Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF

Size: px
Start display at page:

Download "Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF"

Transcription

1 Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF Institut für Theorie Elektromagnetischer Felder (TEMF) Technische Universität Darmstadt Joint DESY and University of Hamburg Accelerator Physics Seminar December 18, 27, DESY, Hamburg Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schlossgartenstraße 8, Darmstadt, Germany - URL:

2 Outline Wakefield Computations PBCI Wakefield Simulations at TEMF Self-Consistent PIC Simulations Higher Order Finite Elements Current Work V-Code Basic principle based on the moment approach Implementation using symbolic algebra transformation 1

3 Wakefield Computations Motivation for improved wakefield codes 1. A new generation of LINACs with ultra-short electron bunches - bunch size for ILC: 3 µm - bunch size for LCLS: 2 µm 2. Geometry of tapers, collimators far from rotational - 8 rectangular collimators at ILC-ESA in the design process - 3 rectangular-to to-round transitions in the undulator of LCLS 3. Many (semi-) analytical approximations become invalid - based on rotationally symmetric geometry - low frequency assumptions (Yokoya, Stupakov) 2

4 Wakefield Computations beam view side view mm 38.1mm 2.75mm 38.5mm 17.65mm mm Courtesy: N. Watson, Birmingham 1 m 38.5mm ILC-ESA collimator #3 ILC-ESA collimator #8 bunch length 3µm collimator length ~1.2m catch-up distance ~2.4m

5 Wakefield Computations vacuum vessel gap outgoing pipe bunch length taper length 1cm 5cm tube shielding step PITZ diagnostics double cross bunch length bunch width structure length 2.5mm Tapered III elliptic pipe vacuum slots 2.5mm 325mm 4 Courtesy: R. Wanzenberg, DESY

6 There is an actual demand for: Wakefield Computations 1. Wake field simulations in arbitrary 3D-geometry 3D-codes 2. Utilizing large computational resources parallelized codes 3. Specialized algorithms for long accelerator structures moving window dispersion free codes 5

7 Wakefield Computations An (incomplete) survey of available codes years 22 5 years 27 Dimensions Nondispersive Parallelized Moving window BCI / TBCI 2.5D No No Yes NOVO 2.5D Yes No No ABCI 2.5D No No Yes MAFIA 2.5/3D No No Yes GdfidL 3D No Yes No Tau3P 3D No Yes No ECHO 2.5/3D Yes No Yes CST 3D No No No PBCI 3D Yes Yes Yes NEKCEM 3D No Yes No

8 Based on the FIT discretization Numerical Method 7 A A V V r r uur r E ds = µ H da t A r r ur r r H ds = ε E + J da t A uur r µ H da= ur r εe da= V ρ dv FIT ) d Ce = M µ h ) dt ) d ) ) Ch = M ε e + j dt SM % ) e A moving window algorithm is not directly applicable: - Stability limit t < x x / c - Longitudinal dynamics has numerical dispersion ε = SMµ h ) = Important works of I. Zagorodnov on TE/TM splitting for the ECHO code q

9 Numerical Method 8 Using the conventional leapfrog time integration ) n+ 1/2 1 T ) n 1/2 n e t e ) 1 M 1 ε C t ε n+ 1 = T n M j ) t µ t ) h M C 1 Mµ CMε C h Behavior of numerical phase velocity vs. propagation angle c t 1 σ : = z Stable but large dispersion z c t σ : = = 1 z 3 33 No dispersion but unstable z

10 Using a split-operator method (LT) Numerical Method Behavior of numerical phase velocity vs. propagation angle c t σ : = = 1 z No longitudinal dispersion z z Neutrally stable Note: The elimination of longitudinal dispersion does not necessarily improve accuracy. Splitting error may become important. Non-split algorithms are currently under investigation.

11 Example: Tapered transition for PETRA III Parallelization 1 moving grid window Grid points Total Min Max Dev. < 1.% Number of Grid Points Distribution of grid points Domain partitioning pattern for 7 processors Processor Number

12 Parallelization Parallel performance tests Number of grid cells 1E+6 Ideal speedup Ideal 1E+6 cells Number of Processors Speedup

13 Parallelization Parallel performance tests Number of grid cells 1E+6 Ideal speedup Ideal 1E+6 cells Number of Processors Speedup

14 Parallelization Parallel performance tests Number of grid cells 5E+6 Ideal speedup Ideal 5E+6 cells Number of Processors Speedup

15 Parallelization Parallel performance tests Number of grid cells 1E+6 Ideal speedup Ideal 1E+6 cells Number of Processors Speedup

16 Parallelization Parallel performance tests Number of grid cells 2E+6 Ideal speedup Ideal 2E+6 cells Number of Processors Speedup

17 Parallelization 16 Speedup Parallel performance tests 1e5 Grid points 1e6 Grid points 5e6 Grid points 1e7 Grid points 2e7 Grid points Ideal Number of Processors TEMF Cluster: on 2 INTEL 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

18 y Modal Termination of Pipes z = Modal approach 17 C C1 direct 1 z+ s Wz() s = dzez(, z t ) Q = c = n modal n 1 i( ω / c) s z(, ) ω n( ω) i ω c k ω e x y d C e ( / zn, ( )) 1 z+ s 1 n = dz Ez(, z t ) ez(, x y) Wn() s Q = c Q = + = = z s i n ikn ( ω) z c dz Ez( x, y, z, t ( z s)/ c) dz dω Cn( ω) ez( x, y) e e ω + n C n-th (TM) mode contribution z n spectral coefficient of n-th (TM) mode Indirect methods for wake potential integration, I. Zagorodnov et al, PRSTAB 9, 6 Eigenmode expansion method in the indirect calculation of wake potential in 3D in structures, X. Dong et al, ICAP 6

