High rate quantum cryptography with untrusted relay: Theory and experiment

Size: px
Start display at page:

Download "High rate quantum cryptography with untrusted relay: Theory and experiment"

Transcription

1 High rate quantum cryptography with untrusted relay: Theory and experiment CARLO OTTAVIANI Department of Computer Science, The University of York (UK) 1st TWQI Conference Ann Arbor 27-3 July

2 In collaboration with: Stefano Pirandola Sam Braunstein Gaetana Spedalieri Seth Lloyd Christian Weedbrook Tobias Gehring Christian S. Jacobsen Ulrik L. Andersen Nature Photonics 9, , (2015)

3 Outline Measurement-device independence (MDI) Protocol with continuous variables (CVs) Reduction of the general attack Secret-key rate and security distances Symmetric configuration Optimal configuration Experimental results Conclusions and outlook

4 Measurement-device independence Alice Private space Random states Relay (Eve) Measurement Public channel Random states Bob Private space Braunstein & Pirandola PRL 108, (2012) Arbitrary systems & measurements (quantum instruments) Lo, Curty & Qi PRL 108, (2012) Qubit regime (decoy states, Bell detection) 4

5 Continuous Variables Next step: MDI quantum cryptography with Continuous Variables Why? Cheap quantum sources (amplitude-modulated coherent states) Efficient homodyne detectors which can also go broadband High rates compared to discrete variables (qubits) Weedbrook, Pirandola, et al. Rev. Mod. Phys. 84, (2012) 5

6 Working mechanism with CVs γ q- p + γ := q + ip + 2 Alice α A Bell Relay B Bob β Two main ingredients: Gaussian-modulated coherent states CV Bell detection (balanced beamsplitter + homodynes) S. Pirandola et al., Nature Photonics 9, , (2015) 6

7 Working mechanism with CVs Relay creates correlations γ q- p + Alice α A Bell Relay B Bob β γ = α β + noise Processing Alice and Bob share information Eve cannot eavesdrop from : γ I(α,β γ ) > 0 I(α γ) = I(β γ ) = 0 7

8 Alice α A General Attack: Joint on links and relay Eve cannot eavesdrop from γ : I(α γ) = I(β γ ) = 0 Simulator γ U QM (we bound Eve with the Holevo information which is unitarily invariant, so that we can play with U) E p(α,β,γ) B Bob β For a given observed statistics Alice and Bob can assume that: Simulator = Bell detection 8

9 Reduction of the joint attack: Coherent Gaussian attack Bell relay γ Alice α A U QM E B Bob β Coherent attack of the links Gaussian protocol U Gaussian unitary (Coherent Gaussian attack) 9

10 Coherent Gaussian attack Bell relay γ QM τ A τ B QM Alice α A E 1 E 2 B Bob β Realistic attack V E1,E 1 = ω AI G G = g G ω B I g ʹ 10

11 Security Analysis entanglement-based representation Bell relay γ QM τ A τ B QM α Alice a ρ A α E 1 E 2 B β Bob ρ b β Since local detections commute, we can consider the conditional states after the Bell detection of the relay Post relay Alice α a ρ ab γ b β Bob 11

12 Alice and Bob s mutual information I(α : β) = log 2 µ Security Analysis Variance of modulation µ >>1 χ Equivalent noise χ = χ +ε L R = ξi(α : β) I(α : E) Eve s Holevo information Alice α a ΦabE γ ρ ab γ E ρ b E γ β Bob 12

13 Secret-key rate R(τ A,τ B,χ) = log 2 2(τ A +τ B ) e τ A τ B χ + h(x) h(y) x = τ Aχ 1 y = τ Aτ B χ (τ A +τ B ) τ A +τ τ B A τ B τ A +τ B 2 ξ =1 Function of the transmissivities and the equivalent noise h(x) = x +1 2 log 2 x +1 2 x 1 2 log 2 x 1 2 S. Pirandola et al., Nature Photonics 9, , (2015) 13

