) ccurate reference current is needed. V out = I! s (V dd " V TP ) + V off in Voff = f(mismatch in process, remnant in channel), Voff does not affect the accuracy, but large Voff may limit the dynamic range, then Voff should be minimized.! << p, the effect of p is almost cancelled by measuring S-R before converting to voltage. I M 1 M 2 V d d I S Is/I Reset mode harging mode Sampling Is GBM8320 - Dispositifs Médicaux Intelligents 7 Lo : BM-based capacitive sensor M3!! M5! 1.5!=3fF BM*! ID1!!! M1! S! M13!! Is! k5! int!! M10!! (V) 1.3!=2fF 1.1 900m!=1fF 700m!=0 500m 300m 0.0 100µ 200µ 300µ 400µ Time (s) GBM8320 - Dispositifs Médicaux Intelligents 8 Lo : BM-based capacitive sensor In agreement with the calculation and simulation; Higher dielectric constant of organic solvent, higher output voltage. M3! M5! Dichloromethane Injection!!! BM*! M1!!! M13!! ID1!! S!! Is! M7! Vb1!! int!! Is-! M10! Methanol Injection!!! GBM8320 - Dispositifs Médicaux Intelligents 9 3

M2 M1 Laboratory-on-hip : Outline Large interdigitated electrode BM structure. Sensing electrodes Microchannel M1!2 Process Outlet!1 Inlet!1!2 0.18!m MOS M2 Interdigitated electrode BM Sensing electrode 100"750 µm# Frequency (f) BM 1.8 Volt 100Hz-1MHz p1 s E1 E2 s/2 E2 p1 nalyte Passivation layers p1 E1 p1 s/2 p1 E2 p2 M-S BM p2 M-s p2 Ghafar-Zadeh, E., Sawan, M., IEEE TBioS, 2007 GBM8320 - Dispositifs Médicaux Intelligents 10 Lo : BM-based capacitive sensor Microscopic images of chip. Interdigitated electrodes Passivation layer removal Reference and sensing electrodes. Ghafar-Zadeh et al, Sensors and ctuators : Physical, 2008 GBM8320 - Dispositifs Médicaux Intelligents 11 Sensing capacitances values for different analytes; Parasitic capacitances of different chip samples; verage of recorded samples from 3 electrodes. $ (pf) Lo : BM-based capacitive sensor 0.8 0.7 0.6 0.5 0.4 0 40 80 Dielectric constant 0 (pf) 9.4 9.0 8.6 1 2 3 4 5 Measured chips Dichloromethane (D) 10.8 cetone () 20.0 Methanol (M) 32.0 Deionised water (W) 80.8 Saline water (S) conductive The recorded data for a particular organic solvent shows a decoded output of a 6-bit resolution. GBM8320 - Dispositifs Médicaux Intelligents 12 4

Lo : BM : Linearity & mismatch error Mismatch only affects an offset voltage M7 M4 M2 M5 IS M3 M1 Vb1 Vb1 M6 R M8 S int 1200 20% change of 1100 W1 W2 W3 W4 (mv) 900 W5 W6 W7 W8 700 500 300 100 0% change in Wi Reset mode Sampled voltage 70.2 70.4 70.6 70.8 71.0 71.2 s (ff) GBM8320 - Dispositifs Médicaux Intelligents 13 Lo : BM-based capacitive sensor ancellation of Vos through Rp; replica of sensing circuit is employed to generate reference current. M8 R M7 M5 M6 M1 ID2 ID1 IS M2 s M4 M3 SR IS - in M10 M9 Rp FPG Vo GBM8320 - Dispositifs Médicaux Intelligents 14 Laboratory-on-hip : Outline Non-linearity of output voltage versus Rp1 and Rp2. 1.2 Rp1 Rp2 Vo (V) 1.1 Rp2 M8 M7 M2 1.0 R B M4 0.9 0.8 0 200 400 600 Rp1/2 (kohms) M10 M9 GBM8320 - Dispositifs Médicaux Intelligents 15 5

Laboratory-on-hip : Outline djustable current mirror gain (D1-Dm) Three stages unity current mirror. M13 BM Q2 Q1 M 1 3 BM V d d B V a V b I s S 1 V c M 14 I M 5 V o u t B M 10 M c m M c 1 M 15 S W 1 M 6 M 9 D m D 1 M 8 M 7 GBM8320 - Dispositifs Médicaux Intelligents 16 Laboratory-on-hip : Outline djustable current mirror gain (D1-Dm) 1-bit D alibration circuit MD MM M1 M6 M4 M3 M5 SD SM S1 qn Dm D1 ID Vb1 M8 Vb2 M10 R ID1 Is BM M7 M2 M1 k1 Vb1 M13 M14 S k2 Vb2 M9 int M11 Is- k3 M12 I R = I R0 (1 + 2 m-1 D 1 + + 2 m-k D k + + D M ). M10 GBM8320 - Dispositifs Médicaux Intelligents 17 Laboratory-on-hip : Outline By adding a voltage comparator and a switch in series with a current source, a D input sigma delta can be realized. V R x n + LPF q n I x 1-bit D I s Xn q n = x I x Sw1 I x - + V R I(s, t) V o i n Sw2 F 1 F 2 1 2 3 4 5 6 7 8 n Q 1 Q 2 Ghafar-zadeh & Sawan, J. of IEEE Sensors, no.4, 2008 GBM8320 - Dispositifs Médicaux Intelligents 18 6

