Numerical Modeling of Collective Effects in Free Electron Laser

Size: px
Start display at page:

Download "Numerical Modeling of Collective Effects in Free Electron Laser"

Transcription

1 Numerical Modeling of Collective Effects in Free Electron Laser Mathematical Model and Numerical Algorithms Igor Zagorodnov Deutsches Elektronen Synchrotron, Hamburg, Germany ICAP 1, Rostock 1. August 1

2 Overview motivation FEL physics in 1D mathematical model in 3D numerical methods quiet start and shot noise time dependent simulations problems and challenges Igor Zagorodnov ICAP 1. August 1 Seite

3 Motivation Free Electron Laser accelerator undulator laser light very short and tunable wavelength extreme short pulses with very high energy John Madey, Appl. Phys. 4, 196 (1971) Igor Zagorodnov ICAP 1. August 1 Seite 3

4 Motivation FLASH ( Free Electron LASer in Hamburg) gun accelerator undulator laboratory Igor Zagorodnov ICAP 1. August 1 Seite 4

5 Motivation FLASH ( Free Electron LASer in Hamburg) undulator 7m Igor Zagorodnov ICAP 1. August 1 Seite 5

6 Motivation Numerical methods undulator (~ 1 m) S. Reiche, FEL simulations: history, status and outlook, FEL 1, Malmö, 1 1 orders of magnitude bunch (~ 1 µm) slice (~.1 nm) approximations are neccecary λ Wellenlänge FEL numerical algorithms Igor Zagorodnov ICAP 1. August 1 Seite 6

7 FEL Physics in 1D Motion of one electron in an undulator θ u = K γ z λ u = π k u Field on the axis K = - undulator parameter m e ck u γ - electron energy By = B sin( ku z ) electron trajectory eb Igor Zagorodnov ICAP 1. August 1 Seite 7

8 FEL Physics in 1D Energy exchange in FEL v < c an electron is slower than the EM field z v E x EM field ~ plane wave E z t E kz t x (, ) = cos( ω ) Igor Zagorodnov ICAP 1. August 1 Seite 8

9 FEL Physics in 1D Energy exchange in FEL v < c an electron is slower than the EM field z Igor Zagorodnov ICAP 1. August 1 Seite 9

10 FEL Physics in 1D Energy exchange in FEL v < c an electron is slower than the EM field z The electron has to be slower exactly by one wave length. λ u 1 K λ = + γ Igor Zagorodnov ICAP 1. August 1 Seite 1

11 FEL Physics in 1D Longitudinal equations of motion (1D model) d dt ψ = d η = dt k c η u ek[ JJ ] E m e cγ r cosψ ψ = ( k + ku ) z ωt, [ JJ ] ~ 1 γ γ η = r γ r 4π π π 4π ψ s Igor Zagorodnov ICAP 1. August 1 Seite 11

12 FEL Physics in 1D Low gain FEL γ γ r I [ka] z = m E x () = 3MV/m r beam =.1 mm λ u = 7mm ψ K =1. λ = 6 nm I = 1.6 ka peak ψ Igor Zagorodnov ICAP 1. August 1 Seite 1

13 FEL Physics in 1D Low gain FEL γ γ r.5 z = 15m I [ka] ψ ψ Igor Zagorodnov ICAP 1. August 1 Seite 13

14 FEL Physics in 1D Low gain FEL γ γ r.5 microbunching I [ka] ψ ψ Igor Zagorodnov ICAP 1. August 1 Seite 14

15 FEL Physics in 1D Microbunching i j = R (% j ) = j + R( % j ( z) e ψ ) z z 1 s λ K.N. Ricci ant T.I Smith, PR- STAB 3, 381 () experimental evidence of microbunching in Stanford Igor Zagorodnov ICAP 1. August 1 Seite 15

16 FEL Physics in 1D High gain FEL P rad ~ N el P rad ~ N el experimental data (FLASH) E[µJ] z[ m ] the amplification is very high λ[nm] W. Ackermann et al, Nature Photonics 1, 336 (7) Igor Zagorodnov ICAP 1. August 1 Seite 16

