Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30

Similar documents
The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Recent results from Super-Kamiokande

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

Recent Nucleon Decay Results from Super-Kamiokande

Search for Proton Decay in Super-Kamiokande

Analyzing Data. PHY310: Lecture 16. Road Map

The Hyper-Kamiodande Project A New Adventure in n Physics

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Gadolinium Doped Water Cherenkov Detectors

( Some of the ) Lateset results from Super-Kamiokande

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

UNO: Underground Nucleon Decay and Neutrino Observatory

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

Neutrino interaction at K2K

arxiv: v1 [nucl-ex] 7 Sep 2009

Hyper-Kamiokande R&D. Francesca Di Lodovico (QMUL) on behalf of the Hyper-Kamiokande working groups

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Background study for solar neutrino measurement in Super Kamiokande

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

Hyper-K physics potentials and R&D

First neutrino beam and cosmic tracks. GDR neutrino

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

The Hyper-Kamiokande project

SK Atmospheric neutrino. Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration

Indication of ν µ ν e appearance in the T2K EXPERIMENT

The First Results of K2K long-baseline Neutrino Oscillation Experiment

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

The T2K Neutrino Experiment

Special Contribution Observation of Neutrinos at Super-Kamiokande Observatory

Neutrinos From The Sky and Through the Earth

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Design, construction, and initial performance of SciBar detector in K2K experiment

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Super-Kamiokande. Alexandre Zeenny, Nolwenn Lévêque

Super-Kamiokande ~The Status of n Oscillation ~

Single π production in MiniBooNE and K2K

Neutrino oscillation physics potential of Hyper-Kamiokande

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Long Baseline Neutrinos

AN EXPERIMENTAL OVERVIEW OF NEUTRINO PHYSICS. Kate Scholberg, Duke University TASI 2008, Boulder, CO

Dear Radioactive Ladies and Gentlemen,

Near detector tracker concepts. D. Karlen / U. Vic. & TRIUMF T2K ND280m meeting August 22, 2004

Super-KamiokaNDE: Beyond Neutrino Oscillations. A. George University of Pittsburgh

Neutrino Oscillations and the Matter Effect

Time of Flight measurements with MCP-PMT

MiniBooNE Progress and Little Muon Counter Overview

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Super/Hyper-Kamiokande

XMASS: a large single-phase liquid-xenon detector

Study of a 200 ton Gadolinium-loaded Water Cherenkov Detector for Super-KamiokaNDE Gadolinium Project

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

Detector Basics II. Mark Messier Indiana University. Neutrino Summer School Fermilab, July 7th, 2009

1 Introduction. 2 Nucleon Decay Searches

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

The Hyper-Kamiokande Experiment. Francesca Di Lodovico Queen Mary University of London

N u P J-PARC Seminar August 20, 2015

1. Neutrino Oscillations

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

Detectors for astroparticle physics

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

SURFACE ARRAY Détecteur de surface pour ANTARES JP Ernenwein CPPM

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Recent T2K results on CP violation in the lepton sector

Status of KEK-E391a and Future Prospects on K L π 0 νν at KEK. GeiYoub Lim IPNS, KEK

Results from T2K. Alex Finch Lancaster University ND280 T2K

Early physics with the LHCb detector

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

Long Baseline Neutrino Experiments

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington

The XENON1T experiment

Neutrino Physics at Short Baseline

Development of 50 cm Diameter Hybrid Photo-Detector for Hyper-Kamiokande. Tianmeng Lou Department of Physics, University of Tokyo

Particle Physics: Neutrinos part I

GADZOOKS! project at Super-Kamiokande

The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II. Vanderbilt University, March 5-10, Sergio Navas (ETH Zürich) " Atmospheric neutrinos

Recent Results from T2K and Future Prospects

Radio-chemical method

Calibration of large water-cherenkov Detector at the Sierra Negra site of LAGO

K2K and T2K experiments

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

Atmospheric Neutrinos MINOS MINOS Far Detector Type of Atmospheric Neutrinos at MINOS Two MINOS Atmospheric Analyses.