19 Modal Termination of Pipes Using modal reconstruction in long intermediate pipes 18 diagnostics cross injector section 1mm step full Time Domain E z / [kv /m] FD analysis reconstruction lowest eigenmodes bunch bunch In a typical simulation ~3 modes

20 ILC-ESA Collimators 19 Wz / [V / pc] ILC-ESA collimator # Convergence vs. grid step σ / z = 2.5 σ / z = 5 σ / z = 1 σ / z = 15 bunch size 3µm no. of grid points ~45M no. of processors 24 simulation time s / σ 85hrs Moving window: 3 mm length

21 38.5 mm W z / [V / pc] 2 ILC-ESA Collimators ILC-ESA collimator #8 Direct vs. transition wakes bunch 15.5 mm mm 38.1 mm 2.75 mm mm 3 Direct potential (z = 15mm) Transition potential Steady state potential s / σ

22 Tapered Transitions for PETRA III PETRA III Tapers 21 The two variants of the vacuum-to-undulator tapered transition Wake Computations for Undulator Vacuum Chambers of PETRA III, R. Wanzenberg et al, PAC 7

23 Tapered Transition for PETRA III PETRA III Tapers 22 Variant 1 Variant 2 Variant / Code Variant1 / MAFIA Variant1 / PBCI Variant2 / PBCI k / (V/nC) k (1) / (V/pC m) k / (V/pC m) factor ~1.8 higher than PBCI due to insufficient resolution

24 23 PITZ Photoinjector PITZ diagnostics double cross

25 PITZ diagnostics double cross PITZ Photoinjector E z / [kv /m] bunch size 2.5mm σ / z 3 no. of grid points ~5e6 no. of processors 24 simulation time 32hrs Vacuum Vessel Gap Beam Tube bunch Tube Shielding Step

26 25 PITZ Photoinjector PITZ diagnostics double cross Wake field impact of the single components 1 gap (1 mm) -1 cross with shielding tube step (no taper) -2 Wz / [V / pc] full model -3 no shielding tube s [mm]

27 26 PITZ Photoinjector PITZ diagnostics double cross Laser mirror

28 PITZ Photoinjector PITZ diagnostics double cross WxHsL mmd Transversal wake potentials for different beam offsets 2mm 1. mm. mm 1. mm 2. mm 3. mm 4. mm 5. mm 6. mm 7. mm 8. mm 9. mm 1. mm 11. mm

29 PITZ Photoinjector xhmml Optimal offset at 8mm from tube axes κxhvêpc mml

30 TESLA / HOM coupler TESLA 9-cell cavity E z / [kv /m] bunch length 1mm bunch charge 1nC cavity length ~1m no. of grid points ~76M no. of processor cores 48 simulation time ~4hrs bunch

31 3 TESLA / HOM coupler TESLA 9-cell cavity Longitudinal wake potential 5 PBCI ECHO2D -5 Wz / (V / pc) s / σ

32 31 TESLA / HOM coupler HOM / HOM-RF coupler (present DESY design) Upstream coupler HOM Downstream coupler RF + HOM Beam view (from Igor)

33 TESLA / HOM coupler Wx / [kv / nc] Wy / [kv / nc],5 -,5 -,1 -,15 -,2 -,25 -,3 Grid points / sigma ,35 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm],5 -,5 -,1 -,15 -,2 Grid points / sigma Wz / [kv / nc],5 -,5 -,1 -,15 -,2 -,25 Upstream coupler Grid points / sigma ,25 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm] -,3 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm]

34 33 TESLA / HOM coupler Upstream coupler Wt / (kv / nc ) ECHO3D Wx Wy bunch length 1mm coupler length 6mm bunch charge 1nC PBCI grid points (max) ~65M processor cores 48 simulation time ~24hrs s / σ

35 34 TESLA / HOM coupler Downstream coupler Wt / ( kv / nc ) -.15 Wx Wy PBCI Wz / ( kv / nc ) PBCI ECHO3D s / σ s / σ

36 35 TESLA / HOM coupler Present DESY Design Longitudinal wake potential Grid points / sigma 12 Bunch Beam view ,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm] Wz / [kv / nc]

37 36 TESLA / HOM coupler Present DESY Design,1 Transversal wake potentials,5 Bunch Wx Wy -,5 -,1 -,15 Is this result correct? Beam view -,2 -,6 -,4 -,2,2,4,6 s / [cm] Wx / [kv / nc]

38 TESLA / HOM coupler Simplified Design 37 Wx / [kv / nc] -,5 -,1 -,15 -,2 -,25 -,3 -,35 -,4 Couplers connected by homogeneous beam tube Transversal wake potentials W x W x 1 +W x 2 -,45 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm] Beam view

39 TESLA / HOM coupler Simplified Design 38 Wy / [kv / nc] -,5 -,1 -,15 -,2 -,25 -,3 -,35 -,4 Couplers connected by homogeneous beam tube Transversal wake potentials Expected additive potentials W y W y 1 +W y 2 -,45 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm] Beam view

