DESY/TEMF Meeting Status 2012

Similar documents
Current Status of Bunch Emission Simulation for the PITZ Gun

DESY/TEMF Meeting - Status 2011

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Electron Emission Studies Using Enhanced QE Models

Lab Report TEMF - TU Darmstadt

Numerical modelling of photoemission for the PITZ photoinjector

Lab Report TEMF, TU Darmstadt

Introduction to the benchmark problem

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Large Scale Parallel Wake Field Computations with PBCI

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

Dark current at the Euro-XFEL

Motivation of emission studies at PITZ

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Modeling of the secondary electron emission in rf photocathode guns

Photo Injector Test facility at DESY, Zeuthen site

Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE"

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Tapered Transitions Dominating the PETRA III Impedance Model.

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Tomographic transverse phase space measurements at PITZ.

Selected Beam Studies at PITZ in 2017

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University

11 th International Computational Accelerator Physics Conference (ICAP) 2012

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

Design of an RF Photo-Gun (PHIN)

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Multi-quadrupole scan for emittance determination at PITZ

Using IMPACT T to perform an optimization of a DC gun system Including merger

Simulation of transverse emittance measurements using the single slit method

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Phase space measurements with tomographic reconstruction at PITZ.

Injector Experimental Progress

Acceptance Problems of Positron Capture Optics. Klaus Floettmann DESY Daresbury, April 05

Implementational Aspects of Eigenmode Computation based on Perturbation Theory

Start-to-End Simulations

Tomography module for transverse phase-space measurements at PITZ.

FACET-II Design Update

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

High-Fidelity Injector Modeling with Parallel Finite Element 3D PIC Code Pic3P

An Introduction to Plasma Accelerators

High Gradient Tests of Dielectric Wakefield Accelerating Structures

CST EM : Examples. Chang-Kyun PARK (Ph. D. St.) Thin Films & Devices (TFD) Lab.

Single-shot Ultrafast Electron Microscopy

Simulations for photoinjectors C.Limborg

RF-Gun Experience at PITZ - Longitudinal Phase Space

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

FACET-II Design, Parameters and Capabilities

Tracking. Particle In Cell. Wakefield

Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Laboratory Report Rostock University

LCLS Injector Prototyping at the GTF

Developing an Eletron source for the XFEL -

Linac optimisation for the New Light Source

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting

Status of linear collider designs:

X-band Photoinjector Beam Dynamics

Thorsten Hellert intra-bunch-train orbit distortion at FLASH FEL Seminar,

Coherent Electron Cooling

Photo Injector Test facility at DESY, Zeuthen site. PITZ: facility overview

Impedance Minimization by Nonlinear Tapering

A two-oscillator echo enabled tunable soft x-rays

Impedance & Instabilities

Studies with Ultra-Short Pulses

Tolerances for magnetic fields in the Gun-To-Linac region of the LCLS Injector *

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN*

Beam Emittance in the ERL Injector Prototype

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Emittance and photocathodes

Using an Electron Cooler for Space Charge Compensation in the GSI Synchrotron SIS18 William D. Stem Oliver Boine-Frankenheim

Compact Wideband THz Source

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS

Contour Integral Method for the Simulation of Accelerator Cavities

Wakefield computations for the LCLS Injector (Part I) *

A high intensity p-linac and the FAIR Project

Overview of FEL injectors

Towards a Low Emittance X-ray FEL at PSI

Transcription:

DESY/TEMF Meeting Status 2012 PIC Simulation for the Electron Source of PITZ DESY, Hamburg, 17.12.2012 Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland Technische Universität Darmstadt, Computational Electromagetics Laboratory (TEMF) Schlossgartenstr. 8 64289 Darmstadt, Germany 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 1

Contents Motivation & Introduction Motivation for this study Main procedures in CST Grid resolution demands 3D CST Simulation Field Simulation Gun-Cavity simulation Solenoids simulation PIC Simulation Setup Astra particle import Preliminary results Discussions Interpolation in PEC Summary & Further Steps 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 2

