Multi-user quantum key distribution with a semi-conductor source of entangled photon pairs

Similar documents
arxiv: v1 [quant-ph] 6 Jul 2016

Oscillateur paramétrique optique en

Multi User Frequency Time Coded Quantum Key Distribution Network Using a Plug-and-Play System

Security and implementation of differential phase shift quantum key distribution systems

Single Photon Generation & Application in Quantum Cryptography

Practical Quantum Key Distribution

Quantum Cryptography in Full Daylight Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Ilja Gerhardt Lamas-Linares and Christian Kurtsiefer

Differential Phase Shift Quantum Key Distribution and Beyond

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Photon Pair Production using non-linear waveguides

High rate quantum cryptography with untrusted relay: Theory and experiment

Quantum Hacking. Feihu Xu Dept. of Electrical and Computer Engineering, University of Toronto

arxiv:quant-ph/ v1 5 Aug 2004

BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits

An entangled LED driven quantum relay over 1km

Simulation and Implementation of Decoy State Quantum Key Distribution over 60km Telecom Fiber

Toward the Generation of Bell Certified Randomness Using Photons

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY

Title: Direct Bell states generation on a III-V semiconductor chip at room temperature

Rapide Note. Highlight Paper THE EUROPEAN PHYSICAL JOURNAL D. S. Fasel, N. Gisin a, G. Ribordy, and H. Zbinden

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms

Ping Pong Protocol & Auto-compensation

Communications Quantiques

Practical quantum-key. key- distribution post-processing

Quantum Information Transfer and Processing Miloslav Dušek

Hong-Ou-Mandel effect with matter waves

Quantum key distribution

Quantum Cryptography

Characterization of Entanglement Photons Generated by a Spontaneous Parametric Down-Conversion Pulse Source

QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin

Security of Quantum Key Distribution with Imperfect Devices

Quantum Photonic Integrated Circuits

Simulation and Implementation of Decoy State Quantum Key Distribution over 60km Telecom Fiber

arxiv: v1 [quant-ph] 23 Jun 2016

Problem Set: TT Quantum Information

Realization of B92 QKD protocol using id3100 Clavis 2 system

New Results on Single-Photon Up-Conversion

Full polarization control for fiber optical quantum communication systems using polarization encoding

arxiv:quant-ph/ v1 21 Apr 2004

Applications of Quantum Key Distribution (QKD)

GENERATION OF POLARIZATION ENTANGLED PHOTON PAIRS IN AlGaAs BRAGG REFLECTION WAVEGUIDES

QCRYPT Saturation Attack on Continuous-Variable Quantum Key Distribution System. Hao Qin*, Rupesh Kumar, and Romain Alléaume

TWO-LAYER QUANTUM KEY DISTRIBUTION

Highly efficient photon-pair source using a. Periodically Poled Lithium Niobate waveguide

Device-Independent Quantum Information Processing (DIQIP)

Quantum Entanglement and Bell s Inequalities Zachary Evans, Joel Howard, Jahnavi Iyer, Ava Dong, and Maggie Han

Ultra-narrow-band tunable laserline notch filter

Multipli-entangled photons from a spontaneous parametric downconversion

Continuous-variable quantum key distribution with a locally generated local oscillator

Take that, Bell s Inequality!

National Institute of Standards and Technology Gaithersburg, MD, USA

Quantum Key Distribution. The Starting Point

arxiv: v1 [quant-ph] 3 Dec 2015

arxiv:quant-ph/ v1 25 Dec 2006

Quantum Dense Coding and Quantum Teleportation

Content of the lectures

PHY3902 PHY3904. Photon Entanglement. Laboratory protocol

by applying two pairs of confocal cylindrical lenses

High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres

Labs 3-4: Single-photon Source

1 1D Schrödinger equation: Particle in an infinite box

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

Quantum Communication. Serge Massar Université Libre de Bruxelles

1 1D Schrödinger equation: Particle in an infinite box

Single photons. how to create them, how to see them. Alessandro Cerè

Quantum Correlations as Necessary Precondition for Secure Communication

Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled Light

Quadratic nonlinear interaction

Experimental realization of quantum cryptography communication in free space

Energy-time entanglement generation in optical fibers under CW pumping

Hybrid indium phosphide-on-silicon nanolaser diode

arxiv: v1 [quant-ph] 6 Oct 2008

Efficient storage at telecom wavelength for optical quantum memory

Intrinsic-Stabilization Uni-Directional Quantum Key Distribution. Between Beijing and Tianjin

Entanglement. Michelle Victora Advisor: Paul G. Kwiat. Physics 403 talk: March 13, 2017

Erwin Schrödinger and his cat

Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G.