40 TESLA / HOM coupler,1,5 Bunch W x W y 39 Wx / [kv / nc] -,5 -,1 -,15 -,2 -,25 -,3 -,35 -,4 Wx / [kv / nc] -,5 -,1 -,15 -,2 -,6 -,4 -,2,2,4,6 s / [cm] -,5 W x W 1 2 x +W x -,1 + -,3 Preliminary: -,35 Transversal wakes -,4 are affected -,45 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm] Wy / [kv / nc] -,15 -,2 -,25 by the crymodule? W y W y 1 +W y 2 -,45 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm]

41 4 TESLA / HOM coupler FNAL Design couplers are interchanged,3,2,1 Wx Wy Transversal Longitudinal -2 Wz -,1 -,2 -, ,4 -,5 -,6 -,5 -,4 -,3 -,2 -,1,1,2,3,4,5 s / [cm] s / [cm] Wt / [kv / nc] Wz / [kv / nc] ,5 -,4 -,3 -,2 -,1,1,2,3,4,5

42 Wakefield Computations Current / future work on wakefield codes at TEMF 1. Non-split algorithms for moving windows: A new finite volume based algorithm is available. 2. Implementation of impedance boundary conditions for resistivity wakes. 3. Handling of long (super-periodic) structures with a modal approach 41

43 Self-Consistent Simulations The European X-Ray Laser Project XFEL at DESY, Hamburg 42 x RMS / mm electron gun Beam size z-position / m z < 1.6 m soft beam diagnostics x Emit / mm mrad booster Beam emittance frozen emittance injection phase z-position / m

44 Self-Consistent Simulations HF-Noise in PIC Simulations (PITZ Gun) 43 Ez / V/m Longitudinal electric field srength / (MV / m) -9,3,6,9,12,15, z / mm 9 distance / cm

45 Self-Consistent Simulations Numerical approaches for time domain simulations Time-adaptive mesh refinement On the fly -discretization of bunch and structure Higher order FEM on unstructured grids Accuracy Local mesh refinement 44

46 45 Self-Consistent Simulations Examples of local mesh refinement e-bunch Discretization of the RF PITZ gun 32-fold refinement 1.5 m

47 The DG-FEM Method 46 The DG-FEM formulation for Maxwell Equations εe H = t µ H + E = t Approximate field components with high order, piecewise polynomial basis functions. E (,) r t E (,) r t E () t ϕ () r = x x x j; p j; p j, p E (,) r t E (,) r t E () t ϕ () r = y y y j; p j; p j, p M H (,) r t H z (,) r t z H () t ϕ () r = z j; p j; p j, p Discretization of computational domain Er (,) t = Ej; p() t ϕ j; p() r j, p Hr (,) t = H j; p() t ϕ j; p() r j, p I j Ω

48 The DG-FEM Method Test approximate equations (e.g., Ampere s law) 47 I I I I I i i i i i ( ) ( ) 3 εe 3 3 εe 3 3 d r ϕ d r Hϕ = d r ϕ d r Hϕ + d r ϕ H= t t ε E d r ϕ d r n F ϕ+ d r ϕ H = numerical flux ( ) ( ) H t I I I i i i Ansatz: centered flux for tangential fields at element boundaries: 1 + n F E = n (, t) + (, t), 2 E r E r I i 1 + n F H = n (, t) + (, t) 2 H r H r I i n F H I n + Hr (, t) Hr (, t) j

49 The DG-FEM Method Matrix representation of semidiscrete equations 48 d dt M ε Me ε C e + = T Mh µ C h ex e= ey, ez h h x = hy h M ε x = Mε, y Mε z z skew-symmetric symmetric, positive, (block-) diagonal M semidiscrete DG formulation Recovers FDTD for piecewise constant basis functions, on Cartesian grids M µ x = M, y M µ z µ µ symmetric: C T = Pz Py C= Pz P Py Px C x

50 49 The DG-FEM Method Periodic solution in resonator box E z 1,5,9,75,6,45,3 Dispersion error for EM 111 mode First Order Second Order Third Order Fourth Order H y Normalized RMS-Error,15 1,5 3 4,5 6 7,5 9 1, ,5 15 Time / [A.u.]

51 The DG-FEM Method Dispersion analysis. The P x P x P -case 5 ~ grid points / wave length Exact k D=pê 8 k D=pê 4 k D=pê 2 k D=p wsinhjl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ck y-axis φ x-axis w coshjl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ck

52 The DG-FEM Method Dispersion analysis. The P 1 x P 1 x P 1 -case k D=pê2 Mode #1 Mode #2 Mode #3 Mode #4 wsinhjl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ck Dispersion curves in the xy-plane physical mode w coshjl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ck spurious mode Exact k D=pê 8 k D=pê 4 k D=pê 2 k D=p wsinhjl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ck w coshjl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ck 51

53 The DG-FEM Method 52 The Problem of Charge Conservation Define a (consistent) divergence operator as: d d d = ε = = dt dt dt ( Sd) ( SMe) ( SCh)? d d d = µ = = dt dt dt ( Sb) ( SM h) ( SCe)? Sufficient and necessary conditions for charge conservation: SC= [ ] ( x y z ) S= P P P Continuity equations for electric and magnetic charges: (source free case) Px, P y = Px, P z = Py, P z = pairwise commuting derivatives

54 53 Conservation of Charge The tensor product case Domain of influence of product derivative operators y y x P P x

55 54 Conservation of Charge The tensor product case Domain of influence of product derivative operators y x y P P x

56 Conservation of Charge 55 The tensor product case y x P P y x Domain of influence of product derivative operators Conservation of discrete charges on regular grids (PIC). Gjonaj, Lau, Weiland, ICEAA 27 P P x y