Motivation & Introduction 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 3 talk from M. Krasilnikov,Zeuthen, 2011

Motivation & Introduction - Main procedures in CST Simulations for gun-cavity & solenoids (CST-MWS & EMS) Tune & Calibrate external fields referring to ASTRA import data PIC simulations at a short distance of (60~130) mm (CST-PS) Beam qualities comparison between PIC simulations and ASTRA Continue PIC simulations with finer grid resolutions (Δx,Δy,Δz«0.05mm) Broaden the calculation domain as far as possible Check the results using different particle distributions Investigations with inhomogeneous particle distributions Investigate the influence of cathode (material, impurities ) Optimizations & Repeat simulations with refined parameters 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 4

Motivation & Introduction - Grid resolution demands for PIC simulations Δx 2, Δy 2 global mesh local mesh Bunch Region (Δx 1, Δy 1, Δz) d Δx 2, Δy 2 Part of the calculation domain Δx 1 & Δy 1 & Δz «0.05 mm d = 2X rms Δx 2 & Δy 2 (2~3) 0.05mm By properly choosing Δx 2 & Δy 2 outside the bunch region, there will be mesh-saving solutions to broaden the calculation domain in PIC simulations as far as possible. 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 5

3D CST Simulation-Field Simulation - Setup 1 for Gun-Cavity Simulation (CST-MWS) local mesh Geometrical Parameters L z Local mesh properties A cylinder, not included in the simulation, only for mesh refinement at the cathode. L z = Δz (mesh resolution in z, 0.01mm-0.05mm). Δx & Δy should be comparable with Δz (0.01mm-0.05mm). To obtain the field ratio we need, the radius of half cell was tuned by ~70μm. 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 6

Field Simulation - Gun-Cavity Simulation Results Parameters Values Algorithm JDM Accuracy 1e-6 Sym. planes used zoy & xoz Lines/wavelength 120 Mesh line ratio limit 20 Mesh resolution 0.125mm Meshcells ~14M Duration 60h Mode π mode Frequency separation 3.6MHz Field Ratio ~1.08 Frequency ~1.301GHz y z E-field H-field 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 7

Field Simulation Relative Error % Normalized E z 1.4 1.2 1 0.8 0.6 0.4 ~1.08 Accelerating Ez in CST & ASTRA Astra CST (0-55) mm, RE 1% (55-75) mm, A approaches to 0 (75-105) mm, RE 2% (105-185) mm, RE 0.6% 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 10 z/m 9 Discrepancies of Ez in CST & ASTRA Relative Error %= Abs[A cst -A astra ]/A astra *100% A: Amplitude of E z 8 7 6 5 4 3 2 2% 0 0 0.05 0.1 0.15 0.2 0.25 z/m 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 8 1 1% 0.6%

Field Simulation - Setup 2 for Solenoids Simulation (CST-EMS) Geometrical Parameters in cm Pos. of Main Cur. of Main Cur. of Buck 276 mm ~375 A ~-31 A 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 9

Relative Error% B z /T Field Simulation 0.3 0.25 0.2 0.15 0.1 0.05 B z of Solenoids in CST & ASTRA B zcst B zastra B zmax =0.2279T B z0 ~10-7 T 0 z/mm -0.05 0 50 100 150 200 250 300 350 1.5 Differences of B z in CST & ASTRA 1 0.5 RE 1% z/mm 0 0 50 100 150 200 250 300 350 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 10

