EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

Similar documents
University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EECS 141: FALL 00 MIDTERM 2

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Physical Structure (NMOS)

Chapter 4. Circuit Characterization and Performance Estimation

Introduction to Digital Circuits

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

ECE321 Electronics I

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

THE INVERTER. Inverter

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ECE 342 Solid State Devices & Circuits 4. CMOS

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE115C Digital Electronic Circuits Homework #4

EEE 421 VLSI Circuits

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EECS 141: FALL 05 MIDTERM 1

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

MOSFET and CMOS Gate. Copy Right by Wentai Liu

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

Chapter 6 MOSFET in the On-state

EE5311- Digital IC Design

ENEE 359a Digital VLSI Design

MOS Transistor Theory

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

The CMOS Inverter: A First Glance

Interconnect (2) Buffering Techniques. Logical Effort

EE5311- Digital IC Design

Physical Limitations of Logic Gates Week 10a

MOS Transistor Theory

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Topics to be Covered. capacitance inductance transmission lines

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 5: DC & Transient Response

PASS-TRANSISTOR LOGIC. INEL Fall 2014

! Dynamic Characteristics. " Delay

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

The CMOS Inverter: A First Glance

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Properties of CMOS Gates Snapshot

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

SOTiny TM LVDS High-Speed Differential Line Receiver. Features. Description. Applications. Pinout. Logic Diagram. Function Table

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

EE 434 Lecture 33. Logic Design

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Chapter 7 Response of First-order RL and RC Circuits

Integrated Circuits & Systems

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

High-to-Low Propagation Delay t PHL

Practice 7: CMOS Capacitance

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Lecture 12 Circuits numériques (II)

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 546 Lecture 10 MOS Transistors

Lecture 5: DC & Transient Response

Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

EE5780 Advanced VLSI CAD

Lecture 4: DC & Transient Response

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Digital Integrated Circuits 2nd Inverter

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Lecture 6: DC & Transient Response

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor

VLSI Design and Simulation

Digital Integrated Circuits A Design Perspective

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Integrated Circuits & Systems

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor

CMOS Logic Gates. University of Connecticut 181

Dynamic operation 20

non-linear oscillators

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

CHAP.4 Circuit Characteristics and Performance Estimation

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

Lecture 4: CMOS Transistor Theory

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CMOS Logic Gates. University of Connecticut 172

Very Large Scale Integration (VLSI)

CMPEN 411 VLSI Digital Circuits Spring 2012

NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

Digital Microelectronic Circuits ( )

Transcription:

1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS

C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in C gb C gsn C sbn C gdn + C gdp + C dbn + C dbp + C in + C gb

V DD 3 S V in G D B i Dp i Dp i C - V ou i Dn D i Dn i C G B S C gdn + C gdp + C dbn + C dbp + C in + C gb

V in DELAY DEFINITIONS 4 V OL V ou τ PHL 1-0 τ PLH 3-2 V 50% V OL 0 1 2 3 V 50% V OL +0.5 [ - V OL ] 0.5 [V OL + ] Avg Prop Delay τ P τ PHL + τ PLH 2

OUTPUT VOLTAGE RISE & FALL TIMES 5 V ou τ fall B - A τ rise D - C V 90% V 10% V OL A B C D V 10% V OL +0.1 [ - V OL ] V 90% V OL +0.9 [ - V OL ]

CALCULATION OF DELAY TIMES QUICK ESTIMATES: ( ) τ PHL C V load HL C V V load OH 50% I avg,hl I avg,hl ( ) τ P LH C V load LH C V V load 50% OL I avg,lh I avg,lh I avg,hl -> approximae average curren during high-o-low V ou ransiion I avg,hl 1 2 i V C( V,V in OH ou ) + i C ( V in,v ou V 50% ) [ ] I avg,lh -> approximae average curren during low-o-high V ou ransiion I avg,lh 1 2 i V C( V,V in OL ou V OL ) + i C ( V in V OL,V ou V 50% ) V OL V ou V 50% V OL [ ] V in τ PHL 1-0 τ PLH 3-2 0 1 2 3 6

MORE ACCURATE CALCULATION OF τ PHL, τ PLH : 7 V DD G S B V in D i Dp i Dp i C - i Dn V ou G D S B i Dn i C i C dv ou d i Dp i Dn

