Impedance Minimization by Nonlinear Tapering

Size: px
Start display at page:

Download "Impedance Minimization by Nonlinear Tapering"

Transcription

1 Impedance Minimization by Nonlinear Tapering Boris Podobedov Brookhaven National Lab Igor Zagorodnov DESY PAC-7, Albuquerque, NM June 7, 7 BROOKHAVEN SCIENCE ASSOCIATES

2 Outline Motivation Review of theoretical results Optimal boundary EM solvers used Results for impedance reduction Conclusion Z-optimization by non-linear tapering is not that new. Apart from acoustics, used for gyrotron tapers, mode converters, antennae design, etc.

3 Examples of Accelerator Tapers & Motivation and Scope of This Work hmax/hmin~ 9 (gap open) or 7 (gap closed) NSLS-II transition to SC RF cavity A. Blednykh preliminary 88 mm 3.3 mm (ops) mm (inj.) NSLS MGU Taper for X3, X5, X9 & X9 hmax/hmin~ Focus on large X-sectional variations and gradual tapering; study transverse, broadband geometric low frequency inductive regime Goal to reduce Z to avoid instabilities (TMCI) 3 in rings, or H degradation in linacs...

4 Axially symmetric taper ( ) Theory Review iz r' ( z) rect π y ( ) ( ) Z k dz r z iz h' ( z) ( ) ell Zx ( k) = dz 4π h z Flat rectangular taper w h, w>>h iz iz w h' ( z) ( ) Z k = dz 4 h z K. Yokoya, 99 G. Stupakov, 995 Elliptical x-section taper w h, w>>h π w h' ( z) ( ) ell Zy ( k) = dz 6 h z B. Podobedov & S. Krinsky, Z x : h<<l, k<~/h min Z y : w<<l, k<~/w min These are inductive regime impedances. Tapers are gradual to be effective. Functionals lend themselves to simple boundary optimization. 4

5 Optimizing boundaries hz ( ) = h ( + ( h / h ) z/ L) min max min h max linear exponential optimal ver. linear hz h h h / ( ) = min ( max / min ) z L exponential to minimize Z x (or Z h->r) h min hz ( ) = h min / ( + (( hmin / hmax ) ) z/ L) L optimal vertical to minimize Z y Reduced small h(z); big difference when h max /h min >> At h max /h min = predict factor of reduction for Z or Z x, factor of ~3 for Z y 5

6 What Was Done We attempted to check the accuracy of theoretical predictions for impedance reduction by non-linear tapers in axially-symmetric, elliptical, and rectangular geometry using EM field solvers ABCI (axially symmetric) ECHO (axially symmetric & 3D) GDFIDL (3D) 6

7 Wakefield code ECHO (TU Darmstadt / DESY) moving mesh bunch Electromagnetic Code for Handling Of Harmful Collective Effects Zagorodnov I, Weiland T., TE/TM Field Solver for Particle Beam Simulations without Numerical Cherenkov Radiation// Physical Review STAB,8, 5. 7

8 Wakefield code ECHO (TU Darmstadt / DESY) zero dispersion in z-direction staircase free (second order convergent) moving mesh without interpolation in.5d stand alone application accurate results with coarse mesh Model and mesh in CST Microwave Studio Preprocessor in Matlab ECHO 3D Solver Postprocessor In Matlab in 3D only solver, modelling and meshing in CST Microwave Studio allows for accurate calculations on conventional single-processor PC To be parallelized 8

9 Impedance Reduction for Axially Symmetric Tapers Z _exp / Z _lin Z reduction for exponential tapering.8.6 Theory ECHO ABCI r max / r min -Im[Z ],kω/m Re[Z ],kω/m Z (f ) for r max /r min = 8, r min = cm frequency, GHz linear taper exponential taper 5 5 frequency, GHz Z [kω/m] and reduction due to exponential taper agree well with theory Impedance reduction extends through inductive regime (k~/r min ) & beyond 9

10 Geometry for Rectangular Taper Calculations Linear taper Optimal taper L hmax hmin

11 Geometry for Elliptical Taper Calculations cm variable confocal geometry w(z) -h(z) =const. 4: or 8: aspect min X-section x y z Gradual tapers in convex geometry Long straight pipes to avoid interaction between two tapers Each taper subdivided into 4 linearly tapered pieces to approx. nonlinear boundary.