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

HARP (Hadron Production) Experiment at CERN

Bari Osmanov, University of Florida. OscSNS - proposal for neutrino experiment at ORNL SNS facility

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1

From Here to a Neutrino Factory: Neutrino Oscillations Now and Again

Chapter 2 T2K Experiment

arxiv: v1 [physics.ins-det] 27 Jun 2017

Transcription:

Super- Kamiokande h=41.4m Super- Kamiokande (1996- ) 50,000 tons of Pure Water 20inch PMT (inner detector) #PMT, coverage SK- I(1996-2001): 11146, 40% SK- II(2001-2005): 5182, 20% SK- III(2006-2008): 11129, 40% SK- IV(2008- ): New DAQ Elec. 1,885 of 8 inch PMT (outer detector) Fiducial Volume (>2m from wall) =22,500 tons Large volume acwve neutrino target 4π coverage Large dynamic range on neutrino energy ( a few MeV TeV ) w=39.3m Kamiokande (1983-1996) Y.Obayashi @TIPP2011, Inst. and Calib. of a Water Cerenkov Detector Super- Kamiokande Hyper- K (201X? - ) M. Yokoyama Friday 14:30 2

Physics Targets of Super- Kamiokande Nucleon Decay (M p ~1GeV) Atmospheric Neutrino (Eν=100MeV~TeV+) Long baseline Accelerator Neutrino (Eν ~ 1GeV) Solar Neutrino (Eν= 4MeV ~ 10MeV) Supernovae Neutrino (Eν ~ 10MeV) WIMP, GRB, Solar Flare and more * This talk covers mainly on higher energy part p e + π 0 (MC)

Photo- Sensor: Hamamatsu R3600 20inch PMT Ajer the recovery of accident, all the ID PMTs are sheltered by FRP + Acrylic case to prevent chain reacwon of explosion Y.Obayashi @TIPP2011, Inst. and Calib. of a Water Cerenkov Detector Super- Kamiokande 4

DAQ Electronics (QBEE) ajer upgrade@2008 Sojware Trigger QBEE specificawon: QTC A custom ASIC (0.35µm CMOS) 3 input channel/chip, 3 charge stage/channel Dynamic range: 0.2pC 2500pC ~0.1p.e. 1200 p.e.) MulW- hit TDC Atlas Muon TDC(AMT) Driven by 60MHz master clock and 60kHz periodic trigger TCP/IP readout On board calibrawon pulsar Readout All hits above QTC threshold Apply Sojware Trigger at Semi- Online Gate widthes 40us for LowE/HighE events (solar/atm. nu) 1000us for T2K spill trigger 1.3us for super LE trigger (solar nu) Redundant DAQ for very high trigger rate (nearby Supernova) will be implemented Y.Obayashi @TIPP2011, Inst. and Calib. of a Water Cerenkov Detector Super- Kamiokande T. Tomura Thu. 16:40 5

Event ReconstrucWon for Atmospheric/LB ν & Proton decay Vertex ReconstrucWon Ring Count ParWcle IdenWficaWon Energy ReconstrucWon PMT hit Wming PMT hit patern PMT hit patern & Cherenkov opening angle PMT charge sum in a ring + CorrecWon for water transp. Muon Decay Electron Finding PMT hit Wme profile (τ µ ~ 2us)

Detector CalibraWon

Timing CalibraWon (Time walk & Offset) late early 1p.e. 10p.e. 100p.e. Make T- Q curve for all the PMTs and use as correcwon funcwons for data

Timing ResoluWon Early Hit Part Summed up T T0 ToF for all PMT. resoluwon(ns) σ t ~ 2.5 ns @ 1 p.e. 0.5 ns @ >100p.e. 1p.e. 10p.e. 100p.e.