Laboratory-on-hip : Sigma-Delta D Xn Post-layout simulation results Unique sequence. Sw1 I x - + V R I(s, t) V o i n Sw2 (output pulse) Q 1 Q 2 (V) 1. 8 1. 8 0 0 $ = 0.22 ff 0 $ = 0.3 ff 2 5 50 75 Time (msec) GBM8320 - Dispositifs Médicaux Intelligents 19 Laboratory-on-hip : Outline n array of capacitive sensors. djustable reference current. Sigma-Delta D /D converter Offset cancellation procedure ( FPG). O f f - c h i p F P G S y s t e m F 1 F 2 Stop calibration & recording D1-m S1 S2 S3 N o Reset U < V t h D 1 - m = D 1 - m + 1 Y e s D f s S1 V o u t UI1 S 1 B u f f e r VR S2 I s in R UI2 S 2 S3 UI3 S 3 I R justable urrent Mirror D 1-8 On-chip circuit GBM8320 - Dispositifs Médicaux Intelligents 20 Laboratory-on-hip : Measurement set-up GBM8320 - Dispositifs Médicaux Intelligents 21 7

Laboratory-on-hip : Outline ( I! I ) = f " V " # S R dd log( I! I ) = log f + log( V "# ) 2 1 dd % where s=%+0 Extraction of sensing capacitance variation 10 Log (I2-I1) -50-60 -70-80 -90-100 Dichloromethane cetone Methanol DI water ( 0: Parasitic capacitance) -110 D -120 B -130 1 1E1 1E2 1E3 f(hz) 1E4 1E5 1E6 GBM8320 - Dispositifs Médicaux Intelligents 22 Laboratory-on-hip : Outline Microscopic image of fabricated chip (a) Die including the electrodes and sigma delta sensor, (b) Interdigitated electrode. Ghafar-Zadeh et al, Sensors and ctuators : Physical, 2008 GBM8320 - Dispositifs Médicaux Intelligents 23 Laboratory-on-hip : Bacteria growth monitoring GBM8320 - Dispositifs Médicaux Intelligents 24 8

Laboratory-on-hip : Outline Illustration of the proposed system for Bacteria-on- hip monitoring: LB : medium for bacteria Bacteria settles on the surface of chip which results in a capacitive element. GBM8320 - Dispositifs Médicaux Intelligents 25 Laboratory-on-hip : Bacteria growth monitoring 1 V = T Output of sensor versus parameters! 2t! t T RB1 RL B (1 / 2)! VTP e e # " I "(! 0 in RB RL = )dt T >> 0 ( / 2! /2) 1 B 1 (V dd! VTP )" I " + in + V Instead of Impedance measurement with R, we measure here only s. V OS OS GBM8320 - Dispositifs Médicaux Intelligents 26 Laboratory-on-hip : Bacteria growth monitoring GBM8320 - Dispositifs Médicaux Intelligents 27 9

Laboratory-on-hip : Magnetic manipulation arbon array of electrodes used to push the bacteria toward the sensing electrode for measurement. GBM8320 - Dispositifs Médicaux Intelligents 28 Laboratory-on-hip : ells Detection/manipulation Lo Implantable devices Neurotransmitter detection & separation High sensitivity / selectivity Intracortical neural ontrol Data acquisition Target diseases: Epilepsy lzheimer Parkinson GBM8320 - Dispositifs Médicaux Intelligents 29 Laboratory-on-hip : ells Detection/manipulation ctuation electrode matrix Sensing electrodes: capacitive sensor * DEP force Output signal referring to liquid concentration MOS chip ** (0.18!m) cquisition module: BM technique Quadrature signals MOS chip ** (0.18!m) ctuation module: Frequency / Magnitude control * Technology: Mixed MOS-Microfluidic ** The same MOS chip include both the acquisition and actuation module. GBM8320 - Dispositifs Médicaux Intelligents 30 10

Laboratory-on-hip : References 1.. Romani et al apacitive sensor array for localization of bioparticles in MOS lab-on-achip, Digest of Technical Papers, IEEE ISS onf., 2004, pp. 224 225. 2. D. Sylvester et al, Investigation of interconnect capacitance characterization using BM technique and three-dimensional simulation, IEEE JSS, Vol. 33, no. 3, 1998. 3.. Guiducci,. Stagni, G. Zuccheri, "DN detection by integrable electronics," J.. Biosensors and Bioelectronics, vol. 19, no. 9, 2004. 4.. Hierlemann, Integrated hemical Microsensor Systems in MOS Technology, New York: Springer-Verlag, 2006. 5. E. Ghafar-Zadeh, M. Sawan and D. Therriault, Novel direct-write MOS-based laboratoryon-chip: Design, assembly and experimental results, Sensors and ctuators : Physical, Volume 134, Issue 1, 28 February 2007, Pages 27-36. 6. E. Ghafar-Zadeh, M. Sawan, ore-bm Sigma Delta apacitive Sensor rray Dedicated to Lab-on-hip pplications, In press in Sensors & ctuators:. Physical 7. E. Ghafar-Zadeh, M. Sawan and D. Therriault, Microfluidic Packaging Technique for Labon-hip pplications, In press IEEE Trans. on dvanced Packaging. 8. E. Ghafar-Zadeh, M. Sawan, harge-based apacitive Sensor rray for MOS-Based Laboratory-On-hip pplications, IEEE Sensors, Vol. 8, No. 4, pril 2008, pp. 325-232. 9. E. Ghafar-Zadeh, M. Sawan, Hybrid Microfluidic/MOS apacitive Sensor Dedicated to Lab-on-hip pplications, IEEE TBioS, Vol. 1, No. 4, December 2007, pp. 270-277. GBM8320 - Dispositifs Médicaux Intelligents 31 11