12 Impedance Reduction for Elliptical X-Section Tapers Z x_exp / Z x_lin Z x reduction for exponential tapering Theory GDFIDL, w min /h min = 4 GDFIDL, w min /h min = 8 Z y_opt / Z y_lin Z y reduction for optimal vert. tapering Theory GDFIDL, w min /h min = h max /h min h max /h min Z x [kω/m] and reduction due to exponential taper agree well with theory Z y [kω/m] is less than theory; Z y gets reduced due to optimal taper less than predicted

13 Impedance Reduction vs. Frequency for Elliptical X-Section -Im[Z y ], kω/m Re[Z y ], kω/m frequency, GHz frequency, GHz linear taper optimal vert. taper h max /h min = 8 Z y reduction extends through inductive regime (k~/w min ) & beyond Z x reduction extends through inductive regime (k~/h min ) & beyond 3

14 Impedance Reduction for Rectangular X-Section Tapers Z x_exp / Z x_lin.8.6 Z x reduction for exponential tapering Theory w=h max Z y_opt / Z y_lin.8.6 Z y reduction for optimal vert. tapering Theory w=h max w=*h max.4 w=*h max h max /h min h max /h min Z x [kω/m] and reduction due to exponential taper agree well with theory Z y [kω/m] is less than theory; Z y gets reduced due to optimal taper less than predicted Results are very similar to elliptical structure 4

15 Conclusion For gradual tapers with large cross-sectional changes substantial reduction in geometric impedance is achieved by nonlinear taper. Theoretical predictions for impedance reduction are confirmed by EM solvers for axially symmetric structures and for Z x of flat 3D structures. The vertical impedance gets reduced less than predicted, but the linear taper Z y is lower as well. Optimal tapering for Z x reduces Z y as well and vice versa. Impedance reduction holds with frequency through the entire inductive impedance range and beyond. For fixed transition length, the h(z) tapering we consider appears to be the only knob to reduce transverse broadband geometric impedance of tapered structures. 5

16 Acknowledgements Many thanks to S. Krinsky and G.V. Stupakov for insightful discussions and to W. Bruns, A. Blednykh, and P.J. Chou for help with GDFIDL. We thank CST GmbH for letting us use CST Microwave Studio for mesh generation for ECHO simulations. Thanks to the PAC7 Program Committee for selecting this work for oral presentation. Work supported by DOE contract number DE-AC- 98CH886 and by EU contract 935 EUROFEL. 6

17 EXTRAS 7

18 mm FLASH (DESY) collimators. Tapering Geometry of the step+taper collimator d mm mm 7 mm Bunch length σ z =.5 mm V / pc Loss factor L P ( Δ W P ) V / pc / mm 5 5 d / mm d / mm Collimator geometry optimization. Optimum d ~ 4.5mm Kick factor L ( ΔW )

19 Wakefield code ECHO (TU Darmstadt / DESY) zero dispersion in longitudinal direction. Δz : σ,inecho 3 σ,inmafia L staircase free (second order convergent) W V/pC ECHO MAFIA ( Vz = σ /5) ( Vz = σ /) cells s /cm O(h) O(h ) moving mesh without interpolation C Ωout C indirect integration I Ω z s s z z

20 Convex vs. Concave Not a real ID chamber but rather somethnig to test the theory For fixed mesh size ABCI and GDFIDL are more precise for convex structures Same BB impedance, same theory, but easier EM calculations

21 Results: Horizontal Impedance Z Dx /Z round Ellipse aspect ratio GDFIDL Theory Good agreement between GDFIDL and theory Flat value of Z round / at aspect ratios >~

Wakefields in the LCLS Undulator Transitions. Abstract

Wakefields in the LCLS Undulator Transitions. Abstract SLAC-PUB-11388 LCLS-TN-05-24 August 2005 Wakefields in the LCLS Undulator Transitions Karl L.F. Bane Stanford Linear Accelerator Center SLAC, Stanford, CA 94309, USA Igor A. Zagorodnov Deutsches Electronen-Synchrotron

