Spectroscopy of complex organic molecules on Titan A. JOLLY

Similar documents
Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Molecular spectroscopy for planetary and exoplanetary radiative transfer : The rock of Sisyphus or the barrel of the Danaids?

GEISA 2013 Ozone and related atmospheric species contents description and assessment

Titan. PTYS 206 (from original presentation by Catherine Neish) April 1, 2014

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Infrared Spectroscopy

Preface to the Second Edition. Preface to the First Edition

Complex molecules in Titan s upper atmosphere

Photodissociation and ionisation of molecules due to stellar and cosmic-ray-induced radiation

Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

( )( s 1

A tool for IASI hyperspectral remote sensing applications: The GEISA/IASI database in its latest edition

Effect of mass attached to the spring: 1. Replace the small stopper with the large stopper. Repeat steps 3-9 for each spring set.

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Icarus. A photochemical model of Titan s atmosphere and ionosphere. Vladimir A. Krasnopolsky. Contents lists available at ScienceDirect

Infrared quantitative spectroscopy and atmospheric satellite measurements

Topic 2.11 ANALYTICAL TECHNIQUES. High Resolution Mass Spectrometry Infra-red Spectroscopy

Light or the Electromagnetic spectrum.

Application of IR Raman Spectroscopy

February 8, 2018 Chemistry 328N

ASSESSMENT OF THE GEISA AND GEISA/IASI SPECTROSCOPIC DATA QUALITY: trough comparisons with other public database archives

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

An Overview of Molecular Opacities

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

New infrared integrated band intensities for HC 3 N and extensive line list for the m 5 and m 6 bending modes

Infrared spectroscopy Basic theory

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

f N 2 O* + M N 2 O + M

Ultraviolet-Visible and Infrared Spectrophotometry

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

Lecture 6 - spectroscopy

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

Infrared Spectroscopy: Identification of Unknown Substances

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty?

Chapter 12 Aerosols in Titan s Atmosphere

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY.

The Quest for Consistency and Accuracy of Spectroscopic Parameters in HITRAN:

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

New benzene absorption cross sections in the VUV, relevance for Titan s upper atmosphere

Atmospheric Sciences 321. Science of Climate. Lecture 6: Radiation Transfer

Line Intensities in the ν 6 Fundamental Band of CH 3 Br at 10 µm

Telescopes and the Atmosphere

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Taking fingerprints of stars, galaxies, and interstellar gas clouds

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

Coupling photochemistry with haze formation in Titan s atmosphere, Part II: Results and validation with Cassini/Huygens data

Homework Assignment #3

PTYS 214 Spring Announcements. Midterm 3 next Thursday!

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY

Lecture 14 Organic Chemistry 1

Radiative Balance and the Faint Young Sun Paradox

Ultraviolet-Visible and Infrared Spectrophotometry

Linda R. Brown. Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

Infra Red Spectroscopy

Electromagnetic Radiation.

Training Coarse ECOPROBE 5 CHEMISTRY RS DYNAMICS

THE EXOSPHERIC HEAT BUDGET

A TOOL FOR THE SECOND GENERATION VERTICAL SOUNDERS RADIANCE SIMULATION: THE GEISA/IASI SPECTROSCOPIC DATABASE SYSTEM

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets

Physics and Chemistry of the Interstellar Medium

Atmosphere Properties and Molecular Absorption Spectrum

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

24 Introduction to Spectrochemical Methods

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

Absorption Line Physics

Chemical Enrichment of the ISM by Stellar Ejecta

Lecture 2 nmr Spectroscopy

Planetary Atmospheres

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

N. Jacquinet-Husson, N.A. Scott, A. Chédin, R. Armante, K. Garceran, Th. Langlois.

Venus atmosphere is enigmatic with many unsolved questions. Two prominent puzzles are:

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

C h a p t e r F o u r t e e n: Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

2. Infrared spectroscopy

On the possibility of gly and ala amino acids on Titan

0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing!

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules

Spectroscopic Applications of Quantum Cascade Lasers

Miniaturization of High Sensitivity Laser Sensing Systems. Damien Weidmann

CH-442. Photochemistry I. Prof. Jacques-E. Moser.

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234

Chapter 3. Infrared Reflectance Spectra of Tholins

1. The most important aspects of the quantum theory.

ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА

It is often given in units of cm -1 : watch out for those unit conversions! (1 cm -1 = 100 m -1, not 0.01 m -1 ).