PMT Gain CalibraWon (HV adjustment) Make 420 Standard PMTs at OUTSIDE of the tank before install Place these standard PMTs in the tank to cover all geometry Adjust HV of each PMTs comparing standard PMT charge α i,β i : i th PMT s param.

Ni + Cf gamma source Single hit Charge distribuwon SK2PMT 1.25 SK3PMT 1.20 Neutron from 252 Cf is converted to 6-9MeV gamma in Ni ~single hits on PMTs Measure 1p.e. distribuwon Q.E. of each PMT Used as input of detector simulator p.e. SK2PMT : PMT used from SK beginning SK3PMT : Newly produced PMT ajer accident in 2001

AtenuaWon and Scatering in Water Fiyng with parameter: absorpwon, Rayleigh scatering and Mie scatering for each wavelength Input of Detector Simulator

LINAC / DT CalibraWons for Solar ν analysis LINAC Magnets LINAC system DT Generator Beam Pipe Accelerate and inject electrons: Pe = 5 18 MeV/c 2 H + 3 H 4 He + n 16 O(n,p) 16 N 16 N γ(6.1mev),e(4.3mev) etc. <1% level DATA/MC Agreement is confirmed Ee(MeV/c 2 ) Ee(MeV/c 2 ) Ee(MeV/c 2 )

Detector Performance

Vertex ResoluWon Sub- GeV e σ=27.1cm Evaluated by Δ(rec. vtx true vtx) Sub- GeV mu σ=30.6cm ~30 cm resoluwon @ Sub- GeV region

ParWcle IdenWficaWon Sub- GeV (Evis < 1.3GeV) MulW- GeV (Evis > 1.3GeV) IdenWfy e or mu using Likelihood with Cherenkov light patern and Opening angle. MissID rate: νµ CCQE missid as e- like: 0.5% νe CCQE missid as µ- like: 1.5%

Solar neutrino analysis Energy ResoluWon Atmospheric neutrino analysis, - - - - : SK- III - - - - - - - : SK- I ~15% @ Solar neutrino energy, 2~3%@1GeV (SK- I,III) SK- II shows worse resoluwon due to low PMT coverage(~20%)

5000 4000 Reconstructed Momentum of Decay Electron Mean Values Data: 37.78 ± 0.05 MeV MC: 37.18 ± 0.05 MeV Absolute Energy- Scale + DATA MC + DATA + MC 3000 2000 1000 0 0 10 20 30 40 50 60 70 Momentum (MeV/c) Muon decay electron momentum invariant mass of π 0 γγ Momentum/range of cosmic muons (MC-DATA)/DATA (%) 8 6 4 2 0-2 -4-6 decay electron neutral pion stop muon (sub-gev) stop muon (multi-gev) Evaluated with MC- DATA comparison with several physics samples Absolute energy scale error is within ±2% through 30MeV ~ 5+ GeV -8 10 2 10 3 10 4 10 5 momentum (MeV/c)

90m 80m MeV/c MeV/c/cm Light atenuawon length in SK water Cosmic Muon Momentum/Range Muon decay electron Momentum Energy Scale Stability RMS/Mean~0.4% Despite that light atenuawon length varies ~80m to 90m, reconstructed momentum ajer water atenuawon correcwon is quite stable with RMS/Mean ~0.4%. (Monitored atenuawon length is used in the momentum reconstrucwon) RMS/Mean~0.4% Oct/2008 Jul/2011

Summary 50,000 ton Water Čerenkov detector Super- Kamiokande Well calibrated with various calibrawon sources Nice performance Vertex resoluwon ~30cm @ sub- GeV MissID rate of νµ CCQE as electron- like: ~0.5% Energy Scale error <2%, stability ~0.4% RMS/mean Energy resoluwon: ~15%@solar, ~3%@1GeV Well established technique Keep effort to improve its performance Applicable for Next GeneraWon WČ discussion