More information

Large Scale Parallel Wake Field Computations with PBCI

Large Scale Parallel Wake Field Computations with PBCI Large Scale Parallel Wake Field Computations with PBCI E. Gjonaj, X. Dong, R. Hampel, M. Kärkkäinen, T. Lau, W.F.O. Müller and T. Weiland ICAP `06 Chamonix, 2-6 October 2006 Technische Universität Darmstadt,

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Tapered Transitions Dominating the PETRA III Impedance Model.

Tapered Transitions Dominating the PETRA III Impedance Model. Tapered Transitions Dominating the PETRA III Impedance Model. ICFA Mini-Workshop: Electromagnetic Wake Fields and Impedances in Particle Accelerators Rainer Wanzenberg DESY April 26, 2014 Outline > PETRA

More information

Wakefield Effects of Collimators in LCLS-II

Wakefield Effects of Collimators in LCLS-II Wakefield Effects of Collimators in LCLS-II LCLS-II TN-15-38 10/7/2015 K. Bane SLAC, Menlo Park, CA 94025, USA October 7, 2015 LCLSII-TN-15-38 L C L S - I I T E C H N I C A L N O T E LCLS-TN-15-38 October

More information

Wakefields and Impedances I. Wakefields and Impedances I

Wakefields and Impedances I. Wakefields and Impedances I Wakefields and Impedances I Wakefields and Impedances I An Introduction R. Wanzenberg M. Dohlus CAS Nov. 2, 2015 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 1 Introduction Wake Field

More information

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010 Impedance and Collective Effects in Future Light Sources Karl Bane FLS2010 Workshop 1 March 2010 In future ring-based light sources, the combination of low emittance and high current will mean that collective

More information

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV 26/11/2014 European Synchrotron Light Source Workshop XXII 1 Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV F. Cullinan, R. Nagaoka (SOLEIL, St. Aubin, France) D. Olsson, G.

More information

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC CERN-ACC-NOTE-2017-0033 23rd May 2017 rainer.wanzenberg@desy.de Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC R. Wanzenberg

More information

Lab Report TEMF - TU Darmstadt

Lab Report TEMF - TU Darmstadt Institut für Theorie Elektromagnetischer Felder Lab Report TEMF - TU Darmstadt W. Ackermann, R. Hampel, M. Kunze T. Lau, W.F.O. Müller, S. Setzer, T. Weiland, I. Zagorodnov TESLA Collaboration Meeting

More information

Single-Bunch Effects from SPX Deflecting Cavities

Single-Bunch Effects from SPX Deflecting Cavities Single-Bunch Effects from SPX Deflecting Cavities Yong-Chul Chae and Louis Emery Accelerator Operation Group Accelerator System Division Measurements March 13, 2013 Introduction The single bunch current

More information

Geometrical Wake of a Smooth Taper*

Geometrical Wake of a Smooth Taper* SLAC-PUB-95-786 December 995 Geometrical Wake of a Smooth Taper* G. V. Stupakov Stanford Linear Accelerator Center Stanford University, Stanford, CA 9439 Abstract A transverse geometrical wake generated

More information

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1 INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1 Puneet Jain IIT ROORKEE SRFSAT Workshop, IUAC N. Delhi September 21, 2017 2 OUTLINE 1. Overview of Electromagnetic

More information

Lab Report TEMF, TU Darmstadt

Lab Report TEMF, TU Darmstadt Fachgebiet Theorie Elektromagnetischer Felder Lab Report Wolfgang F.O. Müller Thomas Weiland TESLA Collaboration Meeting Daresbury, 09/23/02 Technische Universität Darmstadt, Fachbereich Elektrotechnik

More information

arxiv: v1 [physics.acc-ph] 8 Nov 2017

arxiv: v1 [physics.acc-ph] 8 Nov 2017 THE IMPEDANCE OF FLAT METALLIC PLATES WITH SMALL CORRUGATIONS K. Bane, SLAC National Accelerator Laboratory, Menlo Park, CA, USA arxiv:1711.321v1 [physics.acc-ph] 8 Nov 217 INTRODUCTION The RadiaBeam/SLAC