17 FEL Physics in 1D Field equation The EM field variation has to be taken into account 1 j 1 µ E = + ρ c t t ε ( z t ) E( z, t) = R E % (, ) slowly-varying envelope approximation ( ) E% x( z, t) Ex( z) e i kz ω = % t E% x ( z) << k E% x ( z) 1 K + ik + E% = ikµ c % j z c t γ 1 µ ck E z j 4γ % x ( ) = % 1 Igor Zagorodnov ICAP 1. August 1 Seite 17

18 FEL Physics in 1D Longitudinal equations of motion d n ku n, n 1,,... N dz ψ = η = d ek[ JJ ] iψ η ( n n = R E % xe ) dz m c Field equation µ ck d E % x( z ) = % j 1 dz e γ r 4γ Igor Zagorodnov ICAP 1. August 1 Seite 18

19 FEL Physics in 1D High gain FEL P[GW] 4 z = m E () =.1MV/m x γ γ r z[m] I [ka] ψ ψ Igor Zagorodnov ICAP 1. August 1 Seite 19

20 FEL Physics in 1D High gain FEL P[GW] 4 z = m γ γ r z[m] I [ka] ψ ψ Igor Zagorodnov ICAP 1. August 1 Seite

21 FEL Physics in 1D High gain FEL P[GW] 4 z = 1m γ γ r z[m] I [ka] ψ ψ Igor Zagorodnov ICAP 1. August 1 Seite 1

22 FEL Physics in 1D High gain FEL P[GW] 1 saturation linear regime z[m] Igor Zagorodnov ICAP 1. August 1 Seite

23 Mathematical Model in 3D 3D Effekte FEL codes transverse beam dynamics space charge effects beam properties (emittance, energy spread etc.) EM field properties undulator properties Igor Zagorodnov ICAP 1. August 1 Seite 3

24 Numerical Methods 3D FEL codes used at DESY Equations of motion EM field Boundary conditions FAST (M.Yurkov) Integral representation Genesis 1.3 (S.Reiche) Runge-Kutta finite-difference, alternating direction ALICE (I.Zagorodnov) leap-frog finite difference, Neumann free space Dirichlet free space with PML the codes are parallelized a cluster with 36 processors is used 7:5:16 Igor Zagorodnov ICAP 1. August 1 Seite 4

25 Mathematical Model in 3D Equations of motion ( ( ) ).5 H ( r, p, t) = c m c + p + ea eϕ change of independent variable 1+ p + a + ( p, a ) H( r, ct; p, pt ; z) = γ 1 + a z γ wiggler-period-averaging (helical undulator) T.M. Tran, J.S.Wurtele, Review of free-electronlaser (FEL) simulation. techniques, Phys. Reports 195 (199) 1.5 p = p mc a = A e mc 1+ p + a H( r, ct; p, pt ; z) = γ 1 + a γ a = K + ask sin( ψ + ϕs) + as.5 z a s Ee mcω Igor Zagorodnov ICAP 1. August 1 Seite 5

26 Mathematical Model in 3D Equations of motion longitudinal dψ 1+ p + K = kw dz γ dγ ek e = R( Ee % ) dz m c mc e iψ n γ r transverse EM field longitudinal space charge E z transverse (slow) d r d z = p γ β d px K kx eg = + x dz γβ z z mc d py K ky eg = y dz γβ z mc Igor Zagorodnov ICAP 1. August 1 Seite 6

27 Mathematical Model in 3D Field equations transverse field (slowly-varying envelope approximation) r E(, t) = E% r (, t)exp i kz t + c. c. ( ω ) ( ) 1 K + ik + E% = ikµ c % j z c t γ 1 longitudinal space charge (on λ scale) E = E + ie x y n ( k + k ) in( k + k ) = w ( n) w ( n) Ez ρ γ z εγ z ψ = ( n) in Ez ( r, ) Ez ( r, z) e ψ Igor Zagorodnov ICAP 1. August 1 Seite 7