Transcription:

Spectroscopy of complex organic molecules on Titan A. JOLLY

Outline of the talk New molecules on Titan? Expected molecules from laboratory experiment Results from the Huygens lander Infrared observation from CIRS-CASSINI Improvement in infrared spectroscopy Ultraviolet observation from UVIS-CASSINI Improvement in ultraviolet spectroscopy

Past IR observations of TITAN

Species Abundances Predominant species N 2 0.85 0.98 CH 4 5.10-3 8,5.10-2 Hydrocarbons C 2 H 6 7.10-6 2,8.10-5 C 2 H 2 1,65.10-6 3,8.10-6 C 3 H 8 3.10-7 1.10-6 C 2 H 4 7.10-8 2.10-7 C 3 H 4 (propyne) 4.10-9 8,5.10-9 C 4 H 2 8.10-10 -2.10-9 C 3 H 4 (allene) < 10-9 C 6 H 6 1.10-10 -7.10-10 C 6 H 2? Titan s atmosphere Nitriles HCN 1.10-7 4.10-7 HC 3 N 8. 10-10 8,4.10-8 CH 3 CN 1,5.10-9 10-8 C 2 N 2 some 10-9 C 4 N 2 solid HC 5 N? Oxygenated compounds CO 3,3.10-6 6,4.10-5 CO 2 9.10-9 2,2.10-8 H 2 O 8.10-9

Titan s Atmospheric chemistry Long UV short UV CH 4 N 2 C 2 H 4 HCN C 2 H 2 CH 3 CN CH 3 CCH HC 3 N C 2 H 6 C 4 H 2 C 2 N 2 C 3 H 8 condensation sedimentatio n

Dust formation on TITAN and in the laboratory? Organic particles are easily formed in a N 2 /CH 4 plasma Caracteristics : molecules formed (all molecules detected on Titan and more) Refraction Index (compared to Titan s albedo) Chemical composition (C/N ratio) UV emission Spectroscopic analysis (radicals ; CN, NH, CH...)...

IR spectrum of a mixture produced by a N2/CH4 plasma discharge

Huygens Atmosphérique Entry: 14-01-2005

Huygens GC-MS data

Cassini at Saturn since 1. July 2004

INMS

CIRS Observations of Titan : various latitudes

CIRS Observations of Titan : north to south ratio

CASSINI MISSION Composite InfraRed Spectrometer

C 6 H 2? TITAN Limb Observation (CIRS) T = 100 K 0.15 0.10 C 4 H 2 HC 3 N HC 5 N? CO 2 HCN C 2 H 2 Obs Sim Flux 0.05 0.00 C 3 H 4-0.05-0.10 600 620 640 660 680 700 720 740 760 780 800 cm -1

HC 3 N in Titan. Hot bands? 20000 HC 3 N Titan North Limb (180 km)? 0 640 645 650 655 660 665 670 675 680 cm -1

Infrared Spectra of HC 3 N (resolution : 0.5 cm -1 ) 1.2 1.0 Exp G E IS A Absorbance 0.8 0.6 0.4 0.2 0.0 1.2640 650 660 670 680 690 Absorbance 1.0 0.8 0.6 0.4 ν 5 Exp This work 0.2 ν 5 -> 2ν 5 (Π - Σ ) ν 5 -> 2ν 5 (Π - ) 0.0 640 650 660 670 680 690 W avenumber (cm -1 )

Energy level diagram : HC 3 N Hot bands in HC 3 N 2ν 5 Σ + + Σ + +Σ + ν 5 +ν 6 ν 5 +2ν 7 Π+Φ 33 % of the population in the ground level at room T Σ + + Π+Φ 2ν 6 ν 6 +2ν 7 ν 5 +ν 7 Σ + +Σ + Σ + +Σ + ν 6 +ν 7 ν 5 Π Π ν 6 2ν 7 Σ + + ν 7 Π Ground Σ +

Fayt et al. (2000) 181 sublevels between 0 and 1750 cm-1 2000 calculation by Fayt experiment 1500 abs. coeff 1000 500 0 640 645 650 655 660 665 670 675 680 685 690 cm -1

Hot HC 3 N bands in Titan 20000 15000 HC 3 N Fayt 300 K Fayt 100 K Titan North Limb (180 km) 10000 5000 0 640 645 650 655 660 665 670 675 680

More hot bands on Titan? YES 30000 CIRS LIMB Observation of Titan Simulation with GEISA @ 300 K C 4 H 2 20000 Flux 10000 C3H4 0 620 622 624 626 628 630 632 634 636 638 640 cm -1

C 4 H 2 simulation 10000 8000 6000 4000 2000 0 600 610 620 630 640 650

First absolute intensity measurement for HC 5 N in the infrared (resolution : 0.5 cm -1 ) 100 90 ν 7 80 Abs. Coeff. (cm -1.atm -1 ) 70 60 50 40 30 20 10 ν 8 ν 8 +ν 11? ν 9 +ν 10? 0 450 500 550 600 650 700 750 Wavenumber (cm -1 )

