Status of Light Sterile Neutrinos Carlo Giunti

Similar documents
Sterile Neutrinos. Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Status of the Sterile Neutrino(s) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

C. Giunti Sterile Neutrino Mixing NOW Sep /25

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Critical Review on Neutrino Anomalies. Carlo Giunti

Sterile Neutrinos in July 2010

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Two hot issues in neutrino physics

Impact of light sterile!s in LBL experiments "

Analysis of Neutrino Oscillation experiments

Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

Status of Sterile Neutrinos Carlo Giunti

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Short baseline neutrino oscillation experiments at nuclear reactors

ev-scale Sterile Neutrinos

Short-Baseline Neutrino Anomalies Carlo Giunti. Selected Puzzles in Particle Physics Laboratori Nazionali di Frascati December 2016

The Reactor Antineutrino Anomaly

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

The Daya Bay Reactor Neutrino Experiment

Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong, , China

Overview of Reactor Neutrino

Status and prospects of neutrino oscillations

PoS(ICRC2017)1024. First Result of NEOS Experiment. Kim Siyeon. Affiliation:Chung-Ang University. On behalf of NEOS Collaboration

Neutrino Physics: Lecture 12

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

On indications for sterile neutrinos at the ev scale. Invisibles 14 workshop, July 2014, Paris Thomas Schwetz

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Sterile neutrino oscillations

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013

Particle Physics: Neutrinos part II

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Daya Bay and joint reactor neutrino analysis

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

On Minimal Models with Light Sterile Neutrinos

Neutrino Oscillation Physics

The ultimate measurement?

NEUTRINO OSCILLATIONS AND STERILE NEUTRINO C. Giunti

Phenomenological Status of Neutrino Mixing

Reactor Neutrino Oscillation Experiments: Status and Prospects

Neutrino Anomalies & CEνNS

In collaboration with:

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Sterile neutrinos: to be or not to be?

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Particle Physics: Neutrinos part II

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

arxiv: v1 [hep-ph] 15 Apr 2019

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

The future of neutrino physics (at accelerators)

Updated three-neutrino oscillation parameters from global fits

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

50 years of Friendship Mikhail Danilov, LPI(Moscow)

Search for sterile neutrinos at the DANSS experiment

NEUTRINOS II The Sequel

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009

arxiv: v1 [hep-ph] 15 Jan 2019

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Solar and atmospheric ν s

Prospects for Measuring the Reactor Neutrino Flux and Spectrum

Neutrino Oscillations

Known and Unknown for Neutrinos. Kim Siyeon Chung-Ang g University Lecture at Yonsei Univ.

Mitchell Institute Neutrino Experiment at a Reactor (MINER) Status and Physics Reach

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

Long baseline experiments

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

Sterile Neutrino Search at the NEOS Experiment. Department of Physics, Chonnam National University, Gwangju 61186, Korea

Neutrino Experiments with Reactors

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

PROSPECTs for Sterile Neutrino Searches at Reactors

- Future Prospects in Oscillation Physics -

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

How large is the "LSND anomaly"?

Neutrino Experiments with Reactors

Neutrino Oscillations

Neutrinos in Nuclear Physics

NEUTRINO AND CPT THEOREM

The Short Baseline Neutrino Program at Fermilab

Largeθ 13 Challenge and Opportunity

Reactor Neutrinos I. Karsten M. Heeger. University of Wisconsin Pontecorvo Neutrino Summer School Alushta, Ukraine

Prospects of Reactor ν Oscillation Experiments

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Sterile Neutrino Experiments at Accelerator

Fission Product Yields for Neutrino Physics and Non- prolifera7on

Transcription:

Status of Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy EPS-HEP 07 07 European Physical Society Conference on High Energy Physics Venezia, Italy, 5- July 07 C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4

Indications of SBL Oscillations Beyond 3ν C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 3/4 LSND [PRL 75 (995) 650; PRC 54 (996) 685; PRL 77 (996) 308; PRD 64 (00) 07] ν µ ν e 0 MeV E 5.8 MeV Well-known and pure source of ν µ p + target π + at rest µ + + ν µ µ + at rest e + + ν e + ν µ ν e + p n + e + Well-known detection process of ν e 3.8σ excess L 30 m But signal not seen by KARMEN at L 8 m with the same method [PRD 65 (00) 0]

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 4/4 m (ev /c 4 ) Karmen Bugey CCFR NOMAD - - 90% (L max -L <.3) 99% (L max -L < 4.6) -3 - - sin θ m SBL 3 ev m ATM.5 3 ev m SOL

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 5/4 MiniBooNE L 54 m ν µ ν e [PRL (009) 80] 00 MeV E 3 GeV ν µ ν e [PRL (03) 680] LSND signal LSND signal Purpose: check LSND signal. Different L and E. Similar L/E (oscillations). No money, no Near Detector. LSND signal: E > 475 MeV. Agreement with LSND signal? CP violation? Low-energy anomaly!