14 Symmetric Configuration Relay γ Alice a α A QM A B E 1 E 2 e τ E 1 E 2 QM ω A = ω B = ω τ A = τ B = τ τ QM β B b Bob τ 2 R = log 2 λλ'(τ + λ)(τ + λ') + h λ = (1 τ)(ω g) + 1 η η (τ + 2λ)(τ + 2λ') τ λ = (1 τ)(ω + g ʹ ) + 1 η ʹ η ʹ CO, G.spedalieri, S.L. Braunstein, S. Pirandola, PRA 91, (2015) 14

15 Joint symmetric attacks Collective Attacks: (1) g ʹ = g = 0 Separable Attacks: (2),(3),(4) EPR Attacks: g ʹ = g = ±(ω 1) (5),(6) g ʹ = g = ± ω 2 1 (6) is optimal! CO, G.spedalieri, S.L. Braunstein, S. Pirandola, PRA 91, (2015) 15

16 Security thresholds EPR attack, (6), is optimal! CO et al., PRA 91, (2015) 16

17 Maximum Performance: pure loss τ R(τ A,τ B ) = log A τ B 2 + h 2 1 h 2 τ τ A B e τ A τ B τ B τ A τ B Alice radius r Relay A distance d, Bob 0.2dB/km (fiber) S. Pirandola et al., Nature Photonics 9, , (2015) See also Preprint arxiv:

18 Robustness to excess noise χ = χ L + ε ε = 0 ε = 0.1 Nature Photonics 9, , (2015) 18

19 Experimental Setup (Christian S. Jacobsen, Tobias Gehring, Ulrik L. Andersen) Nature Photonics 9, , (2015). see also arxiv:

20 Experimental Results Parameters: Excess noise 0.01; ϕ = 60 SNU ξ = 1 ξ = 0.97 ξ = 0.95 (a) Bob distance 25 Km; Rate 10-2 (b) Alice at 100 mt Bob at Km; Rate 10-2 (c) Alice at 1 Km; Bob at Km; Rate 10-2 Nature Photonics, 9, , (2015) 20

21 Few points on CV experiments I Cheap room temperature components (optical modulators ad homodyne detections) Regime of parameters easily achievable in practice Gaussian modulation ~ 60 shot noise units (easy) CV Bell detection efficiency routinely high (η ~ 98%) and can be done in free space Reconciliation efficiency ξ ~ 97% state-of-the-art Excess-noise in our experiment is ε ~0.01 arxiv: for more visit Stefano s Poster

22 Few points on CV experiments II Our experimental rate is a lower bound The theoretical rate is optimal Finite-size effects and composable security support our experimental results The relay doesn t need to be in Alice s Lab Interfering signals from independent laser sources is no longer a security issue or major experimental challenge in CV-QKD Fast time-resolved homodyne detectors are available with bandwidths of 100MHz and more arxiv: for more visit Stefano s Poster

23 A comparison CVs-DVs arxiv: for more visit Stefano s Poster

24 Typical network topology Mobile device connecting to a public access point 24

25 Conclusions A conceptual advance Untrusted relays versus the trusted relays used in the current network prototypes (SECOQC, Tokyo network ) Our untrusted relay performs cheap operations with all the complexity left to the end-users First steps towards the realization of the end-to-end principle in a quantum network over metropolitan distances Outlook: More complex structures with less trusted nodes Extension to thermal-qkd: to use different frequencies for mixed technology platforms (microwave/infrared) 25

26 Thx for your attention

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.015.07 Reply to Discrete and continuous variables for measurement-device-independent quantum cryptography Stefano Pirandola, 1 Carlo Ottaviani, 1 Gaetana Spedalieri, 1 Christian Weedbrook,

More information

Continuous Variable Quantum Key Distribution with a Noisy Laser

Continuous Variable Quantum Key Distribution with a Noisy Laser Entropy 2015, 17, 4654-4663; doi:10.3390/e17074654 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Continuous Variable Quantum Key Distribution with a Noisy Laser Christian S. Jacobsen,

More information

Continuous-variable quantum key distribution with a locally generated local oscillator

Continuous-variable quantum key distribution with a locally generated local oscillator Continuous-variable quantum key distribution with a locally generated local oscillator Bing Qi, Pavel Lougovski, Raphael Pooser, Warren Grice, Miljko Bobrek, Charles Ci Wen Lim, and Philip G. Evans Quantum