Introduction to Quantum Key Distribution

Simulation of BB84 Quantum Key Distribution in depolarizing channel

LECTURE NOTES ON Quantum Cryptography

Trustworthiness of detectors in quantum key distribution with untrusted detectors

Practical aspects of QKD security

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

Single Photon Generation & Application

Quantum non-demolition measurements:

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding

Jian-Wei Pan

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

Detector dead-time effects and paralyzability in high-speed quantum key distribution

Title Experimental long-distance quantum secure direct communication

Supplementary Materials for

Device-Independent Quantum Information Processing

arxiv:quant-ph/ v2 25 May 2005

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations

Superconducting Nanowire Single Photon Detector. for Quantum Information SNSPD for QI. Lixing You. Dept of Phys., UC Berkeley

Quantum cryptography and quantum hacking. Dr. Lars Lydersen

THz QCL sources based on intracavity difference-frequency mixing

A Superluminal communication solution based on Four-photon entanglement

Noise Correlations in Dual Frequency VECSEL

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Transcription:

Multi-user quantum key distribution with a semi-conductor source of entangled photon pairs C. Autebert1, J. Trapateau2, A. Orieux2, A. Lemaître3, C. Gomez-Carbonell3, E. Diamanti2, I. Zaquine2, and S. Ducci1 arxiv:1607.01693 1 Laboratoire MPQ, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7162, Paris 2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris 3 Centre de Nanosciences et de Nanotechnologies, CNRS/Université Paris Sud, UMR 9001, Marcoussis 01/22

Outline I/ QKD, why BBM92 II/ Practical integrated sources for QKD: AlGaAs source of entangled photon pairs at Telecom wavelength III/ Optimising the use of quantum ressources: Multi-user entanglement distribution with DWDM techniques IV/ Set-up & Experimental results V/ Perspectives 02/22

I/ Quantum Key Distribution BB84 QKD with single photons: non-commutation of σz and σx H/V H V + 1 t7 0 t6 1 t5 1 t4 0 t3 1 t2 1 t1 +/ attenuated laser diodes (cheap single photons) single-photon detectors (expensive...) limited distance (losses/noise) lots of hardware-related attacks C.H. Bennett & G. Brassard, Proc. IEEE Comp., Syst. & Signal Process. 175, 8 (1984). 03/22

I/ Quantum Key Distribution BBM92 QKD with photon pairs: entanglement (& non-locality) H/V H/V quantum server +/ t1 Ψ AB t2 t3 Ψ AB = t3 HV VH 2 = t2 t1 +/ + + 2 entangled photon sources (expensive) single-photon detectors (expensive...) increased distance (less sensitive to losses/noise) towards device-independent security C.H. Bennett, G. Brassard & N.D. Mermin, Phys. Rev. Lett. 68, 557-559 (1992). 04/22

II/ Practical integrated sources for QKD wide deployment of QKD need for cheap, easy-to-operate systems 1 transistor standard Telecom/computing components mass-manufacturing possibilities room temperature operation alignment-free operation... integrated photonics platforms: silicon (CMOS) III-V semiconductors: InP, AlGaAs... dielectric crystals (LiNbO3, KTP...) glass 109 transistors E. Diamanti, H.-K. Lo, B. Qi & Z. Yuan, arxiv:1606.05853, Review (2016). A. Orieux & E. Diamanti, arxiv:1606.07346, to appear in J. Opt. Topical Review (2016). 05/22

II/ AlGaAs source Huge χ(2) for spontanteous parametric down-conversion (SPDC) n(algaas) 3.0-3.5 dχ(2)(algaas) 100 pm/v VS VS n(ppln) 2.2 dχ(2)(ppln) 20 pm/v ωa ωp L ωb E ħωa SPDC efficiency: ηspdc L.(dχ(2))2 ħωb ηspdc(algaas) 25 ηspdc(ppln) mm-long VS cm-long vaveguides ħωp 06/22

