Electrical and Thermal Packaging Challenges for GaN Devices. Paul L. Brohlin Texas Instruments Inc. October 3, 2016

Similar documents
Parasitic Capacitance E qoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

OptiMOS 3 M-Series Power-MOSFET

EPC2108 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

N-CHANNEL MOSFET 1 D2 P-CHANNEL MOSFET. Top View SO-8

FEATURES SYMBOL QUICK REFERENCE DATA

500V N-Channel MOSFET

OptiMOS 3 M-Series Power-MOSFET

IXTH80N65X2 V DSS. X2-Class Power MOSFET = 650V I D25. = 80A 38m. R DS(on) N-Channel Enhancement Mode Avalanche Rated TO-247 G D S

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

Package. Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking

N-channel TrenchMOS transistor

IXFT100N30X3HV IXFH100N30X3

FEATURES SYMBOL QUICK REFERENCE DATA

IXTY4N65X2 IXTA4N65X2 IXTP4N65X2

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 30 V V GS Gate-Source Voltage ±20 V

Package TO Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 6 V GS = 20 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 24 V GS = 20 V, T C = 100 C.

P-Channel Enhancement Mode Mosfet

TrenchMV TM Power MOSFET

Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

TrenchMV TM Power MOSFET

Package. TAB Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 22.5 V GS = 15 V, T C = 100 C.

P-TO Maximum Ratings Parameter Symbol Value Unit SPP_I SPA Continuous drain current

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

N-Channel 30-V (D-S) MOSFET With Sense Terminal

TrenchMV TM Power MOSFET

P-Channel Enhancement Mode Mosfet

Package. TAB Drain S S G. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 13.5 V GS = 15 V, T C = 100 C

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using

Package. Symbol Parameter Value Unit Test Conditions Note V GS = 15 V, T C = 25 C Fig. 19 A 7.5 V GS = 15 V, T C = 100 C.

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

EE155/255 Green Electronics

OptiMOS 3 Power-MOSFET

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 15 V GS = 15 V, T C = 100 C.

OptiMOS TM Power-MOSFET

TSP10N60M / TSF10N60M

Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C I D 20.7

IXTT440N04T4HV V DSS

SPP20N60S5. Cool MOS Power Transistor V DS 600 V

IXTA24N65X2 IXTP24N65X2 IXTH24N65X2

EPP. Technology Platforms & Challenges for 3D GaN Power Converters Packaging. PwrSoC Jelena Popović Delft University of Technology

FEATURES SYMBOL QUICK REFERENCE DATA. V DSS = 55 V Very low on-state resistance Fast switching

OptiMOS 3 Power-Transistor

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS =20 V, T C = 25 C Fig. 19 A 60 V GS =20 V, T C = 100 C.

LSIC1MO120E V N-channel, Enhancement-mode SiC MOSFET

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 12.5 V GS = 20 V, T C = 100 C.

IXFA7N100P IXFP7N100P IXFH7N100P

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS TM 3 Power-MOSFET

OptiMOS 3 Power-MOSFET

Advance Technical Information IXFN80N60P3 V DSS. High Power Density Easy to Mount Space Savings Symbol Test Conditions Characteristic Values (T J

OptiMOS 2 Power-Transistor

Chip Outline. Symbol Parameter Value Unit Test Conditions Note 36 A 27 V GS = 20 V, T C = 100 C. -55 to +175

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

OptiMOS 3 Power-Transistor


Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

OptiMOS 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

TrenchT2 TM Power MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

BUK71/ AIE. TrenchPLUS standard level FET

Final data. Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

CoolMOS TM Power Transistor

SSF65R580F. Main Product Characteristics 700V. V J max. 0.52Ω (typ.) I D 8.0A TO-220F. Features and Benefits. Description

TrenchT2 TM Power MOSFET

Max Q1. Symbol V GS I DM 15 I DSM 7.8 I AS E AS V SPIKE P D 2.5 P DSM. Junction and Storage Temperature Range T J, T STG

P-channel enhancement mode MOS transistor

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 46 V GS = 20 V, T C = 100 C. -40 to +175

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

V DSS. Absolute Maximum Ratings Parameter Q1 Max. Q2 Max. Units V DS Drain-to-Source Voltage 30 V GS

Lecture 21: Packaging, Power, & Clock

CoolMOS Power Transistor

Parasitics in Power Electronics Avoid them or Turn Enemies into Friends

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS =20 V, T C = 25 C A 71 V GS =20 V, T C = 100 C. -40 to +175

SPB07N60C3. Cool MOS Power Transistor V T jmax 650 V. Operating and storage temperature T j, T stg C 6) Feature

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current. I D puls E AS. dv/dt 6 kv/µs.