Gallium Anomaly Gallium Radioactive Source Experiments: GALLEX and SAGE ν e Sources: e + 5 Cr 5 V + ν e e + 37 Ar 37 Cl + ν e E 0.75 MeV E 0.8 MeV Test of Solar ν e Detection: ν e + 7 Ga 7 Ge + e R =N exp N cal 0.7 0.8 0.9.0. GALLEX SAGE Cr Cr R = 0.84 ± 0.05 L GALLEX =.9 m GALLEX SAGE Cr Ar L SAGE = 0.6 m m SBL ev m ATM m SOL.9σ deficit [SAGE, PRC 73 (006) 045805; PRC 80 (009) 05807; Laveder et al, Nucl.Phys.Proc.Suppl. 68 (007) 344, MPLA (007) 499, PRD 78 (008) 073009, PRC 83 (0) 065504] C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 6/4

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 7/4 Reactor Electron Antineutrino Anomaly [Mention et al, PRD 83 (0) 073006] New reactor ν e fluxes [Mueller et al, PRC 83 (0) 05465; Huber, PRC 84 (0) 0467] P ν e νe 0.70 0.80 0.90.00..0 Bugey 4 Rovno9 E 4MeV sin ϑ ee = 0. m 4 = 0. ev m 4 = 0.5 ev m 4 =.0 ev Rovno88 Bugey 3 Gosgen ILL 3 L [m] Krasnoyarsk SRP Nucifer R DC DB DC R DB.8σ deficit m SBL 0.5 ev m ATM m SOL

ε C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 8/4 NEOS [arxiv:6.0534] Events /day/0 kev Data/Prediction Data/Prediction 60 50 40 30 0..0 (a) (b) Prompt Energy [MeV] Data signal (ON-OFF) Data background (OFF) MC 3ν (H-M-V) MC 3ν (Daya Bay) NEOS/H-M-V Systematic total 7 6 5 4 3 3 4 5 6 7 8 Neutrino Energy [MeV] 0.9. 3 4 5 6 7 (c) NEOS/Daya Prompt BayEnergy [MeV] Systematic total.0 (.73 ev, 0.050) (.3 ev, 0.4) 0.9 3 4 5 6 7 Prompt Energy [MeV] 3 Hanbit Nuclear Power Complex in Yeong-gwang, Korea. Thermal power of.8 GW. Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 4 m from the reactor core. The measured antineutrino event rate is 976 per day with a signal to background ratio of about.

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 9/4 NEOS Spectrum 90% CL 95% CL 99% CL [ev ] m 4 + 3 sin ϑ ee Best Fit: m 4 =.3 ev sin θ 4 = 0.04 χ no osc. χ min = 6.5.σ anomaly

Beyond Three-Neutrino Mixing: Sterile Neutrinos C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4 m. ν 5. ν s ν 4 m SBL ν s ev ν 3 ν ν matm msol ν e ν µ ν τ.5 3 ev 7.4 5 ev Terminology: means: a ev-scale sterile neutrino a ev-scale massive neutrino which is mainly sterile

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4 Effective 3+ SBL Oscillation Probabilities Appearance (α β) ( ) m P SBL ( ) sin ϑ ν ( ) αβ sin 4 L α ν β 4E Disappearance ( ) m P SBL ( ) sin ϑ ν ( ) αα sin 4 L α ν α 4E sin ϑ αβ = 4 U α4 U β4 sin ϑ αα = 4 U α4 ( U α4 ) U e U e U e3 U e4 U µ U µ U µ3 U µ4 U = U τ U τ U τ3 U τ4 U s U s U s3 U s4 SBL 6 mixing angles 3 Dirac CP phases 3 Majorana CP phases CP violation is not observable in SBL experiments! Observable in LBL accelerator exp. sensitive to matm [de Gouvea et al, PRD 9 (05) 053005, PRD 9 (05) 0730, arxiv:605.09376; Palazzo et al, PRD 9 (05) 07307, PLB 757 (06) 4; Gandhi et al, JHEP 5 (05) 039, JHEP 6 (06) ] and solar exp. sensitive to msol [Long, Li, CG, PRD 87, 3004 (03) 3004] [Palazzo, EPS-HEP 07]