28 Mathematical Model in 3D Normalized Equations equations of motion dψ ˆ B ( C ˆ η xˆ yˆ ) dzˆ d ˆ η = uˆ cos( ψ + ϕ ) ˆ s Ez dzˆ = + + ˆ = ( ˆ ) x + field equations 1 N jk x k gˆ xˆ ( ˆ ) y yˆ = k gˆ yˆ [ π ψ ψ ψ ψ ] ˆ ˆ () ˆ z = Ez Λ p sgn( i ) ( i ) N jk i= 1 E 1 ˆ d u ˆ ˆ z ˆ a ˆ z ˆ + ib dzˆ (1) ( r, ) = ( r, ) Zagorodnov I., Dohlus M., Numerical FEL studies with a new code ALICE, FEL9, Liverpool, 9. Igor Zagorodnov ICAP 1. August 1 Seite 8

29 Numerical Methods Equations of motion leap-frog scheme for the longitudinal equations ψ j+ ψ.5 j.5 ˆ B = ˆ η ( ˆ ˆ ) j + C j x j + y j j = zˆ s s ˆ η ˆ ˆ ˆ j + 1 η j u j u j ϕ j+ 1 + ϕ j = cos ψ ˆ j Ez, j+.5, z matrix formalism for the transverse equations 1: N z xˆ ˆ j+ 1 x j M x xˆ = ˆ j+ 1 x j yˆ yˆ. j + 1 j y ˆ = M y ˆ j + 1 y j Igor Zagorodnov ICAP 1. August 1 Seite 9

30 Numerical Methods Field equation Perfectly Matched Layer 1 1 F. Collino, Journal of Computational Physics 131, 164 (1997) ( m) im uˆ( r, z, ) u ( r, z) e ϕ r u a r, m d + m = azimuthal expansion ϕ = ib r r r dz ( ) (1)( m) Igor Zagorodnov ICAP 1. August 1 Seite 3

31 Numerical Methods Perfectly Matched Layer (PML) Im r%,, σ >, ( r), PML, Re r% i r% = r + d r ( ) B σ ξ ξ σ ( r), r r, =, >, r. > - a deformed contour in the complex plane 1 1 ib r% r% r% r% dz m d ( m) (1)( m) r% u a + = r,. Igor Zagorodnov ICAP 1. August 1 Seite 31

32 Numerical Methods Neumann implicit scheme with PML n n n + 1 = n q q + 1 q q q q 1 q c u b u a u f a The matrix, of the system has only three diagonals q and we can use the sweep method = z, 1 r% j.5 % % % % %, 4 ib r ( r r )( r r ) j j +.5 j.5 j j 1 b = (1 a c ) q q q z m ib r% j c q = z 1 r% j ib r% ( r% r% )( r% r% ) j j +.5 j.5 j + 1 j complex numbers! Igor Zagorodnov ICAP 1. August 1 Seite 3

33 Numerical Methods PML performance.8.6 Field power [a.u.] D max r ˆ = 3.3 ˆr ẑ ˆPML PML max r ˆ = D ˆr max = 1 ˆr Igor Zagorodnov ICAP 1. August 1 Seite 33

34 Quiet Start and Shot Noise Quiet start in FEL amplifier P[ GW] 4 3 Genesis v1. (N=6e4) Genesis v1. (N=3e4) 19% Alice (N=6e4) Alice (N=3e4) The difference in saturation length is 7 %. The difference in power gain is 19 %. z[m] Igor Zagorodnov ICAP 1. August 1 Seite 34

35 Quiet Start and Shot Noise Quiet Start? n n ALICE Genesis v y / σ y y / σ y What is the reason? clustering Igor Zagorodnov ICAP 1. August 1 Seite 35

36 Quiet Start and Shot Noise Quiet Start? Uniform William H. Press et al, Numerical Recipes in Fortran. The Art of Scientific Computing, 199 Normal The polar form of Box-Muller algorithm (in Genesis, ASTRA) maps the quiet uniform distribution in a clustered normal distribution. Igor Zagorodnov ICAP 1. August 1 Seite 36

37 Quiet Start and Shot Noise Quiet Start? ALICE Genesis v1. x [a.u.] y [a.u] y [a.u] inverse error function Box-Mueller algorithm transformation Igor Zagorodnov ICAP 1. August 1 Seite 37

38 Quiet Start and Shot Noise Properties of the normal distribution % δ = Genesis v1. ALICE σ 4 4 σ σ 4 1% N δ x, % δ y, % Igor Zagorodnov ICAP 1. August 1 Seite 38

