Linear and circular accelerators

Similar documents
Particle physics experiments

Accelerators Ideal Case

Accelerator Physics, BAU, First Semester, (Saed Dababneh).

Lectures on accelerator physics

Why do we accelerate particles?

Introduction to Elementary Particle Physics I

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Section 4 : Accelerators

Engines of Discovery

PHYS 3446 Lecture #15

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Historical developments. of particle acceleration

Direct-Current Accelerator

Physics 417/517 Introduction to Particle Accelerator Physics. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University

Accelerators. W. Udo Schröder, 2004

Physics of Accelerators-I. D. P. Mahapatra Utkal University, Bhubaneswar

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research

EP228 Particle Physics

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 2

Summary of lecture 1 and 2: Main ingredients in LHC success

Particles and Universe: Particle accelerators

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Physics at Accelerators

Introduction to Longitudinal Beam Dynamics

Introduction to Particle Accelerators & CESR-C

ACCELERATORS AND MEDICAL PHYSICS

Physics 610. Adv Particle Physics. April 7, 2014

Accelerator Physics WS 2012/13

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1

Saptaparnee Chaudhuri. University of South Carolina Dept. of Physics and Astronomy

PHYS 3446 Lecture #18

Production of HCI with an electron beam ion trap

Accelerator Basics. Abhishek Rai IUAC

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN

Accelerator Physics Weak Focusing. S. A. Bogacz, G. A. Krafft, S. DeSilva, R. Gamage Jefferson Lab Old Dominion University Lecture 2

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000)

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

free electron plus He-like ion

Accelerator Physics Weak Focussing. A. Bogacz, G. A. Krafft, and T. Zolkin Jefferson Lab Colorado State University Lecture 2

Particle Accelerators. The Electrostatic Accelerators

Introduction and Overview of Accelerators

Acceleration to higher energies

THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

Particle Detectors for Hadron Physics Experiments. WS 2011/12 Fr. 12:15 13:45 Jim Ritman, Tobias Stockmanns

Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2011. Oct.

Review of ISOL-type Radioactive Beam Facilities

Lecture 1 - Overview of Accelerators I ACCELERATOR PHYSICS MT E. J. N. Wilson

Fundamental Concepts of Particle Accelerators I : Dawn of Particle Accelerator Technology. Koji TAKATA KEK. Accelerator Course, Sokendai

Varying accelerating fields

The Spectrum of Particle Accelerators

X = Z H + N n TBE. X = d 1 Z 2 + d 2 Z d 3 + d + d 4, where d i = f (Ci, A) 75 Se 75 Br. 75 Zn. 75 Ga. 75 Kr. 75 Ge 75 As

GSI Helmholtzzentrum für Schwerionenforschung. Indian Institute of Technology Ropar

Particle accelerators. Dr. Alessandro Cianchi

Modern Accelerators for High Energy Physics

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany

Accelerator Physics for X- Rays

Introduction to Accelerator Physics Part 1

3. Particle accelerators

The FAIR Accelerator Facility

Tools of Particle Physics I Accelerators

A 8 ECTS credit course autumn opintoviikon kurssi sysksyllä 2008

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Longitudinal Dynamics

JAPAN PROTON ACCELERATOR RESEARCH COMPLEX

Accelerators. The following are extracts from a lecture course at Nikhef (Amsterdam).

Advanced Design of the FAIR Storage Ring Complex

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1.

Weak focusing I. mv r. Only on the reference orbit is zero

Summer Student Lectures. Oliver Brüning SL/AP. ttp://bruening.home.cern.ch/bruening/summer school/lecture1

What did you learn in the last lecture?

Introduction to Particle Accelerators: Part 1. Dr Graeme Burt Lancaster University

Overview. Basic Accelerator Principles : units and equations. acceleration concepts. storage rings. trajectory stability.