57 Self-Consistent Simulations Example of a long-distance PIC simulation with DG-FEM (later ) Current work on PIC codes at TEMF 1. Application for the PITZ injector 2. Development of moving grid algorithms (S. Schnepp) 3. Combined (hp-) grid / order refinement 4. Dynamic parallel partitioning for higher order 56

58 V-Code: Motivation 57 Basic principle Description of the particle distribution by moments Distribution: First order moments: r r x = x f dd p x y z z position momentum Second order moments: 2 r r σ x = x x f dd p ( ) 2 σ z σ σ x, y z

59 Motivation Evolution of the moments in time 58 Bunch parameter at different time instants x y t= t t= t σ zt, = t t = t : t = t : 1 z t = t σ σ Simplified description t = t x,... σ,... x t x, t= t yt, = t t = t + t x,... σ,... x t t t x y t= t1 t= t1 t t σ zt, = t1 z t = t 1 t = t 1 x,... σ,... x σ σ x, t= t1 yt, = t1 z z

60 Possible ensemble parameter (1) Motivation 59 Raw moments i j k r r µ ijk ( xyz,, ) = x y z µ = µ f dd p Order : Property µ = 1 µ = x, µ = y, µ = z Order 1: Order 2: Order 3: µ = x, µ = y, µ = z µ 11 = xy, µ 11 = xz, µ 11 = yz K µ ( x a, y b, z c) µ ( x, y, z) ijk ijk (not translatory invariant)

61 Possible ensemble parameter (2) Motivation 6 Centralized moments i j k r r σ ijk ( xyz,, ) = x x y y z z µ = µ f dd p Order : Property ( ) ( ) ( ) σ = 1 Order 1: σ 1 =, σ1 =, σ1 = σ Order 2: Order 3: ijk σ = σ, σ = σ, σ = σ x 2 y 2 z σ = σ, σ = σ, σ = σ K 11 xy 11 xz 11 yz ( x a, y b, z c) = σ ( x, y, z) ijk (variance) (covariance) (translatory invariant)

62 Motivation 61 Appropriate moments in 6-D phase space Order 1: M µ = µ µ { xyzp,,, x, py, pz} ( M,,,,, ) x M y Mz M p M p M p x y z Order 2: M µν = ( µ µ ) ( ν ν ) Order 3: Order 4: M M M M M M M yx M M M M M Mzx Mzy Mzz M M M M pxxm pxym pxzm M M M pyxm pyym pyzm pyp M M x M pz xm M M M M K K xx xy xz xpx xpy xpz yy yz ypx ypy ypz zpx zpy zpz px px pxpy pxpz pypy pypz pzy pzz pzpx pzpy pz pz { xyzpx py pz} µν,,,,,, ( 6) w 1 C 6 = = 6 1 ( 7) w 2 C 6 = = 2 ( 8) 21 w 3 C 6 = = 56 3 ( 9) w 4 C 6 = = Σ6 Σ27 Σ83 Σ29

63 62 Motivation Number of moments in 6-D phase space Order Moments per order Total number of moments

64 Ensemble Model Method to solve the VLASOV equation Basic formulation Moment approach Integration over phase space reduces PDE to ODE Approximation: limited amount of moments used to describe the particle distribution function time evolution 63

65 Ensemble Model 64 Evolution of raw and centralized moments in time µ r r = µ f dd p µ τ τ µ f r r µ f r r = dd p = f + µ dd p τ τ τ r r p r r = f grad r ( µ ) + grad r ( µ ) d dp p τ τ r r r p F F r r µ grad r ( f ) + grad r p( f ) + f div r dd 2 p p 2 γ mc mc r µ p = grad r ( µ ) + grad r ( µ ) p τ γ r r p F + grad r ( µ ) + grad r p( µ ) 2 γ mc { ( ) 2 } 2 xyzp,,, x, py, pz, x, K, x x, K r F mc 2 τ = ct r r, p ( f ) lim =

66 Ensemble Model Evolution of raw and centralized moments in time 65 General form: r µ p = grad r ( µ ) + grad r ( µ ) p τ γ r r p F + grad r ( µ ) + grad r p( µ ) 2 γ mc x 2 r F mc First component, order 1: Aim: x px Expand all arguments of the right = τ γ hand side such that the resulting p expression can be interpreted as x F = a moment description form τ mc 2 τ = ct

67 Ensemble Model 66 Incorporation of the influencing forces TAYLOR series expansion F µ F constant ν ν F ν µ = = a linear F = ν a F ν Fν = bµ F ν F µ F ν ν µµ µ quadratic = F = cm = bm µ F = c M ν F ν µµ 2 ν = cµ Series expansion of the forces for all beam line elements Dipole magnets, quadrupoles, solenoids, resonators,... µµµ µ

68 Linear space charge model Ensemble Model 67 r r F Configuration r r r r F r P r ( ) G r r 2γσ z eq 2 σ x σ + y γ V homogeneous space charge density Q G r 1 = ( 1 exp ) 1 γ / u ( ) ( u) G u r r Calculation r r Q P Q dq

69 Implementation Implementation using a symbolic algebra program 68 Mathematica (sequence of algebraic transformations) Visual.cpp Tracking.cpp CDipole.cpp CQuadrupole.cpp C++ Compiler (user interface, time integration, administration of BLE) V-Code.exe

70 Implementation Decomposition in individual beam line elements V-Code Gun Globals Macros CEnsemble CField CVisual BeamLineElements DriftSpace Solenoid BeamLineElements CRFGun CDriftSpace CSolenoid CRFCavity CSteerer CBendMagnet DriftSpace Cavity l l l l l K z 69