39 Quiet Start and Shot Noise New Genesis v. vs. ALICE P [ GW] 3.5 Genesis v. (N=6e4) Alice (N=6e4) z [m] Igor Zagorodnov ICAP 1. August 1 Seite 39

40 Quiet Start and Shot Noise Convergence P [ GW] at saturation Genesis v. ALICE Genesis v1. N δ = σ % σ 4 4 σ Genesis v. ALICE 1% Genesis v1. N Genesis 1.: Genesis.: ALICE: Hammersley and Box-Mueller Hammersley and the inverse error function Sobol and the inverse error function Igor Zagorodnov ICAP 1. August 1 Seite 4

41 Quiet Start and Shot Noise Shot noise algorithm b b ( n) ( n) b Ne 1 = e N = e m= 1 ( n) 1 = π 4N N e e inψ m beamlets and variation in position (W.Fawley) variations in charges (B.McNeil et al.) N << N e x ψ beamlets - a set of M particles with the same position N b beamlets with M particles each. x = ( x, y, p, p, γ ) x y ( j) k b = ; k = 1: N, j = 1: M b Igor Zagorodnov ICAP 1. August 1 Seite 41

42 Quiet Start and Shot Noise Shot noise algorithm Small position variations m= M δθ = a cos( mθ ) + b sin( mθ ) j m j m j m= 1 a = b =, m M?! m, rms m, rms Nbm W.M. Fawley, Phys. Rev. STAB 5 () 771 A more careful analysis for the highest harmonic m=m yields 1 am, rms = bm, rms = N M b j = 1: M Igor Zagorodnov ICAP 1. August 1 Seite 4

43 Time Dependent Simulations Slice parameters are extracted from Gun-to-Undulator simulations γ γ ε ε β β x y x ' y ' α α I x y x y x y ε [ µ m] x slice emittance Q = 1 nc I [ka].5 current Q = 1 nc Q = pc s s σ s 1.5 Q = pc -5 5 s [µm] Igor Zagorodnov ICAP 1. August 1 Seite 43

44 Time Dependent Simulations Field equation t = t + z c 1 K + ik + E% ( z, t) = ikµ c % j1 ( z, t) z c t γ d z z + E% z, t + = F z, t + ik dz c c t j ( z n +.5) - the time when slice j reaches position z n+.5 zn z n + z.5 n z.5 z E% zn+ 1, t j ( zn+.5 ) + E% zn, t j ( zn.5) d + c c E% ( zn+.5, t j ( zn+.5 )) = + O() dz z Igor Zagorodnov ICAP 1. August 1 Seite 44

45 Time Dependent Simulations zn z n + z.5 n z t j ( zn+.5 ) = t j.5 ( zn ) c j j 1 j j 1 E% n+ 1 + E% n E% n+ 1 E% n + = ik z (, ( )) E% E% z t z j = n n j +.5 n.5 z t j ( zn+.5) + = t j+.5( zn+ 1) c field of the current slice j field of the previous slice j-1 F( z, t ( z )) n+,5 j n+,5 Igor Zagorodnov ICAP 1. August 1 Seite 45

46 Time Dependent Simulations Parallel algorithm Slice for slice" we start from the last slice and track the particles of this slice through the undulator; the radiated EM field is saved. then we track the next slice in the radiation field of the previous slices Igor Zagorodnov ICAP 1. August 1 Seite 46

47 Time Dependent Simulations SASE in the European XFEL W [mj] P [GW] ALICE Genesis ALICE Genesis z [m] I.Zagorodnov, Ultra-short low charge operation at FLASH and the European XFEL, FEL 1, Malmö, 1 s [µm] Igor Zagorodnov ICAP 1. August 1 Seite 47

48 Problems and Challenges Comparison with SPARC FEL experiment L. Giannesi et al, PR STAB 14, 671(11) Medusa is a code based on non-averaged equations Igor Zagorodnov ICAP 1. August 1 Seite 48