Silicon carbide Power MOSFET 650 V, 90 A, 18 mω (typ., T J = 25 C) in an H²PAK-7 package. Order code V DS R DS(on) max. I D

LNTA4001NT1G S-LNTA4001NT1G. Small Signal MOSFET 20 V, 238 ma, Single, N-Channel, Gate ESD Protection LESHAN RADIO COMPANY, LTD.

OptiMOS TM Power-MOSFET

V DSS R DS(on) max I D 80V GS = 10V 3.6A. 29 P A = 25 C Maximum Power Dissipation 2.0 Linear Derating Factor

Package. Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 40 V GS = 15 V, T C = 100 C.

Final data. Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

V DS I D (at V GS =10V) R DS(ON) (at V GS =4.5V) 100% UIS Tested 100% Rg Tested. G Pin 1

IXFN56N90P. = 900V = 56A 145m 300ns. Polar TM HiPerFET TM Power MOSFET V DSS I D25. R DS(on) t rr

IXFR18N90P V DSS. Polar TM HiPerFET TM Power MOSFET = 900V I D25 = 10.5A. R DS(on) 300ns. t rr

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

CoolMOS Power Transistor

IXFL32N120P. Polar TM HiPerFET TM Power MOSFET V DSS I D25 = 1200V = 24A. 300ns. Preliminary Technical Information. R DS(on) t rr

Towards Fully Integrated Power Management

Transcription:

Electrical and Thermal Packaging Challenges for GaN Devices Paul L. Brohlin Texas Instruments Inc. October 3, 2016 1

Outline Why GaN? Hard-Switching Losses Parasitic Inductance Effects on Switching Thermal Challenges of Surface Mount Packages 2

Why GaN? Source Gate Zero reverse-recovery enables efficient hard-switched CCM converters Low output capacitance reduces switch charging losses enabling faster switching speeds Low input capacitance reduces gate drive losses enabling higher switching frequency Higher switching speeds reduce transformers, inductors, and capacitors size Lateral structure enables integration Drain Device Structure Rds,on Area metric Silicon MOSFET Vertical no integration TI GaN (HEMT) Lateral- allows integration >10 mω-cm 2 5-8 mω-cm 2 Gate Charge ~ 4 nc-ω ~ 1-1.5 nc-ω Output Charge ~25 nc-ω ~ 5 nc-ω Reverse Recovery Significant None 3

Why GaN? - 48V to POL GaN enables single stage efficient hardswitched POL converter Single conversion reduces component count in half ~3x power density improvement Hard-switched topology improves transient response 48V 12V Bus Converter 92-97% Efficient 12V POL Multi-phase Buck 85-93% Efficient LMG5200POL EVM: 48V to 1V 4

Why GaN? CCM Totem Pole PFC GaN enables CCM Totem Pole PFC No Qrr Low switching losses GaN enables higher switching frequency Reduces inductor size CCM Totem Lower components 30% higher power density 1kW Totem Pole PFC 5

Outline Why GaN? Hard-Switching Losses Parasitic Inductance Effects on Switching Thermal Challenges of Surface Mount Packages 6

Hard Switching Loss In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during t 1 t 2 and t 2 t 3. E oss and E ch are determined by C oss and Vbus. High Side Loss: ON OFF P hs = V bbb I iii 2 t 1 2 + V bbb τ 2 I iii t 2 3 τ + f ss (E ooo + E cc ) Low-Side Loss: P ls = V dd_3q I iii 2 t 1 2 τ 7

Hard Switching Loss In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during t 1 t 2 and t 2 t 3. E oss and E ch are determined by C oss and Vbus. High Side Loss: ON OFF P hs = V bbb I iii 2 t 1 2 + V bbb τ 2 I iii t 2 3 τ + f ss (E ooo + E cc ) Low-Side Loss: P ls = V dd_3q I iii 2 t 1 2 τ 8

Hard Switching Loss In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during t 1 t 2 and t 2 t 3. E oss and E ch are determined by C oss and Vbus. High Side Loss: ON OFF P hs = V bbb I iii 2 t 1 2 + V bbb τ 2 I iii t 2 3 τ + f ss (E ooo + E cc ) Low-Side Loss: P ls = V dd_3q I iii 2 t 1 2 τ 9

Hard Switching Loss In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during t 1 t 2 and t 2 t 3. E oss and E ch are determined by C oss and Vbus. High Side Loss: ON OFF P hs = V bbb I iii 2 t 1 2 + V bbb τ 2 I iii t 2 3 τ + f ss (E ooo + E cc ) Low-Side Loss: P ls = V dd_3q I iii 2 t 1 2 τ 10