71 7 Implementation Solving the assembled moment equations Time dependent ensemble parameter Initial condition and time stepping technique

72 71 V-Code user interface Implementation

73 72 Layout Application Courtesy: Georg Hofstaetter, Cornell University dc gun solenoid Bunch: T rms = ps XY rms = mm Q bunch = nc z/m buncher cavity

74 73 Comparison Application transversal bunch dimension ASTRA V-Code M2 DG-FEM Order 5 Xrms / mm

75 74 Comparison Application transversal bunch dimension ASTRA V-Code M4 DG-FEM Order 5 Xrms / mm

76 75 Comparison ASTRA Application longitudinal bunch dimension V-Code M2 DG-FEM Order 5 Zrms / mm

77 76 Comparison Application longitudinal bunch dimension ASTRA V-Code M4 DG-FEM Order 5 Zrms / mm

78 77 Comparison V-Code M2 ASTRA Application transversal emittance DG-FEM Order 5 Xemittance / mm mrad

79 78 Comparison ASTRA Application transversal emittance V-Code M4 on 1 CPU ~seconds DG-FEM Order 5 on 2 CPU ~1 week Xemittance / mm mrad

80 Current Work and Outlook Current Work related to V-Code Implementation of multi-ensemble formulation Incorporation of VCode into the control system at the S-DALINAC to assist operation Extension of the BLE library to enable alpha-magnet simulation for the new S-DALINAC injector Outlook Improved and consistent space charge model for single and multi-ensemble formulation Automatic ensemble decomposition 79

81

Large Scale Parallel Wake Field Computations with PBCI

Large Scale Parallel Wake Field Computations with PBCI Large Scale Parallel Wake Field Computations with PBCI E. Gjonaj, X. Dong, R. Hampel, M. Kärkkäinen, T. Lau, W.F.O. Müller and T. Weiland ICAP `06 Chamonix, 2-6 October 2006 Technische Universität Darmstadt,

More information

Lab Report TEMF - TU Darmstadt

Lab Report TEMF - TU Darmstadt Institut für Theorie Elektromagnetischer Felder Lab Report TEMF - TU Darmstadt W. Ackermann, R. Hampel, M. Kunze T. Lau, W.F.O. Müller, S. Setzer, T. Weiland, I. Zagorodnov TESLA Collaboration Meeting

More information

Lab Report TEMF, TU Darmstadt

Lab Report TEMF, TU Darmstadt Fachgebiet Theorie Elektromagnetischer Felder Lab Report Wolfgang F.O. Müller Thomas Weiland TESLA Collaboration Meeting Daresbury, 09/23/02 Technische Universität Darmstadt, Fachbereich Elektrotechnik

More information

DESY/TEMF Meeting - Status 2011

DESY/TEMF Meeting - Status 2011 Erion Gjonaj Technische Universität Darmstadt, Computational Electromagetics Laboratory (TEMF) Schlossgartenstr. 8 64289 Darmstadt, Germany DESY/TEMF Meeting - Status 211 DESY, Hamburg, 16.12.211 Contents

More information

Current Status of Bunch Emission Simulation for the PITZ Gun

Current Status of Bunch Emission Simulation for the PITZ Gun TUD-DESY Meeting 2013 ROOM 114, Darmstadt, Germany, 19.12.2013 Current Status of Bunch Emission Simulation for the PITZ Gun Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland 19. Dec. 2013 TU Darmstadt

More information

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code Y. Chen, E. Gjonaj, H. De Gersem, T. Weiland TEMF, Technische Universität Darmstadt, Germany DESY-TEMF Collaboration Meeting

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

DESY/TEMF Meeting Status 2012

DESY/TEMF Meeting Status 2012 DESY/TEMF Meeting Status 2012 PIC Simulation for the Electron Source of PITZ DESY, Hamburg, 17.12.2012 Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland Technische Universität Darmstadt, Computational

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Wakefields and Impedances I. Wakefields and Impedances I

Wakefields and Impedances I. Wakefields and Impedances I Wakefields and Impedances I Wakefields and Impedances I An Introduction R. Wanzenberg M. Dohlus CAS Nov. 2, 2015 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 1 Introduction Wake Field

More information

Tapered Transitions Dominating the PETRA III Impedance Model.

Tapered Transitions Dominating the PETRA III Impedance Model. Tapered Transitions Dominating the PETRA III Impedance Model. ICFA Mini-Workshop: Electromagnetic Wake Fields and Impedances in Particle Accelerators Rainer Wanzenberg DESY April 26, 2014 Outline > PETRA

More information

Impedance Minimization by Nonlinear Tapering

Impedance Minimization by Nonlinear Tapering Impedance Minimization by Nonlinear Tapering Boris Podobedov Brookhaven National Lab Igor Zagorodnov DESY PAC-7, Albuquerque, NM June 7, 7 BROOKHAVEN SCIENCE ASSOCIATES Outline Motivation Review of theoretical

More information

modeling of space charge effects and CSR in bunch compression systems

modeling of space charge effects and CSR in bunch compression systems modeling of space charge effects and CSR in bunch compression systems SC and CSR effects are crucial for the simulation of BC systems CSR and related effects are challenging for EM field calculation non-csr

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Simulation of transverse emittance measurements using the single slit method

Simulation of transverse emittance measurements using the single slit method Simulation of transverse emittance measurements using the single slit method Rudolf Höfler Vienna University of Technology DESY Zeuthen Summer Student Program 007 Abstract Emittance measurements using