49 Problems and Challenges Limitations of the considered FEL model fast slalom motion is not modeled only forward propagating field is considered macroparticles are locked in the slice with periodic boundary conditions only low order harmonics are simulated correctly macroscopic space charge, bunch shape changes are not modeled narrow frequency bandwidth near the resonance frequency, narrow energy spread Igor Zagorodnov ICAP 1. August 1 Seite 49

50 Problems and Challenges Table-Top-FEL M.Fuchs et al, Nature Physics 5, 86(9) strong space charges, large energy spread fast bunch shape change charge or macroparticles redistribution macroscopic space charge equation non-averaged modell Igor Zagorodnov ICAP 1. August 1 Seite 5

51 Summary FEL codes based on averaged equations are checked by experiments new FEL schemes (Table Top FEL, Echo-Enabled High- Harmonic Generation etc.) require to consider more physics FEL codes based on non-averaged FEL equations, with macroscopic space charge are under development H.P. Freund, S.G. Biedron, S.V. Milton, IEEE J. Quantum Electron. 36 () 75. (Medusa code) C.K.W. Nam, P. Aitken, and B.W.J. McNeil, Unaveraged threedimensional modelling of the FEL, FEL 8, Gyeongju, Korea, 8 Igor Zagorodnov ICAP 1. August 1 Seite 51

FEL Simulations for the European XFEL

FEL Simulations for the European XFEL FEL Simulations for the European XFEL From GW to TW Radiation Power Igor Zagorodnov Collaboration Meeting at PAL Pohang, Korea 2-6. September 213 Overview Numerical Methods for FEL Calculations FEL physics

More information

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY Beam Dynamics and SASE Simulations for XFEL Igor Zagorodnov 4.. DESY Beam dynamics simulations for the European XFEL Full 3D simulation method ( CPU, ~ hours) Gun LH M, M,3 E = 3 MeV E = 7 MeV E 3 = 4

More information

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Ultra-Short Low Charge Operation at FLASH and the European XFEL Ultra-Short Low Charge Operation at FLASH and the uropean XFL Igor Zagorodnov DSY, Hamburg, Germany 5.8. The 3nd FL Conference, Malmö Outline FLASH layout and desired beam parameters Technical constraints

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract

Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator. Abstract SLAC PUB 10694 August 2004 Generation of GW-level, sub-angstrom Radiation in the LCLS using a Second-Harmonic Radiator Z. Huang Stanford Linear Accelerator Center, Menlo Park, CA 94025 S. Reiche UCLA,

More information

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY Short Wavelength SASE FELs: Experiments vs. Theory Jörg Rossbach University of Hamburg & DESY Contents INPUT (electrons) OUTPUT (photons) Momentum Momentum spread/chirp Slice emittance/ phase space distribution

More information

MULTI-DIMENSIONAL FREE-ELECTRON LASER SIMULATION CODES: A COMPARISON STUDY *

MULTI-DIMENSIONAL FREE-ELECTRON LASER SIMULATION CODES: A COMPARISON STUDY * SLAC-PUB-9729 April 2003 Presented at 21st International Conference on Free Electron Laser and 6th FEL Applications Workshop (FEL 99, Hamburg, Germany, 23-28 Aug 1999. MULTI-DIMENSIONAL FREE-ELECT LASER

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Large Bandwidth Radiation at XFEL

Large Bandwidth Radiation at XFEL Large Bandwidth Radiation at XFEL Usage of corrugated structure for increase of the energy chirp Igor Zagorodnov S2E Meeting DESY 8. April 26 Energy spread and Radiation Bandwidth FEL bandwidth for negligible

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller and Mikhail Yurkov Deutsches Elektronen-Synchrotron DESY, Hamburg

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

arxiv: v1 [physics.acc-ph] 12 Sep 2013

arxiv: v1 [physics.acc-ph] 12 Sep 2013 DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum der Helmholtz-Gemeinschaft DESY 13-162 September 213 arxiv:139.3149v1 [physics.acc-ph] 12 Sep 213 Nonlinear undulator tapering in conventional SASE

More information

The peak brilliance of VUV/X-ray free electron lasers (FEL) is by far the highest.