PIC Simulation - Setup 3 for PIC Simulation (CST-PS) Bunch parameters & External fields data Local Refinement Particle Interface 2D Particle Monitor Simulation time: 700ps so far Mini. mesh step=(0.12~0.07) mm so far Lines/λ=100~120, meshcells 115Million 1-PIC Position Monitor 18-2D Particle Monitors along the beam line from 6mm to 132mm so far Parameters ASTRA CST Species electron electron Bunch radius 0.4mm 0.4mm Bunch charge -1nC -1nC Bunch length 21.5ps 21.5ps Rise/Fall time 2ps 2ps Macro Nos. 500k 500k Frequency 1.3GHz 1.3018GHz E z at cathode 60.58MV/m 60.58MV/m Field ratio 1.07986 ~1.08 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 11 B zmax 0.2279T 0.2279T B z_cathode 10-7 T 10-7 T Ez profile Bz profile =1%~2% =1%

PIC Simulation - ASTRA Particle Import Particles z=0, tє(t 0,t 1 ) Astra2Cst Particles t=0, zє(z 0,z 1 ) Particle Interface (CST-PS) Input Data for ASTRA: Lt=21.5E-3 rt=2e-3 LE=0.00055 sig_x=sig_y=0.4 Q =1 Ipart=500,000 Species= electrons Dist_z= p Dist_pz= i Dist_y=Dist_x= r Dist_px=Dist_py= r Ref_zpos=0.0 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 12

PIC Simulation - Preliminary results Animation of the charged particle beam in the longitudinal direction z = 132mm Mesh resolution Δz=0.12mm 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 13

PIC Simulation y x Animation of the transverse particle distributions y x y x z = 6.3247mm z = 20.362mm z = 41.449mm y x y x y x z = 62.429mm z = 76.514mm z = 83.498mm 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 14

X rms /mm PIC Simulation 3.5 Beam size along the beam line 3 2.5 PIC-0 ASTRA 2 1.5 PIC-1 PIC-2 Astra Simulation CST-PIC Simulation-1, z=0.08mm CST-PIC Simulation-2, z=0.07mm CST-PIC Simulation-0, z=0.12mm 1 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 z/m 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 15

x /( *mrad*mm) PIC Simulation 100 90 80 70 Emittance along the beam line 60 50 40 30 20 ASTRA ASTRA CST PIC-2, z=0.07mm CST PIC-1, z=0.08mm 10 0 0 0.02 0.04 CST-PIC-1 CST-PIC-2 0.06 0.08 z/m 0.1 0.12 0.14 0.16 0.18 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 16

Beam Energy/MeV PIC Simulation 7 6 Beam energy along the beam line ASTRA 5 4 3 2 CST Beam Energy from ASTRA CST-PIC-1, z=0.07mm CST-PIC-2, z=0.12mm 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 17 z/m

Discussions - Interpolation in PEC Cause Difference of the grid resolution around the cathode between field simulation & PIC simulation. Outcome E z at the cathode was changed by automatic interpolation. Solutions -Keep the grid settings exactly the same around the cathode. But the field simulations turn to be much slower because of the very small grid. -Make the interpolation take place inside the cathode by shifting the back plane. But it will somehow change the eigenmode a little bit. Field Simulation 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 18 Amplitude of E z cathode Amplitude of E z cathode loading external fields Grid 1 ǂ Grid 2 PIC Simulation z/mm linear interpolation? z/mm

Summary & Further Steps - Summary PIC Simulation results at a short distance of 60mm downstream from the cathode showed possibilities of convergence to ASTRA simulation in terms of the beam radius by use of a finer mesh resolution (Q=1nC, grid resolution Δz 0.07mm so far ). But the current resolution is still not enough. Still no good agreement with ASTRA on the beam emittance at a short distance of 60mm by improving the grid resolution. Eigenmode convergence when setting local resolution as (Δx,Δy,Δz)<0.05mm is relatively very slow. - Steps in the near future Continue PIC simulations by enhancing the grid resolutions. Broaden the calculation domain as far as possible (60mm~200mm, Δx, Δy, Δz «0.05mm ). Check the simulations with different particle distributions(r=0.3mm). Investigate the cases with inhomogeneous particle distributions at the cathode. 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 19

Thank you for your attention! 17 December 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Dr. Ye Chen 20