More information

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014 First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep. 17-19, 2014 (LOWεRING 2014) 1 BROOKHAVEN SCIENCE ASSOCIATES Outline Phase 1 (25mA / PETRA-III) and Phase

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Collimator Wakefields in the LC Context

Collimator Wakefields in the LC Context With the fire from the fireworks up above Collimator Wakefields in the LC Context CollTF 2002 17-Dec Dec-2002 SLAC/NLC CollWake Think Tank K. Bane, D. Onoprienko, T. Raubenheimer, G. Stupakov, Statement

More information

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects BE-ABP-ICE Abstract The term trapped mode refers to a resonance

More information

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock CERN Accelerator School Wakefields Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock Contents The Term Wakefield and Some First Examples Basic Concept of Wakefields Basic Definitions

More information

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE A. Sukhanov, A. Vostrikov, V. Yakovlev, Fermilab, Batavia, IL 60510, USA Abstract Design of a Light Source (LS) based on

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Igor Zagorodnov Curriculum Vitae

Igor Zagorodnov Curriculum Vitae Igor Zagorodnov Curriculum Vitae June 2010 Hamburg, Germany Affiliation: Address: Permanent staff position in Accelerator Physics Group (MPY), Deutsches Electronen Synchrotron (DESY), Germany DESY, MPY,

More information

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract SLAC PUB 1151 May 5 Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Sasha Novokhatski Stanford Linear Accelerator Center, Stanford University, Stanford, California

More information

Large Bandwidth Radiation at XFEL

Large Bandwidth Radiation at XFEL Large Bandwidth Radiation at XFEL Usage of corrugated structure for increase of the energy chirp Igor Zagorodnov S2E Meeting DESY 8. April 26 Energy spread and Radiation Bandwidth FEL bandwidth for negligible

More information

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG Beam heat load due to geometrical and resistive wall impedance in COLDDIAG Sara Casalbuoni, Mauro Migliorati, Andrea Mostacci, Luigi Palumbo, Bruno Spataro 2012 JINST 7 P11008, http://iopscience.iop.org/17480221/7/11/p11008

More information

modeling of space charge effects and CSR in bunch compression systems

modeling of space charge effects and CSR in bunch compression systems modeling of space charge effects and CSR in bunch compression systems SC and CSR effects are crucial for the simulation of BC systems CSR and related effects are challenging for EM field calculation non-csr

More information

INSTABILITIES IN LINACS

INSTABILITIES IN LINACS INSTABILITIES IN LINACS Massimo Ferrario INFN-LNF Trieste, 2-142 October 2005 Introduction to Wake Fields Instability in Linacs:Beam Break Up Circular Perfectly Conducting Pipe - Beam at Center- Static

More information

Simulations of single bunch collective effects using HEADTAIL

Simulations of single bunch collective effects using HEADTAIL Simulations of single bunch collective effects using HEADTAIL G. Rumolo, in collaboration with E. Benedetto, O. Boine-Frankenheim, G. Franchetti, E. Métral, F. Zimmermann ICAP, Chamonix, 02.10.2006 Giovanni

More information

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF INSTABILITIES IN LINACS Massimo Ferrario INFN-LNF Trondheim, 4 August, 13 SELF FIELDS AND WAKE FIELDS Direct self fields Image self fields Space Charge Wake fields γ = 1 1 β E = q 4πε o ( 1 β ) ( 1 β sin

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities Tomasz Galek, Thomas Flisgen, Korinna Brackebusch, Kai Papke and Ursula van Rienen CST European User Conference 24.05.2012,

More information

Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure. Karl Bane, 7 April 2017,, KEK

Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure. Karl Bane, 7 April 2017,, KEK Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure Karl Bane, 7 April 2017,, KEK Introduction At the end of acceleration in an X-ray FEL, the beam

More information

Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron

Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron Studies of trapped modes in the new extraction septum of the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects (BE-ABP-ICE) LIU LHC Injectors Upgrade project Università di