More information

Quantum Key Distribution. The Starting Point

Quantum Key Distribution. The Starting Point Quantum Key Distribution Norbert Lütkenhaus The Starting Point Quantum Mechanics allows Quantum Key Distribution, which can create an unlimited amount of secret key using -a quantum channel -an authenticated

More information

Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature

Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature entropy Article Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature Tao Shang 1,, ID, Ke Li and Jianwei Liu 1, 1 School of Cyber Science and Technology, Beihang University,

More information

Discrete-variable measurement-device-independent quantum key distribution suitable for metropolitan networks

Discrete-variable measurement-device-independent quantum key distribution suitable for metropolitan networks Discrete-variable measurement-device-independent quantum key distribution suitable for metropolitan networks Feihu Xu, 1, Marcos Curty, 2 Bing Qi, 3 Li Qian, 4 and Hoi-Kwong Lo 4 1 Research Laboratory

More information

QCRYPT Saturation Attack on Continuous-Variable Quantum Key Distribution System. Hao Qin*, Rupesh Kumar, and Romain Alléaume

QCRYPT Saturation Attack on Continuous-Variable Quantum Key Distribution System. Hao Qin*, Rupesh Kumar, and Romain Alléaume QCRYPT 2013 August 04,2013 IQC, University of Waterloo Canada Saturation Attack on Continuous-Variable Quantum Key Distribution System Hao Qin*, Rupesh Kumar, and Romain Alléaume Quantum Information Team

More information

Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled Light

Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled Light T. Eberle 1, V. Händchen 1, F. Furrer 2, T. Franz 3, J. Duhme 3, R.F. Werner 3, R. Schnabel 1 Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

High-rate measurement-device-independent quantum cryptography

High-rate measurement-device-independent quantum cryptography Downloaded from orbit.dtu.dk on: Oct 10, 018 High-rate measurement-device-independent quantum cryptography Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel

More information

Fundamental rate-loss tradeoff for optical quantum key distribution

Fundamental rate-loss tradeoff for optical quantum key distribution Fundamental rate-loss tradeoff for optical quantum key distribution Masahiro Takeoka (NICT) Saikat Guha (BBN) Mark M. Wilde (LSU) Quantum Krispy Kreme Seminar @LSU January 30, 2015 Outline Motivation Main

More information

Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution

Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution Entropy 015, 17, 4547-456; doi:10.3390/e17074547 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key

More information

Practical quantum-key. key- distribution post-processing

Practical quantum-key. key- distribution post-processing Practical quantum-key key- distribution post-processing processing Xiongfeng Ma 马雄峰 IQC, University of Waterloo Chi-Hang Fred Fung, Jean-Christian Boileau, Hoi Fung Chau arxiv:0904.1994 Hoi-Kwong Lo, Norbert

More information

Quantum Information Transfer and Processing Miloslav Dušek

Quantum Information Transfer and Processing Miloslav Dušek Quantum Information Transfer and Processing Miloslav Dušek Department of Optics, Faculty of Science Palacký University, Olomouc Quantum theory Quantum theory At the beginning of 20 th century about the

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Security of Quantum Key Distribution with Imperfect Devices

Security of Quantum Key Distribution with Imperfect Devices Security of Quantum Key Distribution with Imperfect Devices Hoi-Kwong Lo Dept. of Electrical & Comp. Engineering (ECE); & Dept. of Physics University of Toronto Email:hklo@comm.utoronto.ca URL: http://www.comm.utoronto.ca/~hklo

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki *Perimeter Institute for Theoretical Physics Collaboration with Masato Koashi

More information

Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States

Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States Commun. Theor. Phys. 56 (2011) 664 668 Vol. 56, No. 4, October 15, 2011 Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States HE Guang-Qiang (¾Ö), ZHU Jun (ý ), and ZENG Gui-Hua

More information

A semi-device-independent framework based on natural physical assumptions

A semi-device-independent framework based on natural physical assumptions AQIS 2017 4-8 September 2017 A semi-device-independent framework based on natural physical assumptions and its application to random number generation T. Van Himbeeck, E. Woodhead, N. Cerf, R. García-Patrón,