Comparison with theoretical results HC 5 N Absolute Intensities (atm -1 cm -2 ) at 296 K Mode Vibration Position (cm -1 ) This work (2005) Theoretical Results* ν 1 /ν 3 +ν 5 C-H str. (R) 3333 (P) 3322 167 508 a /362 b ν 2 C=C str. (R) 2257 (P) 2248 77.6 277 a /138 b ν 3 C=C str. (R) 2192.5 (P) 2182.5 17.3 1.24 a /22.5 b ν 7 bend. 642.2 128.3 177 a /318 c ν 8 bend. 500.9 10 7.4 a /55 c * converted from km/mol to atm -1.cm -2 a Scemama (2002) b Botschwina (1997) c Deguchi (1984), Uyemura (1986)

CASSINI UVIS Team, Science (2005)

Experimental study done at BESSY : Berlin Synchrotron Facility (GERMANY) April and July 2005 HC 3 N absorption spectra depending on the Temperature 4000 295 K 220 K 3000 relative intensity 2000 1000 0 121,5 122,0 122,5 123,0 Wavelength (nm)

Cyanopolyynes spectra above 120 nm, HCN.. 1600 Absorption coefficient (cm -1.amagat -1 ) 1400 1200 1000 800 600 400 200 0 120 125 130 135 140 145 150 155 160 Wavelength (nm)

Cyanopolyynes spectra, HCN, HC3N.. Absorption coefficient (cm -1.amagat -1 ) 5000 4000 3000 2000 1000 0 HCN HC 3 N 120 125 130 135 140 145 150 155 160 Wavelength (nm)

Cyanopolyynes spectra, HCN, HC3N, HC5N.. Absorption coefficient (cm -1.amagat -1 ) 8000 7000 6000 5000 4000 3000 2000 1000 HCN HC3N HC5N 0 120 140 160 180 200 Wavelength (nm)

New C4H2 spectra and UVIS occultation spectra

Simplified photochemical model : polymerisation Reactions with radicals H + CH C H + H HC N+ CH HC N+ H 2n 2 2 + 2n + 1 2 2n+ 3 C 2(n 1) 2 Photodissociation : C 1 H + CN HC N+ H 2n 2 2n+ C H + hν C H+ H 2n 2 2n Photodissociation rates: Φ( λ) S( λ) τ ( z) σ ( λ,t ) J= Quantum yield λ0 0 φ Solar Flux (photons.cm -2.s -1 ) Optical depth Absorption cross Section HC N+ hν C N+ H 2n + 1 2n+ 1 ( ) ( ) τ ( z) λ. S λ. e. σ( λ, T). dλ

Solar spectrum in the absorption domain of hydrocarbons and nitriles Solar Spectrum 1E10 1E9 1E8 Flux photon/s/cm2 1E7 120 130 140 150 160 170 180 190 200 Wavelength (nm)

Predicted relative abondance of polyynes and cyanopolyynes on Titan 1 HCN C 2 H 2 Cyanopolyynes Polyynes Abondance relative 0.1 0.01 HC 3 N C 4 H 2 C 6 H 2 1E-3 HC 5 N 0 1 2 3 4 5 6 7 Nombre de Carbone

CRL 618 : Nebuleuse proto-planétaire riche en carbone

Predicted relative abondance of polyynes on Titan and CRL618 1 C 2 H 2 TITAN CRL 618 Abondance relative 0.1 C 4 H 2 C 6 H 2 0.01 1 2 3 4 5 6 7 Nombre de Carbone

ISO Observation of CRL 618 Observations 1.1 Spectra calculation 1.0 0.9 Transmission 0.8 0.7 0.6 C 6 H 2 C 4 H 2 HCN 0.5 0.4 C 6 H 2 /C 4 H 2 = 0.6 C 2 H 2 0.3 620 680 700 720 740 760 780 Wavenumber (cm -1 )

Predicted relative abondance of cyanopolyynes on Titan and CRL618 1 HCN TITAN CRL 618 Abondance relative 0.1 0.01 HC 3 N HC 5 N 1E-3 0 1 2 3 4 5 6 7 Nombre de Carbone

1,2 1,1 ISO Observation of CRL618 Obs Sim 1,0 0,9 HC 5 N Flux 0,8 0,7 0,6 C 6 H 2 C 4 H 2 HC 3 N HCN 0,5 0,4 0,3 C 2 H 2 620 640 660 680 700 720 740 760 780 cm -1

Titan's spectroscopic database http://www.lisa.univ-paris12.fr/gpcos/scoopweb/scoop.html The LISA Team and collaborators UV spectroscopy Titan's spectroscopic :Yves Benilan database, Thomas Ferradaz, Martin Schwell, Marie-Claire Gazeau, Nicolas Fray, Hans Jochims (Berlin) IR spectroscopy : Yves Benilan, Jean Claude Guillemin (Rennes), André Fayt (Louvain la neuve)