Experimental Storage Ring - ESR E max = 420 MeV/u, 10 Tm, electron-, stochastic- and laser cooling. Indian Institute of Technology Ropar

A high intensity p-linac and the FAIR Project

Introduction to Particle Accelerators Bernhard Holzer, DESY

Particle Accelerators

HIGH-ENERGY HEAVY-ION ACCELERATORS

Overview of Accelerators Experimental tools in Physics

INTRODUCTION TO ACCELERATORS

An Introduction to Plasma Accelerators

Occupational Radiation Protection at Accelerator Facilities: Challenges

High Energy Frontier Recent Results from the LHC: Heavy Ions I

Particle Acceleration

Beam Cooling. M. Steck, GSI, Darmstadt. JUAS, Archamps, France March 9, 2015

Accelerator Physics Final Exam pts.

Introduction to Accelerators Part 1

Applications of Accelerators from Basic Science to Industrial Use

Introduction to Accelerator Physics Part 1

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575

The CERN Accelerator School holds courses in all of the member states of CERN. 2013, Erice, Italy

Proposal to convert TLS Booster for hadron accelerator

A Proposal of Harmonictron

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Lecture 1 The development of accelerator concepts

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou

accelerator physics and ion optics introduction

Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators. L. Sun

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Transcription:

Linear and circular accelerators Ion Accelerator Physics and Technology Oliver Boine-Frankenheim, Gesellschaft für Schwerionenforschung (GSI), Darmstadt Tel. 06159 712408, O.Boine-Frankenheim@gsi.de o Overview: History and accelerator types (I) o Beam dynamics: Acceleration and synchrotron motion (I/II) o Beam dynamics: Bending, focusing and betatron motion (II) o Advanced : Beam intensity limits (III) o Advanced : Storage rings and beam cooling (III) o The GSI accelerator facility (IV) I: Friday II/III: Monday IV: Wednesday at GSI

Particle energies Energies in ev Expected mass of the Higgs boson > 100 GeV Zur Anzeige wird der QuickTime Dekompressor TIFF (Unkomprimiert) benötigt. W, Z exchange bosons of the weak force 82 bzw. 93 GeV =1 V eu=1.602 10-19 J=1 ev 1 kev= 10 3 ev 1 MeV= 10 6 ev 1 GeV= 10 9 ev 1 TeV= 10 12 ev Rest mass of the anti proton: E=mc 2 Excitation energies in nuclei Ionisation energies in heavy atoms Ionisation energy of the hydrogen atom 0.938 GeV MeV kev 13 ev

TV

The GSI accelerator facility Ion sources Unilac SIS18 ESR Wednesday! Tumor therapy

Plasma ion sources Where do the ions come from? Ions are produced in a ionized gas ( plasma ) In thermal equilibrium the Saha equation describes the amount of ionization in a gas n i n n 3 10 27 ( k B T) 3/2 n i Ionization energy: I j e I j k T B (j: charge state) Highly stripped ions require high plasma temperatures and good plasma confinement. High ion currents are achieved for lower charge states ions.

Plasma ion sources Example: Electron cyclotron ion source 70µA Pb 26+ hot plasma High current sources: e.g. > 10 ma U 4+

Particle acceleration Basic equations Equation of motion: 1. Electrostatic acceleration: Relativistic parameters: 1 γ = β = v 1 β 2 c 2. Radiofrequency (RF) acceleration: Change of particle energy: with

Electrostatic accelerators Cockcroft-Walton accelerators 1928 Cockcroft & Walton start designing a 800 kv generator encouraged by Rutherford 1932 Generator reaches 700 kv and C&W split lithium with 400 kv protons. Zur Anzeige wird der QuickTime Dekompressor TIFF (LZW) benötigt.