More information

arxiv: v2 [quant-ph] 17 Apr 2018

arxiv: v2 [quant-ph] 17 Apr 2018 Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution QIN LIAO, 1 YING GUO, 1, YIJUN WANG, 1, DUAN HUANG, 1 arxiv:1803.06777v2 [quant-ph] 17 Apr

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information

Ping Pong Protocol & Auto-compensation

Ping Pong Protocol & Auto-compensation Ping Pong Protocol & Auto-compensation Adam de la Zerda For QIP seminar Spring 2004 02.06.04 Outline Introduction to QKD protocols + motivation Ping-Pong protocol Security Analysis for Ping-Pong Protocol

More information

Device-independent Quantum Key Distribution and Randomness Generation. Stefano Pironio Université Libre de Bruxelles

Device-independent Quantum Key Distribution and Randomness Generation. Stefano Pironio Université Libre de Bruxelles Device-independent Quantum Key Distribution and Randomness Generation Stefano Pironio Université Libre de Bruxelles Tropical QKD, Waterloo, June 14-17, 2010 Device-independent security proofs establish

More information

LECTURE NOTES ON Quantum Cryptography

LECTURE NOTES ON Quantum Cryptography Department of Software The University of Babylon LECTURE NOTES ON Quantum Cryptography By Dr. Samaher Hussein Ali College of Information Technology, University of Babylon, Iraq Samaher@itnet.uobabylon.edu.iq

More information

Deterministic secure communications using two-mode squeezed states

Deterministic secure communications using two-mode squeezed states Deterministic secure communications using twomode squeezed states Alberto M. Marino* and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 467, USA Received 5 May

More information

Device-Independent Quantum Information Processing (DIQIP)

Device-Independent Quantum Information Processing (DIQIP) Device-Independent Quantum Information Processing (DIQIP) Maciej Demianowicz ICFO-Institut de Ciencies Fotoniques, Barcelona (Spain) Coordinator of the project: Antonio Acín (ICFO, ICREA professor) meeting,

More information

Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels

Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Converse bounds for private communication over quantum channels

Converse bounds for private communication over quantum channels Converse bounds for private communication over quantum channels Mark M. Wilde (LSU) joint work with Mario Berta (Caltech) and Marco Tomamichel ( Univ. Sydney + Univ. of Technology, Sydney ) arxiv:1602.08898

More information

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata An Introduction to Quantum Information By Aditya Jain Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata 1. Introduction Quantum information is physical information that is held in the state of

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Quantum Hacking. Feihu Xu Dept. of Electrical and Computer Engineering, University of Toronto

Quantum Hacking. Feihu Xu Dept. of Electrical and Computer Engineering, University of Toronto Quantum Hacking Feihu Xu Dept. of Electrical and Computer Engineering, University of Toronto 1 Outline Introduction Quantum Key Distribution (QKD) Practical QKD Quantum Hacking Fake-state & Time-shifted

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

Quantum key distribution

Quantum key distribution Quantum key distribution Eleni Diamanti eleni.diamanti@telecom-paristech.fr LTCI, CNRS, Télécom ParisTech Paris Centre for Quantum Computing Photonics@be doctoral school May 10, 2016 1 Outline Principles

More information

Unconditionally secure deviceindependent

Unconditionally secure deviceindependent Unconditionally secure deviceindependent quantum key distribution with only two devices Roger Colbeck (ETH Zurich) Based on joint work with Jon Barrett and Adrian Kent Physical Review A 86, 062326 (2012)

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Device-Independent Quantum Information Processing

Device-Independent Quantum Information Processing Device-Independent Quantum Information Processing Antonio Acín ICREA Professor at ICFO-Institut de Ciencies Fotoniques, Barcelona Chist-Era kick-off seminar, March 2012, Warsaw, Poland Quantum Information

More information

Practical aspects of QKD security

Practical aspects of QKD security Practical aspects of QKD security Alexei Trifonov Audrius Berzanskis MagiQ Technologies, Inc. Secure quantum communication Protected environment Alice apparatus Optical channel (insecure) Protected environment