The peak brilliance of VUV/X-ray free electron lasers (FEL) is by far the highest. Free electron lasers The peak brilliance of VUV/X-ray free electron lasers (FEL) is by far the highest. Normal lasers are based on stimulated emission between atomic energy levels, i. e. the radiation

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract Febrary 2009 SLAC-PUB-13533 Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams D. Xiang, Z. Huang and G. Stupakov SLAC National Accelerator Laboratory,

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

Cooled-HGHG and Coherent Thomson Sca ering

Cooled-HGHG and Coherent Thomson Sca ering Cooled-HGHG and Coherent Thomson Sca ering using KEK compact ERL beam CHEN Si Institute of Heavy Ion Physics Peking University chensi9@mailsucasaccn Seminar, KEK 213117 Outline 1 Accelerator-based Light

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Start-to-End Simulations

Start-to-End Simulations AKBP 9.3 Case Study for 100 µm SASE FEL Based on PITZ Accelerator for Pump-Probe Experiment at the European XFEL Start-to-End Simulations Outline Introduction Beam Optimization Beam Transport Simulation

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

FEL Theory for Pedestrians

FEL Theory for Pedestrians FEL Theory for Pedestrians Peter Schmüser, Universität Hamburg Preliminary version Introduction Undulator Radiation Low-Gain Free Electron Laser One-dimensional theory of the high-gain FEL Applications

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2

Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2 Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2 W.M. Fawley February 2013 SLAC-PUB-15359 ABSTRACT Calculations with the GINGER FEL simulation code are

More information

Coherence properties of the radiation from SASE FEL

Coherence properties of the radiation from SASE FEL CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs (FELs and ERLs), 31 May 10 June, 2016 Coherence properties of the radiation from SASE FEL M.V. Yurkov DESY, Hamburg I. Start-up

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract SLAC PUB 868 October 7 Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun Z. Huang, Y. Ding Stanford Linear Accelerator Center, Stanford, CA 9439 J. Qiang Lawrence Berkeley National

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

Characterization of an 800 nm SASE FEL at Saturation

Characterization of an 800 nm SASE FEL at Saturation Characterization of an 800 nm SASE FEL at Saturation A.Tremaine*, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig UCLA, Los Angeles, CA 90095 M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone,

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

FLASH II Seeding History and Future. Kirsten Hacker April 2014

FLASH II Seeding History and Future. Kirsten Hacker April 2014 FLASH II Seeding History and Future Kirsten Hacker April 2014 Timeline 2011 HHG is planned by Tavella & co. HGHG is studied by AtiMesek(HZB) but energy spread was unrealistic EEHG is studied by SINAP (http://arxiv.org/ftp/arxiv/papers/1103/1103.0112.pdf)

More information

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov TESLA Collaboration Meeting, September 6-8, 2004 Experience from TTF FEL,

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Simulation of transverse emittance measurements using the single slit method

Simulation of transverse emittance measurements using the single slit method Simulation of transverse emittance measurements using the single slit method Rudolf Höfler Vienna University of Technology DESY Zeuthen Summer Student Program 007 Abstract Emittance measurements using

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

Acceleration of electrons by Inverse Free Electron Laser interaction

Acceleration of electrons by Inverse Free Electron Laser interaction Acceleration of electrons by Inverse Free Electron Laser interaction P. Musumeci 3.12.2004 Università La Sapienza, Roma Outline Laser accelerators Brief IFEL introduction Inverse-Free-Electron-Laser accelerators

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

A two-oscillator echo enabled tunable soft x-rays

A two-oscillator echo enabled tunable soft x-rays A two-oscillator echo enabled tunable soft x-rays FLS 2010 Workshop SLAC J.S. Wurtele Co workers: P. Gandhi, X.-W. Gu, G. Penn, A. Zholents R. R. Lindberg, K.-J. Kim 1. Overview of scheme 2. Walkthrough

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

modeling of space charge effects and CSR in bunch compression systems

modeling of space charge effects and CSR in bunch compression systems modeling of space charge effects and CSR in bunch compression systems SC and CSR effects are crucial for the simulation of BC systems CSR and related effects are challenging for EM field calculation non-csr

More information

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - email: joerg.rossbach@desy.de FLASH: The first FEL user facility for

More information

Coherence Properties of the Radiation from X-ray Free Electron Lasers

Coherence Properties of the Radiation from X-ray Free Electron Lasers Proceedings of the CAS CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, Hamburg, Germany, 31 May 10 June 2016, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol.