II/ AlGaAs source SPDC, different phase-matching techniques energy conservation: ωa + ωb = ωp (with ωa ωb) Δ[ħω] = 0 phase-matching (momentum conservation): Δ[ħk] = Δ[ħnω/c] = 0 n(ωa)ωa + n(ωb)ωb = n(ωp)ωp n(½ωp) = n(ωp) n 0 ½ωp ωp ω 07/22

II/ AlGaAs source SPDC, different phase-matching techniques phase-matching (momentum conservation): Δ[ħk] = Δ[ħnω/c] = 0 quasi-pm: n(½ωp)ωp = n(ωp)ωp 2πc/ΛQPM periodic poling of AlGaAs (still technologically challenging) z ΛQPM 08/22

II/ AlGaAs source SPDC, different phase-matching techniques phase-matching (momentum conservation): Δ[ħk] = Δ[ħnω/c] = 0 quasi-pm: n(½ωp)ωp = n(ωp)ωp 2πc/ΛQPM periodic poling of AlGaAs (still technologically challenging) z ΛQPM birefringent PM: nte(½ωp) = ntm(ωp) insertion of Al-Oxyde layers (fragile material) TE n z TM 0 TE TM ½ωp ωp ω 08/22

II/ AlGaAs source SPDC, modal phase-matching technique energy conservation: ωa + ωb = ωp (with ωa ωb) phase-matching (modal, type II): nte00(ωa)ωa + ntm00(ωb)ωb = ntebragg(ωp)ωp ntm00(ωa)ωa + nte00(ωb)ωb = ntebragg(ωp)ωp n TE00 TM00 TEBragg (1) (2) transverse modes: TEBragg TE00 TM V TE H z 0 ωa ωb ½ωp ωp TM00 ω F. Boitier et al., Phys. Rev. Lett. 112, 183901 (2014). C. Autebert et al., Optica 3, 143-146 (2016). core layer Bragg mirrors 09/22

II/ AlGaAs source Direct bandgap semi-conductor electrical injection of the Bragg mode laser diode & non-linear crystal with the same waveguide no need for an external pump laser transverse modes: TEBragg TE00 TM00 F. Boitier et al., Phys. Rev. Lett. 112, 183901 (2014). 10/22

II/ AlGaAs source Direct polarization Bell state generation over a large bandwidth ωp TE00 TM00 TE00 30 nm H,ωA V,ωB TM00 λp (nm) ωp or λa,b (nm) λa,b (nm) λa,b (nm) 8 nm 6. 8 7 7 λp = intensity (a.u.) ΨA,B = V,ωA H,ωB HV + eiφ VH 2 very small birefringence no need for walk-off compensation nor interferometric schemes F. Boitier et al., Phys. Rev. Lett. 112, 183901 (2014). 11/22

III/ Ressource optimisation DWDM Dense Wavelength Division Multiplexing (DWDM) 0.8 nm (100 GHz) 73 laser diodes 1 long-distance SMF fiber 73 channels DEMUX MUX Internet server ITU 100 GHz grid 01 1577.03 nm 02 1576.20 nm 03 1575.37 nm 71 1521.02 nm 72 1520.25 nm 73 1519.48 nm 73 homes neighbourhood Internet access a single fiber deployed for many users 12/22

III/ Multi-user entanglement distribution Dense Wavelength Division Multiplexing (DWDM) 0.8 nm (100 GHz) 1 entanglement source 36 channel pairs Ψ DEMUX quantum Internet server ITU 100 GHz grid 01 1577.03 nm 02 1576.20 nm 03 1575.37 nm 71 1521.02 nm 72 1520.25 nm 73 1519.48 nm Bob 3 Bob 2 Bob 1 Alice 1 Alice 2 Alice 3 72 clients 36 pairs of clients 72 SMF fibers distribution of entangled photon pairs between symmetric channels around the degeneracy wavelength a single source for many pairs of users J. Trapateau et al., J. Appl. Phys. 118, 143106 (2015). 13/22

III/ Multi-user entanglement distribution 08 1571.24 nm 25 1557.36 nm 42 1543.73 nm DWDM & large-band frequency anti-correlation λp = 778.68 nm ωb TE00 JSI(A,B) (narrow-linewidth pumping) ωb = ωp ωa TM00 λa 42 30 nm 15 nm 25 λb intensity (a.u.) 25 15 nm 08 25 ωa 16 pairs of channels/users available over the 30-nm bandwidth of the entangled pairs 14/22