More information

arxiv:quant-ph/ v1 13 Jan 2003

arxiv:quant-ph/ v1 13 Jan 2003 Deterministic Secure Direct Communication Using Ping-pong protocol without public channel Qing-yu Cai Laboratory of Magentic Resonance and Atom and Molecular Physics, Wuhan Institute of Mathematics, The

More information

Continuous-Variable Quantum Key Distribution with Gaussian Modulation The Theory of Practical Implementations

Continuous-Variable Quantum Key Distribution with Gaussian Modulation The Theory of Practical Implementations Continuous-Variable Quantum Key Distribution with Gaussian Modulation The Theory of Practical Implementations arxiv:703.0978v3 [quant-ph] 0 May 08 Fabian Laudenbach *,3, Christoph Pacher, Chi-Hang Fred

More information

arxiv:quant-ph/ v2 7 Nov 2001

arxiv:quant-ph/ v2 7 Nov 2001 Quantum key distribution using non-classical photon number correlations in macroscopic light pulses A.C. Funk and M.G. Raymer Oregon Center for Optics and Department of Physics, University of Oregon, Eugene,

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley Challenges in Quantum Information Science Umesh V. Vazirani U. C. Berkeley 1 st quantum revolution - Understanding physical world: periodic table, chemical reactions electronic wavefunctions underlying

More information

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute High Fidelity to Low Weight Daniel Gottesman Perimeter Institute A Word From Our Sponsor... Quant-ph/0212066, Security of quantum key distribution with imperfect devices, D.G., H.-K. Lo, N. Lutkenhaus,

More information

Key Reconciliation with Low-Density Parity-Check Codes for Long-Distance Quantum Cryptography

Key Reconciliation with Low-Density Parity-Check Codes for Long-Distance Quantum Cryptography APRIL 2017 1 Key Reconciliation with Low-Density Parity-Check Codes for Long-Distance Quantum Cryptography Mario Milicevic, Chen Feng, Lei M. Zhang, P. Glenn Gulak Department of Electrical and Computer

More information

TWO-LAYER QUANTUM KEY DISTRIBUTION

TWO-LAYER QUANTUM KEY DISTRIBUTION TWO-LAYER QUANTUM KEY DISTRIBUTION PAULO VINÍCIUS PEREIRA PINHEIRO and RUBENS VIANA RAMOS paulovpp@gmail.com rubens.viana@pq.cnpq.br Laboratory of Quantum Information Technology, Department of Teleinformatic

More information

arxiv: v2 [quant-ph] 9 Jun 2017

arxiv: v2 [quant-ph] 9 Jun 2017 Robustness of quantum key distribution with discrete and continuous variables to channel noise Mikołaj Lasota, Radim Filip, and Vladyslav C. Usenko Department of Optics, Palacký University, 17. listopadu

More information

Trustworthiness of detectors in quantum key distribution with untrusted detectors

Trustworthiness of detectors in quantum key distribution with untrusted detectors Trustworthiness of detectors in quantum key distribution with untrusted detectors Bing Qi Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory,

More information

Security bounds for the eavesdropping collective attacks on general CV-QKD protocols

Security bounds for the eavesdropping collective attacks on general CV-QKD protocols Security bounds for the eavesdropping collective attacks on general CV-QKD protocols. ecir 1,, M. R.. Wahiddin 1, 1 Faculty of Science, International Islamic University of Malaysia (IIUM), P.O. ox 141,

More information

Introduction to Quantum Key Distribution

Introduction to Quantum Key Distribution Fakultät für Physik Ludwig-Maximilians-Universität München January 2010 Overview Introduction Security Proof Introduction What is information? A mathematical concept describing knowledge. Basic unit is

More information

Quantum key distribution for the lazy and careless

Quantum key distribution for the lazy and careless Quantum key distribution for the lazy and careless Noisy preprocessing and twisted states Joseph M. Renes Theoretical Quantum Physics, Institut für Angewandte Physik Technische Universität Darmstadt Center

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

Practical Quantum Key Distribution

Practical Quantum Key Distribution Leopold-Franzens-Universität Innsbruck Institut für Experimentalphysik Technikerstrasse 25 http://www.uibk.ac.at Practical Quantum Key Distribution Gregor Weihs Contents QKD Protocols Implementations of

More information

Spatio-Temporal Quantum Steering

Spatio-Temporal Quantum Steering The 8 th IWSSQC Dec. 14 (2016) Spatio-Temporal Quantum Steering Y. N. Chen*, C. M. Li, N. Lambert, Y. Ota, S. L. Chen, G. Y. Chen, and F. Nori, Phys. Rev. A 89, 032112 (2014) S. L. Chen, N. Lambert, C.