3+ Appearance-Disappearance Tension ν e DIS sin ϑ ee 4 U e4 ν µ ν e APP ν µ DIS sin ϑ µµ 4 U µ4 sin ϑ eµ = 4 U e4 U µ4 4 sin ϑ ee sin ϑ µµ [Okada, Yasuda, IJMPA (997) 3669; Bilenky, CG, Grimus, EPJC (998) 47] ν µ ν e is quadratically suppressed! [ev ] m 4 PrGlo7 σ σ ν e Dis ν µ Dis Dis App 4 3 PrGlo7 = Pragmatic Global Fit 07 [Gariazzo, CG, Laveder, Li, arxiv:703.00860] χ NO = 47.4 6.σ anomaly Best Fit: m4 =.7 ev U e4 = 0.00 U µ4 = 0.05 χ min /NDF = 595./579 GoF = 3% χ PG /NDF PG = 7./ GoF PG =.7% Similar tension in 3+, 3+3,..., 3+N s [CG, Zavanin, MPLA 3 (05) 650003] sin ϑ eµ C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4

Effects of MINOS, IceCube and NEOS C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 3/4 ( ) ν µ ( ) ν µ PrGlo6A PrGlo6A + MINOS PrGlo6A + IceCube PrGlo6A + MINOS + IceCube = PrGlo6B ( ) ν e ( ) ν e PrGlo6A PrGlo6A + MINOS + IceCube = PrGlo6B PrGlo6A + MINOS + IceCube + NEOS = PrGlo7 m 4 [ev ] [ev ] m 4 MINOS IceCube sin ϑ µµ NEOS sin ϑ ee IceCube effect in agreement with Collin, Arguelles, Conrad, Shaevitz, PRL 7 (06) 80

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 4/4 The Race for the Light Sterile ( ) ν e ( ) ν e PrGlo7 σ σ PrGlo7 σ σ [ev ] [ev ] m 4 m 4 DANSS (yr, 95% CL) Neutrino 4 (yr, 95% CL) PROSPECT phase (3yr, ) PROSPECT phase (3yr, ) SoLiD phase (yr, 95% CL) SoLiD phase (3yr, ) STEREO (yr, 95% CL) sin ϑ ee CeSOX shape (95% CL) CeSOX rate (95% CL) CeSOX rate+shape (95% CL) BEST (σ) IsoDAR@KamLAND (5yr, ) C ADS (5yr, ) KATRIN (90% CL) sin ϑ ee

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 5/4 ( ) ν µ ( ) ν e ( ) ν µ ( ) ν µ SBN (3yr, ) nuprism () JSNS () SBN (3yr, ) KPipe (3yr, ) [ev ] [ev ] m 4 m 4 PrGlo7 σ σ 4 3 sin ϑ eµ PrGlo7 σ σ sin ϑ µµ

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 6/4 Preliminary Bound from MINOS & MINOS+ [Whitehead, EPS-HEP 07] Flanagan @ PPC07 PrGlo7 σ σ m 4 [ev ] MINOS 90% CL MINOS 99% CL MINOS 99.73% CL () MINOS & MINOS+ 90% CL sin ϑ µµ

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 7/4 Preliminary Bound from DANSS [Danilov, EPS-HEP 07] ion with current statistics -- Svirida @ WIN07 PrGlo7 σ σ ) in: [ev ] m 4 e y DANSS Preliminary 95%CL Compilation of allowed regions from arxiv:5.00 [physics.ins-det] DANSS 95% CL s sin ϑ ee

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 8/4 ) χ i ( Events 5000 Events 5000 500 000 Reactor Antineutrino 5 MeV Bump Entries / 50 kev 5000 Full uncertainty Reactor uncertainty ILL+Vogel Integrated (Data - MC) / MC 0. 0. 0 0. 3 4 5 6 7 8 Prompt Energy (MeV) (Data - MC) / MC 0. 0. 0 Data / Predicted 0.5 MeV.4..0 Data No oscillation Reactor flux uncertainty Total systematic uncertainty Best fit: sin θ 3 = 0.090 0.8 0. 0.6 3 4 5 6 7 8 3 4 5 6 7 8 Prompt Energy Visible Energy (MeV) Ratio to Prediction (Huber + Mueller) contribution χ.. 0.9 0.8 4 0 4 4 6 8 4 6 8 4 6 8 Prompt Energy (MeV) 3 4 5 6 Local p-value ( MeV windows) [RENO, arxiv:5.05849] [Double Chooz, arxiv:406.7763] [Daya Bay, arxiv:508.0433] Cannot be explained by neutrino oscillations (SBL oscillations are averaged in Double Chooz, Daya Bay, RENO). Very likely due to theoretical miscalculation of the spectrum. 3% effect on total flux, but if it is an excess it increases the anomaly! No post-bump complete calculation of the neutrino fluxes. Saclay-Huber flux calculation uncertainty is about.5%. Increasing the flux uncertainty is a game that one can play, but there are only guesses, e.g. about 5%. [Hayes and Vogel, 06] Better to exclude the reactor rates from the global fit. [suggestion of Pedro Machado at WIN 07]

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 9/4 Global Fit Without Reactor Rates [ev ] [ev ] m 4 m 4 PrGlo7 σ σ ν e Dis ν µ Dis Dis App 4 3 PrGlo7wrr σ σ ν e Dis ν µ Dis Dis App 4 3 sin ϑ eµ sin ϑ eµ The Reactor Antineutrino Anomaly has small impact on the global fit.