More information

Free-Electron Laser. A) Motivation and Introduction. B) Theoretical Approach. C) Experimental Realization / Challenges

Free-Electron Laser. A) Motivation and Introduction. B) Theoretical Approach. C) Experimental Realization / Challenges Free-Electron Laser A) Motivation and Introdction B) Theoretical Approach C) Experimental Realization / Challenges v1 A) Motivation and Introdction need for short wavelengths why FELs? free electron wave

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser. Abstract

Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser. Abstract SLAC-PUB-12 Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, and D. Walz Stanford Linear Accelerator

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Simple Physics for Marvelous Light: FEL Theory Tutorial

Simple Physics for Marvelous Light: FEL Theory Tutorial Simple Physics for Marvelous Light: FEL Theory Tutorial Kwang-Je Kim ANL, U of C, POSTECH August 22, 26, 2011 International FEL Conference Shanghai, China Undulators and Free Electron Lasers Undulator

More information

Introduction to Free Electron Lasers and Fourth-Generation Light Sources. 黄志戎 (Zhirong Huang, SLAC)

Introduction to Free Electron Lasers and Fourth-Generation Light Sources. 黄志戎 (Zhirong Huang, SLAC) Introduction to Free Electron Lasers and Fourth-Generation Light Sources 黄志戎 (Zhirong Huang, SLAC) FEL References K.-J. Kim and Z. Huang, FEL lecture note, available electronically upon request Charles

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

LCLS Commissioning Status

LCLS Commissioning Status LCLS Commissioning Status Paul Emma (for the LCLS Commissioning Team) June 20, 2008 LCLS ANL LLNL UCLA FEL Principles Electrons slip behind EM wave by λ 1 per undulator period ( (λ u ) x K/γ e λ u v x

More information

Coherence Requirements for Various Seeding Schemes

Coherence Requirements for Various Seeding Schemes Coherence Requirements for Various Seeding Schemes G. Penn 2.5 1 1 2. 1 1 sase 4 high current 4 low current SSSFEL12 Trieste 1 December 212 # photons / mev 1.5 1 1 1. 1 1 5. 1 9 1238.5 1239 1239.5 124

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

REVIEW OF DESY FEL ACTIVITIES

REVIEW OF DESY FEL ACTIVITIES REVIEW OF DESY FEL ACTIVITIES J. Rossbach, Universität Hamburg and DESY, 22603 Hamburg, Germany Abstract Deveolopment, construction and operation of freeelectron lasers delivering radiation in the VUV

More information

First operation of a Harmonic Lasing Self-Seeded FEL

First operation of a Harmonic Lasing Self-Seeded FEL First operation of a Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov ICFA workshop, Arcidosso, Italy, 22.09.2017 Outline Harmonic lasing Harmonic lasing self-seeded (HLSS) FEL Experiments

More information

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Update on and the Issue of Circularly-Polarized On-Axis Harmonics Update on FERMI@Elettra and the Issue of Circularly-Polarized On-Axis Harmonics W. Fawley for the FERMI Team Slides courtesy of S. Milton & Collaborators The FERMI@Elettra Project FERMI@Elettra is a single-pass

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

Summary of COTR Effects.

Summary of COTR Effects. Summary of COTR Effects. Stephan Wesch Deutsches Elektronen-Synchrotron, Hamburg 10 th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators S. Wesch (DESY) Summary of COTR

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

Review of x-ray free-electron laser theory

Review of x-ray free-electron laser theory PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 1, 3481 (7) Review of x-ray free-electron laser theory Zhirong Huang Stanford Linear Accelerator Center, Stanford, California 9439, USA Kwang-Je

More information

STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER

STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER STUDIES OF A TERAWATT X-RAY FREE-ELECTRON LASER H.P. Freund, 1,2,3 1 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico USA 2 Department of Electrical

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

X-ray production by cascading stages of a High-Gain Harmonic Generation Free-Electron Laser I: basic theory