More information

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes 5th March 2004 Unconditional Security of Quantum Key Distribution With Practical Devices Hermen Jan Hupkes The setting Alice wants to send a message to Bob. Channel is dangerous and vulnerable to attack.

More information

Toward the Generation of Bell Certified Randomness Using Photons

Toward the Generation of Bell Certified Randomness Using Photons Toward the Generation of Bell Certified Randomness Using Photons Alessandro Cerè, Siddarth Koduru Josh, Chen Ming Chia, Jean-Daniel Bancal, Lana Sheridan, Valerio Scarani, Christian Kurtsiefer Quantum

More information

Asymptotic Analysis of a Three State Quantum Cryptographic Protocol

Asymptotic Analysis of a Three State Quantum Cryptographic Protocol Asymptotic Analysis of a Three State Quantum Cryptographic Protocol Walter O. Krawec walter.krawec@gmail.com Iona College Computer Science Department New Rochelle, NY USA IEEE ISIT July, 2016 Quantum Key

More information

PROGRESS IN OPTICS VOLUME 4 9. E. Wolf

PROGRESS IN OPTICS VOLUME 4 9. E. Wolf PROGRESS IN OPTICS VOLUME 4 9 E. Wolf Preface v Chapter 1. Gaussian apodization and beam propagation, Virendra N. Mahajan (El Segundo, CA and Tucson, AZ, USA) 1 1. Introduction 3 2. Theory 5 2.1. Pupil

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

Continuous variable measurement device independent multipartite quantum communication

Continuous variable measurement device independent multipartite quantum communication Continuous variable measurement device independent multipartite quantum communication Yadong Wu 1, Jian Zhou, Xinbao Gong 1, Ying Guo, Zhi-Ming Zhang 3, Guangqiang He 1,3,4 1 State Key Laboratory of Advanced

More information

Tutorial: Device-independent random number generation. Roger Colbeck University of York

Tutorial: Device-independent random number generation. Roger Colbeck University of York Tutorial: Device-independent random number generation Roger Colbeck University of York Outline Brief motivation of random number generation Discuss what we mean by a random number Discuss some ways of

More information

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

QUANTUM KEY DISTRIBUTION PROTOCOLS WITH HIGH RATES AND LOW COSTS

QUANTUM KEY DISTRIBUTION PROTOCOLS WITH HIGH RATES AND LOW COSTS QUANTUM KEY DISTRIBUTION PROTOCOLS WITH HIGH RATES AND LOW COSTS A Thesis Presented to The Academic Faculty by Zheshen Zhang In Partial Fulfillment of the Requirements for the Degree Master of Science

More information

arxiv:quant-ph/ v1 6 Dec 2005

arxiv:quant-ph/ v1 6 Dec 2005 Quantum Direct Communication with Authentication Hwayean Lee 1,,4, Jongin Lim 1,, HyungJin Yang,3 arxiv:quant-ph/051051v1 6 Dec 005 Center for Information Security TechnologiesCIST) 1, Graduate School

More information

Labs 3-4: Single-photon Source

Labs 3-4: Single-photon Source Labs 3-4: Single-photon Source Lab. 3. Confocal fluorescence microscopy of single-emitter Lab. 4. Hanbury Brown and Twiss setup. Fluorescence antibunching 1 Labs 3-4: Single-photon Source Efficiently produces

More information

arxiv:quant-ph/ v1 25 Dec 2006

arxiv:quant-ph/ v1 25 Dec 2006 Sequential Attack with Intensity Modulation on the Differential-Phase-Shift Quantum Key Distribution Protocol Toyohiro Tsurumaru Mitsubishi Electric Corporation, Information Technology R&D Center 5-1-1