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Coupling Impedance of Ferrite Devices Description of Simulation Approach Coupling Impedance of Ferrite Devices Description of Simulation Approach 09 May 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Uwe Niedermayer 1 Content Coupling Impedance

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Instabilities Part III: Transverse wake fields impact on beam dynamics

Instabilities Part III: Transverse wake fields impact on beam dynamics Instabilities Part III: Transverse wake fields impact on beam dynamics Giovanni Rumolo and Kevin Li 08/09/2017 Beam Instabilities III - Giovanni Rumolo and Kevin Li 2 Outline We will close in into the

More information

HL LHC: impedance considerations for the new triplet layout in IR1 & 5

HL LHC: impedance considerations for the new triplet layout in IR1 & 5 HL LHC: impedance considerations for the new triplet layout in IR1 & 5 N. Mounet, A. Mostacci, B. Salvant, C. Zannini and E. Métral Acknowledgements: G. Arduini, C. Boccard, G. Bregliozzi, L. Esposito,

More information

ILC Crab Cavity Wakefield Analysis

ILC Crab Cavity Wakefield Analysis ILC Crab Cavity Wakefield Analysis Yesterday, Peter McIntosh discussed the overall requirements for the ILC crab cavities, the system-level design, and the team that is working on it. Here, I will discuss

More information

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule Abstract M. Dohlus, H.-P. Wedekind, K. Zapfe Deutsches Elektronen Synchrotron Notkestr. 85, D-22603 Hamburg, Germany The beam pipe

More information

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF CERN Accelerator School RF Cavities Erk Jensen CERN BE-RF CERN Accelerator School, Varna 010 - "Introduction to Accelerator Physics" What is a cavity? 3-Sept-010 CAS Varna/Bulgaria 010- RF Cavities Lorentz

More information

ORBIT Code Review and Future Directions. S. Cousineau, A. Shishlo, J. Holmes ECloud07

ORBIT Code Review and Future Directions. S. Cousineau, A. Shishlo, J. Holmes ECloud07 ORBIT Code Review and Future Directions S. Cousineau, A. Shishlo, J. Holmes ECloud07 ORBIT Code ORBIT (Objective Ring Beam Injection and Transport code) ORBIT is an object-oriented, open-source code started

More information

Using Surface Impedance for Calculating Wakefields in Flat Geometry

Using Surface Impedance for Calculating Wakefields in Flat Geometry Using Surface Impedance for Calculating Wakefields in Flat Geometry 1/20/2015 K. Bane and G. Stupakov January 20, 2015 LCLSII-TN-13-01 L C L S - I I T E C H N I C A L N O T E January 20, 2015 LCLSII-TN-XXXX

More information

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS Peter Schmidt 1,2, Oliver Boine-Frankenheim 1,2, Vladimir Kornilov 1, Peter Spädtke 1 [1] GSI Helmholtzzentrum für Schwerionenforschung

More information

Tutorial: High-b cavity design

Tutorial: High-b cavity design Tutorial: High-b cavity design Sergey Belomestnykh, Valery Shemelin SRF2005 Workshop Cornell University, July 10,2005 1 Outline of the Tutorial Introduction: applications for high-b SC cavities and machine

More information

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II

A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II LCLS-II TN-5-32 9/2/205 K.L.F. Bane, C. Adolphsen, A. Chao, Z. Li SLAC, Menlo Park, CA 94025 September, 205 LCLSII-TN-5-32

More information

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Review of proposals of ERL injector cryomodules. S. Belomestnykh Review of proposals of ERL injector cryomodules S. Belomestnykh ERL 2005 JLab, March 22, 2005 Introduction In this presentation we will review injector cryomodule designs either already existing or under

More information

arxiv: v1 [physics.acc-ph] 27 Mar 2014

arxiv: v1 [physics.acc-ph] 27 Mar 2014 SLAC-PUB-15932 LCLS-II-TN-13-04 March 2014 arxiv:1403.7234v1 [physics.acc-ph] 27 Mar 2014 Some wakefield effects in the superconducting RF cavities of LCLS-II K. Bane a, A. Romanenko b, and V. Yakovlev