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 0/4 Global Fit Without Reactor Rates and Gallium Data [ev ] [ev ] m 4 m 4 PrGlo7 σ σ ν e Dis ν µ Dis Dis App 4 3 PrGlo7wrrwg σ σ ν e Dis ν µ Dis Dis App 4 3 sin ϑ eµ sin ϑ eµ Given the current constraints, only the LSND signal is crucial for a positive indication in favor of active-sterile SBL oscillations.

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4 Daya Bay Reactor Fuel Evolution [Daya Bay, arxiv:704.08] [Tsang @ EPS-HEP 07] Fission fraction (%) Reactor ν e flux produced by the β decays of the fission products of 35 U, 38 U, 39 Pu, 4 Pu. 0 90 80 70 60 50 40 30 0 35 U 39 Pu 38 U 4 Pu Others 0 0 5000 000 5000 0000 Burn-up (MWD/TU) Cross section per fission: σ f = F i σ f,i i=35,38,39,4 Effective fission fractions: σf [ 43 cm / fission] 6.05 6.00 5.95 5.90 5.85 5.80 5.75 5.70 F 35, F 38, F 39, F 4. 0.63 0.60 Best fit Average F 35 0.57 0.54 Model (Rescaled) Daya Bay 0.5 0.4 0.6 0.8 0.30 0.3 0.34 0.36 F 39

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 /4 9 σ39 [ 43 cm / fission] 5.5 5.0 4.5 4.0 3.5 3.0 Daya Bay Huber model w/ 68% C.L. σ38 = (. ±. 0) 43 σ4 = (6. 04 ± 0. 60) 43 C.L 68% 95% 99.7% 5. 5.6 6.0 6.4 6.8 7. σ 35 [ 43 cm / fission] 4 χ 4 9 Best fit: suppression of σ f,35. Equal fluxes suppression: χ /NDF = 7.9/ disfavored at.8σ. Equal fluxes suppression corresponds to SBL oscillations, but theoretical flux uncertainties must be taken into account.

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 3/4 With theoretical flux uncertainties: Daya Bay χ min NDF GoF 35 U 4.6 7 7% OSC 9.6 7 % σ f / σ f th 0.75 0.85 0.95.05.5 35 OSC All Reactors χ min NDF GoF 35 U 9.4 3 60% [CG, Laveder, Li, in preparation] OSC 8.7 3 58% L 3 Nucifer ILL Bugey 4 Bugey 3 5 Rovno9 Rovno88 I Rovno88 I Rovno88 S Rovno88 S SRP 8 SRP 4 Rovno88 S Krasnoyarsk87 33 Krasnoyarsk99 34 Gosgen 38 Bugey 3 40 Gosgen 46 Krasnoyarsk94 57 Gosgen 65 Krasnoyarsk87 9 Bugey 3 95 RENO Double Chooz Daya Bay 0.344 Daya Bay 0.33 Daya Bay 0.3 Daya Bay 0.3 Daya Bay 0.99 Daya Bay 0.87 Daya Bay 0.74 Daya Bay 0.5 Palo Verde Chooz

C. Giunti Status of Light Sterile Neutrinos EPS-HEP 07 7 July 07 4/4 Conclusions Exciting indications of sterile neutrinos (new physics!) at the ev scale: LSND ν µ ν e signal (caveat: single experimental signal). Gallium ν e disappearance (caveat: overestimated detector efficiency?). Reactor νe disappearance (caveat: flux calculation dependence). Vigorous experimental program to check conclusively in a few years: ν e and ν e disappearance with reactors and radioactive sources. ν µ ν e transitions with accelerator neutrinos. ν µ disappearance with accelerator neutrinos. Independent tests through effect of m 4 in β-decay and ββ 0ν -decay. Cosmology: strong tension with N eff = and m 4 ev. It may be solved by a non-standard cosmological mechanism. Possibilities for the next years: Reactor and source experiments νe and ν e observe SBL oscillations: big excitement and explosion of the field. Otherwise: still marginal interest to check the LSND appearance signal. In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g kev sterile neutrinos).