More information

Fundamental Security Issues in Continuous Variable Quantum Key Distribution

Fundamental Security Issues in Continuous Variable Quantum Key Distribution Fundamental Security Issues in Continuous Variable Quantum Key Distribution arxiv:1208.5827v1 [quant-ph] 29 Aug 2012 Horace P. Yuen Department of Electrical Engineering and Computer Science Department

More information

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević Experimental demonstrations of teleportation of photons Manuel Chinotti and Nikola Đorđević Outline Quantum teleportation (QT) protocol. Laboratory experimental demonstration: Bouwmeester at al. (1997).

More information

arxiv: v2 [quant-ph] 4 Sep 2007

arxiv: v2 [quant-ph] 4 Sep 2007 Quantum key distribution over 25 km with an all-fiber continuous-variable system Jérôme Lodewyck, 1, 2 Matthieu Bloch, 3 Raúl García-Patrón, 4 Simon Fossier, 1, 2 Evgueni Karpov, 4 Eleni Diamanti, 2 Thierry

More information

This is a repository copy of Parameter estimation with almost no public communication for continuous-variable quantum key distribution.

This is a repository copy of Parameter estimation with almost no public communication for continuous-variable quantum key distribution. This is a repository copy of Parameter estimation with almost no public communication for continuous-variable quantum key distribution. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/134579/

More information

C. QUANTUM INFORMATION 111

C. QUANTUM INFORMATION 111 C. QUANTUM INFORMATION 111 C Quantum information C.1 Qubits C.1.a Single qubits 1. Qubit: Just as the bits 0 and 1 are represented by distinct physical states, so the quantum bits (or qubits) 0i and 1i

More information

Quantum threat...and quantum solutions

Quantum threat...and quantum solutions Quantum threat...and quantum solutions How can quantum key distribution be integrated into a quantum-safe security infrastructure Bruno Huttner ID Quantique ICMC 2017 Outline Presentation of ID Quantique

More information

Security and implementation of differential phase shift quantum key distribution systems

Security and implementation of differential phase shift quantum key distribution systems Security and implementation of differential phase shift quantum key distribution systems Eleni Diamanti University Ph.D. Oral Examination June 1 st, 2006 Classical cryptography cryptography = κρυπτός +

More information

C. QUANTUM INFORMATION 99

C. QUANTUM INFORMATION 99 C. QUANTUM INFORMATION 99 C Quantum information C.1 Qubits C.1.a Single qubits Just as the bits 0 and 1 are represented by distinct physical states in a conventional computer, so the quantum bits (or qubits)

More information

Cryptography in a quantum world

Cryptography in a quantum world T School of Informatics, University of Edinburgh 25th October 2016 E H U N I V E R S I T Y O H F R G E D I N B U Outline What is quantum computation Why should we care if quantum computers are constructed?

More information

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security Areas for Discussion Joseph Spring Department of Computer Science MSc Distributed Systems and Security Introduction Photons Quantum Key Distribution Protocols BB84 A 4 state QKD Protocol B9 A state QKD

More information

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states

More information

Explicit Receivers for Optical Communication and Quantum Reading

Explicit Receivers for Optical Communication and Quantum Reading Explicit Receivers for Optical Communication and Quantum Reading Mark M. Wilde School of Computer Science, McGill University Joint work with Saikat Guha, Si-Hui Tan, and Seth Lloyd arxiv:1202.0518 ISIT

More information

Port-based teleportation and its applications

Port-based teleportation and its applications 2 QUATUO Port-based teleportation and its applications Satoshi Ishizaka Graduate School of Integrated Arts and Sciences Hiroshima University Collaborator: Tohya Hiroshima (ERATO-SORST) Outline Port-based

More information

Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems

Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems arxiv:68.588v [quant-ph] 8 Aug 6 Abstract In this work we analyze the distribution of quantum entanglement over communication

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

Quantum Cryptography

Quantum Cryptography http://tph.tuwien.ac.at/ svozil/publ/2005-qcrypt-pres.pdf Institut für Theoretische Physik, University of Technology Vienna, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria svozil@tuwien.ac.at 16.