III/ Multi-user entanglement distribution DWDM & large-band frequency anti-correlation ωb JSI(A,B) (narrow-linewidth pumping) ITU 100 GHz grid: 21 1560.61 nm 22 1559.79 nm 23 1558.98 nm 24 1558.17 nm 25 1557.36 nm 26 1556.55 nm 27 1555.75 nm 28 1554.94 nm 29 1554.13 nm ωb = ωp ωa 29 28 27 26 25 21 22 23 24 25 ωa 4 pairs of channels/users in our experiment (8+1 channels DWDM) 15/22

IV/ Multi-user BBM92-QKD experiment quantum server AlGaAs waveguide holographic mask 63x B29 B28 DWDM B26 A24 10x SMF collimator CW Ti:sa laser Peltier cooler 778.68 nm A22 A21 long-pass filter fiber links Alice 23 polarization controller Bob 27 APD time coincidence counter APD λ/2 PBS polarization controller PBS λ/2 16/22

IV/ Multi-user BBM92-QKD experiment BBM92 protocol: H/V H/V quantum server HV VH Ψ AB = = 2 + + t1 2 +/ t2 Ψ AB t3 t1 t2 t3 +/ ❶ local basis choices & coincidence measurements Rraw ❷ basis reconcilliation (sifting) Rsift = ½Rraw t1 ❶ t2 t3 t4 t5 t6 t7 t8 AB AB AB AB AB AB AB AB 10 +0 00 + 1 + 0+ +1 ❷ 10 00 01 10 C.H. Bennett, G. Brassard & N.D. Mermin, Phys. Rev. Lett. 68, 557-559 (1992). X.F. Ma, C.-H.F. Fung & H.-K. Lo, Phys. Rev. A 76, 012307 (2007). 17/22

IV/ Multi-user BBM92-QKD experiment BBM92 protocol: H/V H/V quantum server HV VH Ψ AB = = 2 + + 2 t1 +/ t2 Ψ AB t3 t1 t2 t3 +/ ❶ local basis choices & coincidence measurements Rraw ❷ basis reconcilliation (sifting) Rsift = ½Rraw ❸ error estimation (QBER) & correction e & f(e) ❹ secret key extraction Rkey Rsift( 1 f(e)h2(e) H2(e) ) with H2(x) = x.log2(x) (1 x).log2(1 x) t1 ❶ t2 t3 t4 t5 t6 t7 t8 AB AB AB AB AB AB AB AB 10 +0 00 + 1 + 0+ +1 ❷ 10 00 01 10 ❸ 10 01 01 10 ❹ 0 1 0 C.H. Bennett, G. Brassard & N.D. Mermin, Phys. Rev. Lett. 68, 557-559 (1992). X.F. Ma, C.-H.F. Fung & H.-K. Lo, Phys. Rev. A 76, 012307 (2007). 17/22

IV/ Multi-user BBM92-QKD experiment Coincidence histograms for A23 B27 over 50 km: Cfalse Rsift = Cmin Cmax + Cmin τhisto Cfalse Rfalse = Cmax Cfalse τhisto V= Cmax Cmin Cmax + Cmin e = ½(1 V) E. Waks, A. Zeevi & Y. Yamamoto, Phys. Rev. A 65, 052310 (2002). 18/22

IV/ Multi-user BBM92-QKD experiment BBM92-QKD results VS distance: set-up parameters: - collection efficiency: ηcol = 5% - fiber losses: α = 0.22 db/km - detection efficiency: ηdet = 20% - spurious count probability: d = 4.4x10-6 - polarization error (PMD): b = 6% 19/22

IV/ Multi-user BBM92-QKD experiment There is room for improvement (higher rates & longer distance): - AR coating & laser-diode-to-smf packaging collection efficiency 4 - superconducting detectors detection efficiency 4 no dark counts - no use of PM fibers polarization error 3% realistic improved parameters: - collection efficiency: ηcol 21% - fiber losses: α 0.22 db/km - detection efficiency: ηdet 87% - spurious count probability: d 2x10-6 - polarization error (PMD): b 2.5% 20/22

V/ Perspectives Electrical pumping & chip-to-fiber packaging fully integrated source Use of 40-channel DWDM & active switches 20 pairs of users per source + quantum repeaters + cheaper single-photon detectors + (measurement-)device-independence practical QKD fiber network 21/22

question time arxiv:1607.01693 22/22