More information

Title. Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas. CitationIEEE Transactions on Nuclear Science, 56(4-3): Issue Date

Title. Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas. CitationIEEE Transactions on Nuclear Science, 56(4-3): Issue Date Title Three-Dimensional Wake Field Computations Based on S Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas CitationIEEE Transactions on Nuclear Science, 56(4-3): 2341- Issue Date 2009-08

More information

TERAHERTZ RADIATION FROM A PIPE WITH SMALL CORRUGATIONS a. Abstract

TERAHERTZ RADIATION FROM A PIPE WITH SMALL CORRUGATIONS a. Abstract SLAC-PUB-14839 December 2011 TERAHERTZ RADIATION FROM A PIPE WITH SMALL CORRUGATIONS a K.L.F. Bane and G. Stupakov SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309 Abstract

More information

Estimates of local heating due to trapped modes in vacuum chamber

Estimates of local heating due to trapped modes in vacuum chamber Estimates of local heating due to trapped modes in vacuum chamber Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 CERN, April 29, 2016 2 Motivation The motivation for this analysis

More information

arxiv: v1 [physics.acc-ph] 12 Sep 2016

arxiv: v1 [physics.acc-ph] 12 Sep 2016 Single beam collective effects in FCC-ee due to beam coupling impedance E. Belli, 1 M. Migliorati,, a) S. Persichelli, 3 and M. Zobov 4 1) University of Rome La Sapienza, INFN Sez. Roma1 - Roma - Italy,

More information

Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF

Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF Institut für Theorie Elektromagnetischer Felder (TEMF) Technische Universität Darmstadt Joint DESY and University of Hamburg Accelerator

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

Gennady Stupakov. Stanford Linear Accelerator Center

Gennady Stupakov. Stanford Linear Accelerator Center 1 CSR Effects in e+e- Storage Rings Gennady Stupakov Stanford Linear Accelerator Center timer 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions October 13-16, 2003 Outline of

More information

Numerical Methods II

Numerical Methods II Numerical Methods II Kevin Li With acknowledgements to: H. Bartosik, X. Buffat, L.R. Carver, S. Hegglin, G. Iadarola, L. Mether, E. Metral, N. Mounet, A. Oeftiger, A. Romano, G. Rumolo, B. Salvant, M.

More information

UNIVERSITY OF SOUTHAMPTON. Answer all questions in Section A and two and only two questions in. Section B.

UNIVERSITY OF SOUTHAMPTON. Answer all questions in Section A and two and only two questions in. Section B. UNIVERSITY OF SOUTHAMPTON PHYS2023W1 SEMESTER 1 EXAMINATION 2009/10 WAVE PHYSICS Duration: 120 MINS Answer all questions in Section A and two and only two questions in Section B. Section A carries 1/3

More information

IMPEDANCE THEORY AND MODELING

IMPEDANCE THEORY AND MODELING Proceedings of ICFA Mini-Workshop on pedances and Beam Instabilities in Particle Accelerators, Benevento, Italy, 8-22 September 27, CERN Yellow ports: Conference Proceedings, Vol. /28, CERN-28-3-CP (CERN,

More information

General wall impedance theory for 2D axisymmetric and flat multilayer structures

General wall impedance theory for 2D axisymmetric and flat multilayer structures General wall impedance theory for 2D axisymmetric and flat multilayer structures N. Mounet and E. Métral Acknowledgements: N. Biancacci, F. Caspers, A. Koschik, G. Rumolo, B. Salvant, B. Zotter. N. Mounet

More information

Beam instabilities (I)

Beam instabilities (I) Beam instabilities (I) Giovanni Rumolo in CERN Accelerator School, Advanced Level, Trondheim Wednesday 21.08.2013 Big thanks to H. Bartosik, G. Iadarola, K. Li, N. Mounet, B. Salvant, R. Tomás, C. Zannini

More information

Wakefield computations for the LCLS Injector (Part I) *

Wakefield computations for the LCLS Injector (Part I) * LCLS-TN-05-17 Wakefield computations for the LCLS Injector (Part I) * June 13 th 005 (reedited May 007) C.Limborg-Deprey, K.Bane Abstract In this document, we report on basic wakefield computations used