Electrostatic accelerators Modern Cockcroft-Walton at FNAL Fermi Lab Cockcroft-Walton (700 kv):

Electrostatic accelerators Van de Graff generator and Tandem accelerators 1931 Van de Graaff generator (basic design) Two-stage tandem accelerator Approx. 10 MV can be reached

Acceleration with time varying fields Wiederöe RF accelerator 1924 Ising proposed time-varying fields across drift tubes: resonant acceleration. 1928 Wideröe (in Aachen) demonstrates Ising s principle with a 1 MHz, 25 kv oscillator. Length of the drift tubes: l i = 1 2 v it RF Particle energy: (E s ) i = 1 2 mv 2 i (E s ) i +1 = (E s ) i + qv 0 sinφ s l i = T RF 2 2 m (E + iqv sinφ ) s 0 0 s ω RF = 2π T RF For 10 (100) MHz and 2 MeV protons we get a maximum drift tube length of 1 (0.1) m!

RF accelerators Simplified scheme E = qv 0 RF sin(2πf RF t) RF station(s) Circular accelerator Linear accelerator (Linac)

RF cavities Simple model of a resonant cavity Ansatz: E z, B θ Resulting E-field in r: Maxwell equation in cylindrical coordinates: Solution: 0-order Bessel function Boundary condition E(r=R)=0 : Eliminating B: Example: R=1 m f 100 MHz

RF accelerators and structures at GSI UNILAC linear accelerator Zur Anzeige wird der QuickTime Dekompressor TIFF (Unkomprimiert) benötigt. f HF =36 MHz ( IH ) f HF =108 MHz ( Alvarez )

Circular accelerators B y Homogenous B-field in y-direction: rf station : ω RF = hω 0 θ R &θ = ω 0 = v qb θ R = y γ m ( cyclotron frequency ) Rigidity : v θ p = qbr E = γ mc 2 pc Example: 1 TeV protons and B=2 T results in R=1.6 km (L=10 km) Superconducting magnets (> 6 T) result in higher energies for the same R.

Cyclotron Constant (magnetic) bending field increasing radius ω 0 = v θ R = qb y γ m = const. (Cyclotron frequency) Zur Anzeige wird der QuickTime Dekompressor TIFF (LZW) benötigt. ω 0 = ω HF = const. Lawrence and Livingston, Berkeley, 1932

Synchrotron Example: GSI synchrotron SIS Synchronous rf frequency: rf cavity ω HF = hω 0 = h qb y γ m Constant radius variable B Feld R = p qb = const. Ion: U 73+ E inj =11.4 MeV/u E max = 1 GeV/u BR=18 Tm (10 T/s) Cycle=1 Hz Bending magnets Focusing magnets Synchrotron principle: E.M. McMillan, Uni. of California, 1945 Storage ring! Circumference: 216 m rf cavity

Livingston Diagramm Challenge: highest particle energies

CERN Large Hadron Collider (LHC) (under construction) Protons anf heavy ions (Pb) Energy: > 1 TeV Protons in the ring: 3x10 14 Current: 0.5 A Total beam energy: 3 MJ Magnetic bending field: 8 T Circumference: 27 km!

Evolution of (proton) synchrotron intensity Challenge: higher beam power cycle rate in ()

US Spallation Neutron Source (SNS) (under construction) 'Hands on maintenance': beam loss < 1 W/m at 1 GeV 100 m Ion: Protons Energie: 1 GeV (0.88c) ppp: > 1E14 Taktrate: 60 Hz Beam power: 2 MW Extensive beam physics modeling and computer simulations for the accelerator design.

Electron cooling of high energy antiprotons at FNAL Challenge: higher beam quality Principle of e-cooling (G. I. Budker, Novosibirsk, 1966) electron collector electron gun high voltage platform magnetic field electron beam ion beam 4.3 MeV electrons from Pelleton 20 m long interaction section Lecture on Monday! Zur Anzeige wird der QuickTime Dekompressor TIFF (LZW) benötigt. Recycler/Main ring tunnel Demonstrated cooling of 8 GeV pbars in July 2005