More information

quantum error-rejection

quantum error-rejection Lecture Note 7 Decoherence-free sub-space space and quantum error-rejection rejection.06.006 open system dynamics ψ = α 0 + α 0 Decoherence System Environment 0 E 0 U ( t) ( t) 0 E ( t) E U E ( t) U()

More information

Quantum Communication. Serge Massar Université Libre de Bruxelles

Quantum Communication. Serge Massar Université Libre de Bruxelles Quantum Communication Serge Massar Université Libre de Bruxelles Plan Why Quantum Communication? Prepare and Measure schemes QKD Using Entanglement Teleportation Communication Complexity And now what?

More information

SECURITY OF QUANTUM KEY DISTRIBUTION USING WEAK COHERENT STATES WITH NONRANDOM PHASES

SECURITY OF QUANTUM KEY DISTRIBUTION USING WEAK COHERENT STATES WITH NONRANDOM PHASES Quantum Information and Computation, Vol. 7, No. 5&6 (2007) 431 458 c Rinton Press SECURITY OF QUANTUM KEY DISTRIBUTION USING WEAK COHERENT STATES WITH NONRANDOM PHASES HOI-KWONG LO Center for Quantum

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

arxiv:quant-ph/ v1 27 Dec 2004

arxiv:quant-ph/ v1 27 Dec 2004 Multiparty Quantum Secret Sharing Zhan-jun Zhang 1,2, Yong Li 3 and Zhong-xiao Man 2 1 School of Physics & Material Science, Anhui University, Hefei 230039, China 2 Wuhan Institute of Physics and Mathematics,

More information

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY DISTRIBUTION WITH ENTANGLED PHOTONS FOLLOWING THE PING- PONG CODING PROTOCOL Martin Ostermeyer, Nino Walenta University of Potsdam, Institute of Physics, Nonlinear

More information

arxiv: v2 [quant-ph] 24 Jan 2011

arxiv: v2 [quant-ph] 24 Jan 2011 Continuous-variable Quantum Key Distribution protocols with a discrete modulation arxiv:1002.4083v2 [quant-ph] 24 Jan 2011 A Leverrier 1,2 and P Grangier 3 1 Institut Telecom / Telecom ParisTech, CNRS

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1 Quantum Cryptography Quantum Cryptography Presented by: Shubhra Mittal Instructor: Dr. Stefan Robila Intranet & Internet Security (CMPT-585-) Fall 28 Montclair State University, New Jersey Introduction

More information

Achievable rates of Go1esman-Kitaev-Preskill (GKP) codes for Gaussian thermal loss channels

Achievable rates of Go1esman-Kitaev-Preskill (GKP) codes for Gaussian thermal loss channels Achievable rates of Go1esman-Kitaev-Preskill (GKP) codes for Gaussian thermal loss channels Kyungjoo Noh1, Victor V. Albert1,2, and Liang Jiang1 1Yale University 2Caltech (2018/06/29) 1 Gaussian thermal

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

Performance of Free-Space QKD Systems using SIM/BPSK and Dual-Threshold/Direct-Detection

Performance of Free-Space QKD Systems using SIM/BPSK and Dual-Threshold/Direct-Detection Performance of Free-Space QKD Systems using SIM/BPSK and Dual-Threshold/Direct-Detection Phuc V. Trinh 1, Thanh V. Pham 1, Hung V. Nguyen 2, Soon Xin Ng 2, and Anh T. Pham 1 1 Computer Communications Laboratory,

More information

Talk at 4th ETSI/IQC workshop on quantum-safe cryptography, September 19-21, 2016

Talk at 4th ETSI/IQC workshop on quantum-safe cryptography, September 19-21, 2016 Talk at 4th ETSI/IQC workshop on quantum-safe cryptography, September 19-21, 2016 Vadim Makarov www.vad1.com/lab Security model of QKD Security proof.laws of physics & Model of equipment Hack Integrate

More information

This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper:

This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper: This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/98773/ Version: Accepted Version Article: Pirandola, Stefano

More information