Eoss vs Ech C oss is very non-linear for GaN and most high voltage power devices E oss is the energy stored in the C oss at a defined V ds E ooo = V bbb 0 C ooo (V dd ) V dd dd E ch is the energy dissipated in the highside when charging the low-side C oss V bbb E cc = C ooo V dd_ ll (V bbb V dd_ ll)dd 0 E ch > E oss when C oss is larger at low V ds Any parasitic SW node capacitance will sum with C oss of the low-side fet No snubbers Coss ON OFF 280.000 8000.00 210.000 140.000 70.000 6000.00 4000.00 2000.00 0.000 0.00 0.000 100.000 200.000 300.000 400.000 Vds GaN COSS (pf) EOSS (nj) Ech_400V (nj) Energy per Cycle (nj) 11

Outline Why GaN? Hard-Switching Losses Parasitic Inductance Effects on Switching Thermal Challenges of Surface Mount Packages 12

Common Source Inductance Common Source inductance reduces the di/dt during turn-on and turn-off. Increases power dissipated during the di/dt ramp 5nH common source inductance increases turn-on loss by 60% 86uJ 53uJ High-side turn on versus common-source inductance: red = 0 nh, green = 1 nh, blue = 5 nh 13

Gate Loop Inductance Gate loop inductance increases the impedance between the gate and the driver. Limits the ability to hold off the GaN device during the Vds ramp Shoot through increases the power dissipated in the high-side device and can cause it to fail due to SOA. Gate loop inductance increases ringing Higher stress on gate Ringing can cause the device to turn-on/off Loop resistance is required to dampen ringing Shootthrough Low-side hold-off versus gate-loop inductance red = 2 nh, green = 4 nh, blue = 10 nh 14

Reduction of Common Source & Gate Loop Inductance Standard Packages Kelvin Source Packages Integrated Driver Packages Standard Power Package Kelvin Source Power Package Common Source 2nH -10nH <1nH <1nH Integrated Driver Power Package Gate Loop 5nH 20nH 5nH 20nH 1nH 4nH 15

Power Loop Inductance Power loop inductance Increases Ringing and EMI Increases V ds voltage stress Increase switching losses Package must be designed to enables low power loop inductance PCB layout 639V 491V GaN must be switched without snubber to have high efficiency V sw ringing versus power loop inductance red = 2nH, green = 5nH, blue = 10nH, orange = 20nH 16

CCM Switching Waveforms LMG3410 HB EVM <25V overshoot 1kW Totem Pole PFC Slew Rate 100 V/ns Time (10 ns/div) Switch Node Voltage (100 V/div) 17

Outline Why GaN? Hard-Switching Losses Parasitic Inductance Effects on Switching Thermal Challenges of Surface Mount Packages 18

Thermal Power packages need to have good thermal dissipation capability GaN has high R ds_on temperature coefficient. Lower junction temperature reduces conduction loss Surface mount packages do not dissipate power as well as traditional leaded packages Heat dissipates through PCB Typically have smaller heat spreaders 19

Thermal Dissipation Power dissipation: ~12 W (50C ambient and 110C max junction temperature) Power dissipation: ~7 W (50C ambient and 110C max junction temperature) θ JC - 0.3 0.8 K/W θ TIM 1.5 8 K/W θ HS 1.6 5 K/W θ JC - 0.3 0.8 K/W θ PCB 3.0 10 K/W θ TIM 1.8 10 K/W θ HS 1.6 5 K/W 20

Package Thermal Pad Area of thermal pad must large enough to reduce thermal resistance of TIM Thermal pad must have sufficient thickness to spread heat over TIM Die Cu TIM 7x7mm Thermal Pad vs Thickness T TTT = P dddd A TTT d TTT λ TTT 21

Package Comparison Package TO220 QFN Bumped Die Common Source Ind Embedded TOLL Sintered Dual Cool --* ++ ++ ++ ++ ++ Gate Loop Ind -- ++ ++ ++ ++ + Power Loop Ind -- ++ ++ ++ ++ + Thermal ++ + - + + ++** Cost ++ ++ ++ - + -- * Additional kelvin source pin eliminates common source inductance ** Includes isolation 22

Conclusions GaN s lower switching losses enables high efficiency and high density designs No reverse recovery Low Qoss and Qiss Low inductance package is required to realize GaN switching performance Low common source inductance to reduce losses during di/dt phases Low gate loop inductance to hold device off and reduce gate ringing Integrating the driver in the package will minimize gate loop and common source inductance Package must enable low power loop inductance PCB layout Power loop must be designed without snubbers GaN package must have good thermal performance Large thick power pad to spread heat and lower TIM drop Direct thermal connection to heat sink eliminates PCB thermal resistance 23

Thank You 24