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

BEAM INSTABILITIES IN LINEAR MACHINES 2

BEAM INSTABILITIES IN LINEAR MACHINES 2 BEAM INSTABILITIES IN LINEAR MACHINES 2 Massimo.Ferrario@LNF.INFN.IT CERN 5 November 215 ( ) σ " + k 2 s σ = k sc s,γ σ Equilibrium solution: ( ) = k sc( s,γ ) σ eq s,γ k s Single Component Relativistic

More information

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology Novel Features of Computational EM and Particle-in-Cell Simulations Shahid Ahmed Illinois Institute of Technology Outline Part-I EM Structure Motivation Method Modes, Radiation Leakage and HOM Damper Conclusions

More information

Research Topics in Beam Physics Department

Research Topics in Beam Physics Department Introduction Research Topics in Beam Physics Department The physics of particle beams has been a broad and vibrant research field encompassing the study of charged particle beams and their interactions.

More information

DESY/TEMF Meeting Status 2012

DESY/TEMF Meeting Status 2012 DESY/TEMF Meeting Status 2012 PIC Simulation for the Electron Source of PITZ DESY, Hamburg, 17.12.2012 Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland Technische Universität Darmstadt, Computational

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC-0073 SLAC-PUB-9004 September 2001 Linear Collider Collaboration Tech Notes Microwave Quadrupoles for Beam Break-up Supression In the NLC Main Linac K.L.F. Bane and G. Stupakov Stanford Linear Accelerator

More information

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 UCLA Neptune Ramped Bunch Experiment R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 Outline 1. Background & Motivation 2. Neptune Dogleg Compressor

More information

Transverse Instabilities for High Intensity/ Bunch Beam Instability Workshop ESRF, Grenoble, March 2000

Transverse Instabilities for High Intensity/ Bunch Beam Instability Workshop ESRF, Grenoble, March 2000 Transverse Instabilities for High Intensity/ Bunch Beam Instability Workshop ESRF, Grenoble, 13-15 March 2 Ryutaro Nagaoka ESRF Transverse Instabilities for High Intensity/Bunch, R. Nagaoka, 2/16 Beam

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

DISTRIBUTED ELECTRON CLOUD CLEARING ELECTRODES

DISTRIBUTED ELECTRON CLOUD CLEARING ELECTRODES DISTRIBUTED ELECTRON CLOUD CLEARING ELECTRODES T. Kroyer, F. Caspers, E. Métral, F. Zimmermann, CERN, Geneva, Switzerland Abstract Clearing electrodes can be an efficient means for suppressing the electron

More information

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS Proceedings of ERL9, Ithaca, New York, USA JS5 EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS N. Nakamura # Institute for Solid State Physics(ISSP), University of Tokyo 5--5 Kashiwanoha,

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Synchrotron Motion with Space-Charge

Synchrotron Motion with Space-Charge Synchrotron Motion with Space-Charge Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular frequency

More information

Accelerator Physics Challenges in the Design of Multi-Bend-Achromat-Based Storage Rings

Accelerator Physics Challenges in the Design of Multi-Bend-Achromat-Based Storage Rings Accelerator Physics Challenges in the Design of Multi-Bend-Achromat-Based Storage Rings M. Borland, ANL R. Hettel, SLAC S. C. Leemann, MAX IV Laboratory D. S. Robin, LBNL Work supported in part by the

More information

Design of a Double Spoke Cavity for C-ADS

Design of a Double Spoke Cavity for C-ADS Design of a Double Spoke Cavity for C-ADS JIANG Tian-Cai ( 蒋天才 ) 1,2 Huang Yu-Lu ( 黄玉璐 ) 1,2 HE Yuan( 何源 ) 1 LU Xiang-Yang ( 鲁向阳 ) 1,3 Zhang Sheng-Hu ( 张生虎 ) 1 1 Institute of Modern Physics, Chinese Academy

More information

Beam Dynamics in Synchrotrons with Space- Charge

Beam Dynamics in Synchrotrons with Space- Charge Beam Dynamics in Synchrotrons with Space- Charge 1 Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular

More information

Impedance Calculation and Verification in Storage Rings

Impedance Calculation and Verification in Storage Rings SLAC-PUB-11007 January 2005 Impedance Calculation and Verification in Storage Rings Karl L.F. Bane, SLAC, Menlo Park, CA 94025, USA Katsunobu Oide, KEK, Tsukuba, Japan Mikhail Zobov, INFN, Frascati, Italy

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

Implementational Aspects of Eigenmode Computation based on Perturbation Theory

Implementational Aspects of Eigenmode Computation based on Perturbation Theory Implementational Aspects of Eigenmode Computation based on Perturbation Theory Korinna Brackebusch Prof. Ursula van Rienen University of Rostock 11th International Computational Accelerator Physics Conference

More information

STATUS OF THE HeLiCal CONTRIBUTION TO THE POLARISED POSITRON SOURCE FOR THE INTERNATIONAL LINEAR COLLIDER*

STATUS OF THE HeLiCal CONTRIBUTION TO THE POLARISED POSITRON SOURCE FOR THE INTERNATIONAL LINEAR COLLIDER* STATUS OF THE HeLiCal CONTRIBUTION TO THE POLARISED POSITRON SOURCE FOR THE INTERNATIONAL LINEAR COLLIDER* D.J. Scott #,+, A. Birch +, J.A. Clarke +, O.B. Malyshev +, STFC ASTeC Daresbury Laboratory, Daresbury,

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources LCLS-TN-05-8 Traveling Wave Undulators for FELs and Synchrotron Radiation Sources 1. Introduction C. Pellegrini, Department of Physics and Astronomy, UCLA 1 February 4, 2005 We study the use of a traveling

More information

( ( )) + w ( ) 3 / 2

( ( )) + w ( ) 3 / 2 K K DA!NE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, March 4, 1 Note: G-7 SYNCHROTRON TUNE SHIFT AND TUNE SPREAD DUE TO BEAM-BEAM COLLISIONS WITH A CROSSING ANGLE M. Zobov and D. Shatilov

More information

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P High-Fidelity RF Gun Simulations with the Parallel D Finite Element Particle-In-Cell Code PicP SLAC-PUB-668 June 9 A. Candel, A. Kabel, L. Lee, Z. Li, C. Limborg, C. Ng, G. Schussman and K. Ko SLAC National

More information

What limits the gap in a flat dechirper for an X-ray FEL?

What limits the gap in a flat dechirper for an X-ray FEL? What limits the gap in a flat dechirper for an X-ray FEL? LCLS-II TN-13-01 12/9/2013 K.L.F. Bane and G. Stupakov December 9, 2013 LCLSII-TN-13-01 SLAC-PUB-15852 LCLS-II-TN-13-01 December 2013 What limits

More information

Dipole current, bending angle and beam energy in bunch compressors at TTF/VUV-FEL

Dipole current, bending angle and beam energy in bunch compressors at TTF/VUV-FEL Dipole current, bending angle and beam energy in bunch compressors at TTF/VUV-FEL P. Castro August 26, 2004 Abstract We apply a rectangular (hard edge) magnetic model to calculate the trajectory in the

More information

CSR Effects in Beam Dynamics

CSR Effects in Beam Dynamics CSR Effects in Beam Dynamics G. Stupakov SLAC National Accelerator Laboratory Menlo Park, CA 94025 A Special Beam Physics Symposium in Honor of Yaroslav Derbenev s 70th Birthday Thomas Jefferson National

More information

Broad band impedance measurements on the electron storage ring ELETTRA

Broad band impedance measurements on the electron storage ring ELETTRA PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 373 (23) Broad band impedance measurements on the electron storage ring ELETTRA Emanuel Karantzoulis, Victor Smaluk, and Lidia Tosi Sincrotrone

More information

Tracking code for microwave instability

Tracking code for microwave instability Tracking code for microwave instability S. Heifets, SLAC ILC Damping Rings R&D Workshop Cornell University September, 2006 To study microwave instability the tracking code is developed. For bench marking,

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information