More information

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock CERN Accelerator School Wakefields Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock Contents The Term Wakefield and Some First Examples Basic Concept of Wakefields Basic Definitions

More information

Wakefields in the LCLS Undulator Transitions. Abstract

Wakefields in the LCLS Undulator Transitions. Abstract SLAC-PUB-11388 LCLS-TN-05-24 August 2005 Wakefields in the LCLS Undulator Transitions Karl L.F. Bane Stanford Linear Accelerator Center SLAC, Stanford, CA 94309, USA Igor A. Zagorodnov Deutsches Electronen-Synchrotron

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR M. Abo-Bakr FRAAC4 Michael Abo-Bakr 2012 ICAP Warnemünde 1 Content: Introduction ERL s Introduction BERLinPro Motivation Computational Aspects

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY Beam Dynamics and SASE Simulations for XFEL Igor Zagorodnov 4.. DESY Beam dynamics simulations for the European XFEL Full 3D simulation method ( CPU, ~ hours) Gun LH M, M,3 E = 3 MeV E = 7 MeV E 3 = 4

More information

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC CERN-ACC-NOTE-2017-0033 23rd May 2017 rainer.wanzenberg@desy.de Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC R. Wanzenberg

More information

Motivation of emission studies at PITZ

Motivation of emission studies at PITZ Motivation of emission studies at PITZ PITZ activities to understand the discrepancies between measurements and simulations in: Transverse phase space Optimum machine parameters Auxiliary measurements

More information

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV 26/11/2014 European Synchrotron Light Source Workshop XXII 1 Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV F. Cullinan, R. Nagaoka (SOLEIL, St. Aubin, France) D. Olsson, G.

More information

Introduction to the benchmark problem

Introduction to the benchmark problem Introduction to the benchmark problem M. Krasilnikov (DESY) Working group 4: Low emittance electron guns 37th ICFA Beam Dynamics Workshop Future Light Sources 15 19 May 6 DESY, Hamburg, Germany Outline

More information

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Dark Current at Injector Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Considerations for the guns Ultra-low slice emittance of electron beams higher gradient at the gun cavity solenoid field

More information

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Review of proposals of ERL injector cryomodules. S. Belomestnykh Review of proposals of ERL injector cryomodules S. Belomestnykh ERL 2005 JLab, March 22, 2005 Introduction In this presentation we will review injector cryomodule designs either already existing or under

More information

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE

ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE ANALYSIS OF HIGH ORDER MODES IN 1.3 GHZ CW SRF ELECTRON LINAC FOR A LIGHT SOURCE A. Sukhanov, A. Vostrikov, V. Yakovlev, Fermilab, Batavia, IL 60510, USA Abstract Design of a Light Source (LS) based on

More information

Electron Emission Studies Using Enhanced QE Models

Electron Emission Studies Using Enhanced QE Models Y. Chen, E. Gjonaj, H. De Gersem, W.F.O. Müller, T. Weiland Computational Electromagnetics Laboratory (TEMF) Technische Universität Darmstadt, Germany Electron Emission Studies Using Enhanced QE Models

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Wakefield Effects of Collimators in LCLS-II

Wakefield Effects of Collimators in LCLS-II Wakefield Effects of Collimators in LCLS-II LCLS-II TN-15-38 10/7/2015 K. Bane SLAC, Menlo Park, CA 94025, USA October 7, 2015 LCLSII-TN-15-38 L C L S - I I T E C H N I C A L N O T E LCLS-TN-15-38 October

More information

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC LCC-7 August 21 Linear Collider Collaboration Tech Notes Design Studies of Positron Collection for the NLC Yuri K. Batygin, Ninod K. Bharadwaj, David C. Schultz,John C. Sheppard Stanford Linear Accelerator

More information

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014 Alignment requirement for the SRF cavities of the LCLS-II injector LCLS-II TN-14-16 12/16/2014 R. K. Li, C. Papadopoulos, T. O. Raubenheimer, J. F. Schmerge, and F. Zhou December 16, 2014 LCLSII-TN-14-16

More information

LCLS S-band Structure Coupler

LCLS S-band Structure Coupler LCLS S-band Structure Coupler Zenghai Li Advanced Computations Department Stanford Linear Accelerator Center LCLS S-band L01/L02 Coupler Review Nov. 03, 2004 Overview Motivation Modeling tools Multipole

More information

Dark current at the Euro-XFEL

Dark current at the Euro-XFEL Dark current at the Euro-XFEL Jang-Hui Han DESY, MPY Observations at PITZ and FLASH Estimation for the European XFEL Ideas to reduce dark current at the gun DC at FLASH RF gun M1 M2 M3 M4 M5 M6 M7 6 undulator

More information

Tomographic transverse phase space measurements at PITZ.