X-ray production by cascading stages of a High-Gain Harmonic Generation Free-Electron Laser I: basic theory SLAC-PUB-494 June 4 X-ray production by cascading stages of a High-Gain Harmonic Generation Free-Electron Laser I: basic theory Juhao Wu Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

arxiv: v1 [physics.acc-ph] 23 Mar 2016

arxiv: v1 [physics.acc-ph] 23 Mar 2016 Modelling elliptically polarised Free Electron Lasers arxiv:1603.07155v1 [physics.acc-ph] 3 Mar 016 Submitted to: New J. Phys. J R Henderson 1,, L T Campbell 1,, H P Freund 3 and B W J M c Neil 1 1 SUPA,

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Free-electron lasers. Peter Schmüser Institut für Experimentalphysik, Universität Hamburg, Germany

Free-electron lasers. Peter Schmüser Institut für Experimentalphysik, Universität Hamburg, Germany Free-electron lasers Peter Schmüser Institut für Experimentalphysik, Universität Hamburg, Germany Introduction Abstract The synchrotron radiation of relativistic electrons in undulator magnets and the

More information

SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION

SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION Shanghai, 4. August. Alberto Lutman Jacek Krzywinski, Yuantao Ding, Yiping Feng, Juhao Wu, Zhirong Huang, Marc Messerschmidt X-ray pulse

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II G. Marcus, Y. Ding, P. Emma, Z. Huang, T. Raubenheimer, L. Wang, J. Wu SLAC, Menlo Park, CA 9, USA Abstract The design and performance of the LCLS-II

More information

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

SCSS Prototype Accelerator -- Its outline and achieved beam performance -- SCSS Prototype Accelerator -- Its outline and achieved beam performance -- Hitoshi TANAKA RIKEN, XFEL Project Office 1 Content 1. Light Quality; SPring-8 v.s. XFEL 2. What are the critical issues? 3. Mission

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract SLAC PUB 11781 March 26 Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator Z. Huang, G. Stupakov Stanford Linear Accelerator Center, Stanford, CA 9439 S. Reiche University of

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Introduction to the benchmark problem

Introduction to the benchmark problem Introduction to the benchmark problem M. Krasilnikov (DESY) Working group 4: Low emittance electron guns 37th ICFA Beam Dynamics Workshop Future Light Sources 15 19 May 6 DESY, Hamburg, Germany Outline

More information

Wakefields and Impedances I. Wakefields and Impedances I

Wakefields and Impedances I. Wakefields and Impedances I Wakefields and Impedances I Wakefields and Impedances I An Introduction R. Wanzenberg M. Dohlus CAS Nov. 2, 2015 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 1 Introduction Wake Field

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

Andreas Kabel Stanford Linear Accelerator Center

Andreas Kabel Stanford Linear Accelerator Center Numerical Calculation of CSR Effects Andreas Kabel Stanford Linear Accelerator Center 1. Motivation 2. CSR Effects 3. Considerations for Numerical Calculations 4. The Simulation Code TraFiC 4 5. Examples

More information

Phenomena related to the laser incidence on the cathode surface

Phenomena related to the laser incidence on the cathode surface Phenomena related to the laser incidence on the cathode surface Hiromistu Tomizawa Accelerator Division, Japan Synchrotron Radiation Research Institute (SPring-8) These topics have been discussed in LAAA

More information

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation)

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation) Laser Laser HHG Diagnostic ATHOS PORTHOS ARAMIS THz-Pump P A U L S C H E R R E R I N S T I T U T Length of beam system = 910m &'!( Test & Commissioning steps (A,B,C) A11 Conv. Gun & Injector A12 LINAC

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

free- electron lasers I (FEL)

free- electron lasers I (FEL) free- electron lasers I (FEL) produc'on of copious radia'on using charged par'cle beam relies on coherence coherence is achieved by insuring the electron bunch length is that desired radia'on wavelength

More information

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract SLAC PUB 14534 September 2011 Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector Y. Ding 1, C. Behrens 2, P. Emma 1, J. Frisch 1, Z. Huang 1, H. Loos

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS

THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS J. Rossbach, for the TESLA FEL Collaboration Deutsches Elektronen-Synchrotron, DESY, 603 Hamburg, Germany Abstract The aim of the TESLA Free Electron Laser

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information