Tomographic transverse phase space measurements at PITZ. Tomographic transverse phase space measurements at PITZ. > Photo-Injector Test facility at DESY in Zeuthen - PITZ > Tomography in beam diagnostics > Hardware > Measurements & evaluation Georgios Kourkafas,

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Modeling of the secondary electron emission in rf photocathode guns

Modeling of the secondary electron emission in rf photocathode guns Modeling of the secondary electron emission in rf photocathode guns J.-H. Han, DESY Zeuthen 8 June 2004 Joint Uni. Hamburg and DESY Accelerator Physics Seminar Contents 1. Necessity of secondary electron

More information

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1 INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1 Puneet Jain IIT ROORKEE SRFSAT Workshop, IUAC N. Delhi September 21, 2017 2 OUTLINE 1. Overview of Electromagnetic

More information

Start-to-End Simulations

Start-to-End Simulations AKBP 9.3 Case Study for 100 µm SASE FEL Based on PITZ Accelerator for Pump-Probe Experiment at the European XFEL Start-to-End Simulations Outline Introduction Beam Optimization Beam Transport Simulation

More information

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P High-Fidelity RF Gun Simulations with the Parallel D Finite Element Particle-In-Cell Code PicP SLAC-PUB-668 June 9 A. Candel, A. Kabel, L. Lee, Z. Li, C. Limborg, C. Ng, G. Schussman and K. Ko SLAC National

More information

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities Tomasz Galek, Thomas Flisgen, Korinna Brackebusch, Kai Papke and Ursula van Rienen CST European User Conference 24.05.2012,

More information

Beam Optimization with Fast Particle Tracking (FPT)

Beam Optimization with Fast Particle Tracking (FPT) Beam Optimization with Fast Particle Tracking (FPT) LCLSII Physics Meting, 1/7/215 Lanfa Wang Motivation Physics Model of FPT Benchmark with ELEGANT Results for new injector beam Motivation Complexity

More information

Numerical modelling of photoemission for the PITZ photoinjector

Numerical modelling of photoemission for the PITZ photoinjector Numerical modelling of photoemission for the PITZ photoinjector Ye Chen, Erion Gjonaj, Wolfgang Müller, Herbert De Gersem, Thomas Weiland TEMF, TU Darmstadt DESY-TEMF Collaboration Meeting DESY, Hamburg,

More information

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF CERN Accelerator School RF Cavities Erk Jensen CERN BE-RF CERN Accelerator School, Varna 010 - "Introduction to Accelerator Physics" What is a cavity? 3-Sept-010 CAS Varna/Bulgaria 010- RF Cavities Lorentz

More information

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1 Angular momentum dominated electron beam and flat beam generation yinesun@uchicago.edu FNPL video conference Feb. 8, 5 Yin-e Sun 1 outline angular momentum dominated electron beam and its applications

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information

PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS

PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS A. Candel, A. Kabel, L. Lee, Z. Li, C. Limborg, C. Ng, E. Prudencio, G. Schussman, R. Uplenchwar

More information

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL Juliane Rönsch Universität Hamburg / DESY Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL 5/27/2009 1 Contents

More information

Single-Bunch Effects from SPX Deflecting Cavities

Single-Bunch Effects from SPX Deflecting Cavities Single-Bunch Effects from SPX Deflecting Cavities Yong-Chul Chae and Louis Emery Accelerator Operation Group Accelerator System Division Measurements March 13, 2013 Introduction The single bunch current

More information

Methods and Simulation Tools for Cavity Design

Methods and Simulation Tools for Cavity Design Methods and Simulation Tools for Cavity Design Prof. Dr. Ursula van Rienen, Dr. Hans-Walter Glock SRF09 Berlin - Dresden Dresden 18.9.09 Overview Introduction Methods in Computational Electromagnetics

More information

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department

More information

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule Abstract M. Dohlus, H.-P. Wedekind, K. Zapfe Deutsches Elektronen Synchrotron Notkestr. 85, D-22603 Hamburg, Germany The beam pipe

More information

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE Proceedings of FEL03, New York, NY, USA SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE S. Bettoni, M. Pedrozzi, S. Reiche, PSI, Villigen, Switzerland Abstract The first section of FEL injectors driven

More information

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance Beam based alignment, Dark current and Thermal emittance measurements J-H.Han,M.Krasilnikov,V.Miltchev, PITZ, DESY, Zeuthen 1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3.

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

Wakefield computations for the LCLS Injector (Part I) *

Wakefield computations for the LCLS Injector (Part I) * LCLS-TN-05-17 Wakefield computations for the LCLS Injector (Part I) * June 13 th 005 (reedited May 007) C.Limborg-Deprey, K.Bane Abstract In this document, we report on basic wakefield computations used

More information

Numerical Modeling of Collective Effects in Free Electron Laser

Numerical Modeling of Collective Effects in Free Electron Laser Numerical Modeling of Collective Effects in Free Electron Laser Mathematical Model and Numerical Algorithms Igor Zagorodnov Deutsches Elektronen Synchrotron, Hamburg, Germany ICAP 1, Rostock 1. August

More information

Using IMPACT T to perform an optimization of a DC gun system Including merger

Using IMPACT T to perform an optimization of a DC gun system Including merger Using IMPACT T to perform an optimization of a DC gun system Including merger Xiaowei Dong and Michael Borland Argonne National Laboratory Presented at ERL09 workshop June 10th, 2009 Introduction An energy

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Photo Injector Test facility at DESY, Zeuthen site

Photo Injector Test facility at DESY, Zeuthen site Photo Injector Test facility at DESY, Zeuthen site PITZ EXPERIENCE ON THE EXPERIMENTAL OPTIMIZATION OF THE RF PHOTO INJECTOR FOR THE EUROPEAN XFEL Mikhail Krasilnikov (DESY) for the PITZ Team FEL 2013

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro: ERL demonstration facility to prepare the ground for a few GeV ERL @ Berlin-Adlershof Goal: 100MeV, 100mA beam Small emittance,

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

arxiv: v1 [physics.acc-ph] 8 Nov 2017

arxiv: v1 [physics.acc-ph] 8 Nov 2017 THE IMPEDANCE OF FLAT METALLIC PLATES WITH SMALL CORRUGATIONS K. Bane, SLAC National Accelerator Laboratory, Menlo Park, CA, USA arxiv:1711.321v1 [physics.acc-ph] 8 Nov 217 INTRODUCTION The RadiaBeam/SLAC

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch Hamburg University Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch 1/15/28 1 Contents Introduction PITZ Longitudinal phase space of a photoinjector

More information

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac Investigation of the Effect of Space Charge in the compact-energy Recovery Linac Ji-Gwang Hwang and Eun-San Kim, Kyungpook National University. 1370 Sankyok-dong, Buk-ku, Daegu, 702-701, Korea Tsukasa

More information

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov Sincere thanks to all WG1 participants: Largest group, very active participation. This summary

More information

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Laser acceleration of electrons at Femilab/Nicadd photoinjector Laser acceleration of electrons at Femilab/Nicadd photoinjector P. Piot (FermiLab), R. Tikhoplav (University of Rochester) and A.C. Melissinos (University of Rochester) FNPL energy upgrade Laser acceleration

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS Peter Schmidt 1,2, Oliver Boine-Frankenheim 1,2, Vladimir Kornilov 1, Peter Spädtke 1 [1] GSI Helmholtzzentrum für Schwerionenforschung

More information

Phase-space rotation technique and applications

Phase-space rotation technique and applications Phase-space rotation technique and applications Masao KURIKI Hiroshima University International School on Electron Accelerator, Free Electron Laser and Application of Electron Beam and THz radiation 6-9,

More information

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology Novel Features of Computational EM and Particle-in-Cell Simulations Shahid Ahmed Illinois Institute of Technology Outline Part-I EM Structure Motivation Method Modes, Radiation Leakage and HOM Damper Conclusions

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University Multivariate Optimization of High Brightness High Current DC Photoinjector Ivan Bazarov Cornell University Talk Outline: Motivation Parallel Evolutionary Algorithms Results & Outlook Ivan Bazarov, Multivariate

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

THE LCLS-II INJECTOR DESIGN*

THE LCLS-II INJECTOR DESIGN* THE LCLS-II INJECTOR DESIGN* J.F. Schmerge #, A. Brachmann, D. Dowell, A. Fry, R.K. Li, Z. Li, T. Raubenheimer, T. Vecchione, F. Zhou, SLAC, Menlo Park, CA 94025, USA A. Bartnik, I. Bazarov, B. Dunham,

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

Andreas Kabel Stanford Linear Accelerator Center

Andreas Kabel Stanford Linear Accelerator Center Numerical Calculation of CSR Effects Andreas Kabel Stanford Linear Accelerator Center 1. Motivation 2. CSR Effects 3. Considerations for Numerical Calculations 4. The Simulation Code TraFiC 4 5. Examples

More information

Simulations for photoinjectors C.Limborg

Simulations for photoinjectors C.Limborg Simulations for photoinjectors C.Limborg 1- GTF Simulations Parmela modeling improvements Comparison to experimental results: 2ps & 4ps Sensitivity study Plans for future simulations 2- LCLS Injector Simulations

More information

Title. Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas. CitationIEEE Transactions on Nuclear Science, 56(4-3): Issue Date

Title. Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas. CitationIEEE Transactions on Nuclear Science, 56(4-3): Issue Date Title Three-Dimensional Wake Field Computations Based on S Author(s)Fujita, Kazuhiro; Kawaguchi, Hideki; Weiland, Thomas CitationIEEE Transactions on Nuclear Science, 56(4-3): 2341- Issue Date 2009-08

More information

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018 Progress towards slice emittance measurements at PITZ Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018 PITZ Overview Photo-Injector Test Facility at DESY, Zeuthen Site > Three Emittance Measurement

More information

Cornell Injector Performance

Cornell Injector Performance Cornell Injector Performance Adam Bartnik 1 Cornell Injector Performance as an ERL injector 2 Cornell Injector Performance as an ERL injector as an FEL injector (e.g. LCLS-II) as an injector for EIC applications

More information

A Polarized Electron PWT Photoinjector for the ILC

A Polarized Electron PWT Photoinjector for the ILC 2005 ALCPG & ILC Workshops Snowmass, U.S.A. A Polarized Electron PWT Photoinjector for the ILC David Yu, Yan Luo, Alexei Smirnov, DULY Research Inc., Rancho Palos Verdes, CA 90275 Ivan Bazarov, Cornell

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

Beam heat load due to geometrical and resistive wall impedance in COLDDIAG Beam heat load due to geometrical and resistive wall impedance in COLDDIAG Sara Casalbuoni, Mauro Migliorati, Andrea Mostacci, Luigi Palumbo, Bruno Spataro 2012 JINST 7 P11008, http://iopscience.iop.org/17480221/7/11/p11008

More information

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010 Impedance and Collective Effects in Future Light Sources Karl Bane FLS2010 Workshop 1 March 2010 In future ring-based light sources, the combination of low emittance and high current will mean that collective

More information

Multi-quadrupole scan for emittance determination at PITZ

Multi-quadrupole scan for emittance determination at PITZ Multi-quadrupole scan for emittance determination at PITZ Susan Skelton University of St Andrews, Scotland Email: ses@st-andrews.ac.uk DESY Zeuthen Summer Student Program th th July 5 September 8 7 PITZ

More information

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 UCLA Neptune Ramped Bunch Experiment R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 Outline 1. Background & Motivation 2. Neptune Dogleg Compressor

More information