1) V in -RISING CASE: V in 8 IC: V ou, V in V OL -> nmos - ON SAT V ou > V DD -V T0n p-mos OFF LIN 0 < V ou < V DD -V T0n i Dp 0 V ou V OL V in G D B i Dn i C V ou τ PHL 1-0 S - V T0n V 50% dv ou d NOTE THAT: i Dn i Dp << i Dn for all inverer ypes V OL 0 1 1 nmos SAT nmos LIN

V in 0 < < 1 : 9 i Dn k n 2 (V in V T 0n )2 V OL V ou τ PHL 1-0 k n 2 (V V dv OH T 0 n )2 C ou load d - V T0n V 50% for V T 0n <V ou V OL 0 1 1 Since i Dn is INDEP of V ou

V in 1 < < 1 : 10 V OL - V T0n V ou τ PHL 1-0 [ ] i Dn k n 2 2(V V )V V 2 in T 0 n ou ou [ ] dv ou k n 2 2(V V )V V 2 OH T 0n ou ou d V 50% for V ou V T 0n V OL 0 1 1 V ou V 50% 1 d 1 1 ' Vou VOH VT 0 n i Dn dv ou V ou V 50% 1 d 2 2 Vou VOH VT 0 n k n 2( V T 0n )V ou V ou 1 1 ' 1 1 ' [ ] 2 1 k n 2( V T 0n ) ln V ou 2( V T 0 n ) V ou dv ou V ou V 50% Vou VOH VT 0n

1 1 ' 2 1 k n 2( V T 0n ) ln V ou 2( V T 0 n ) V ou V ou V 50% Vou VOH VT 0n 11 k n ( V T 0 n ) ln 2(V V ) V OH T 0n 50% V 50% τ PHL 1-1 + 1-0 τ PHL 2 V T 0 n k n ( V T 0 n ) 2 + k n ( V T 0n ) ln 2(V V ) V OH T 0 n 50% V 50% k n ( V T 0 n ) 2V T 0n +ln 2(V T 0 n V ) T 0n V 50% 1

k n ( V T 0 n ) 2V T 0n +ln 2(V T 0 n V ) T 0n V 50% 1 12 SUBSTITUTING V 50% 0.5 [V OL + ] τ PHL k n ( V T 0 n ) 2V T 0n +ln 4(V T 0n V ) T 0n + V OL 1 WHERE for CMOS Inverers V OL 0, V DD τ PHL k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1

EXAMPLE 6.1 Consider a CMOS inverer wih 1.0 pf, where he IV characerisics of he nmos ransior driver are specified as follows: 13 V GSn 5 V and V DSn > 4V > I Dn I Dnsa 5 ma Assume V in is a sep pulse ha swiches insananeously from 0 o 5 V. Calculae he delay ime necessary for he inverer oupu o fall from is iniial value of 5 V o 2.5 V. V 50% 0.5 [V OL + ] 0.5 [0 + 5 V] 2.5 V FROM IV DATA: a SAT V DSn 5V - V T0n 4 V > V T0n 1 V k n 2 I Dnsa (V GS V T 0n ) 2 10mA (4V) 2 0.625x10 3 A/V 2

0 < < 1 : where i Dn I Dnsa 5mA - V T0n 4 V 5 V 14 1 < < 1 : ' 1 1 k n ( V T 0 n ) ln 2(V V ) V OH T 0n 50% 1pF (0.625x10 3 A/V 2 )(5 1)V 1x10 12 F (0.625x10 3 A/V 2 )4V V 50% 2(5 1)V 2.5V ln 2.5V 5.5 ln 2.5 1.26 ns τ PHL 0.2 ns+1.26ns 1.46ns

EXAMPLE 6.2 Consider a CMOS inverer wih 1.0 pf and V DD 5 V, where he IV characerisics of he nmos ransior driver are specified as follows: k n µ n C ox 20 µa/v 2, (W/L) n 10, and V T0n 1.0 V Use boh he average-curren mehod and he differenial equaion mehod o calculae τ fall (ime elapased beween he ime V ou V 90% 4.5 V o he ime a which V ou V 10% 0.5 V). average-curren mehod 5V 4.5V 5V I avg,fall 1 2 i V V,V C in OH ou V 90% 1 2 0.5V [ ( ) + i C ( V in,v ou V 10% )] 1 2 k V V n in T 0 n ( ) ( ) 2 + 1 2 k 2(V V )V V 2 n in T 0 n ou ou [( ) 2 + 2( V T 0n )V 10% V 2 ] 10% 1 4 k n V T 0n ( ) 15 1 4 20x10 6 (A/V 2 )(10) ( 5 1) 2 V 2 + ( 2(5 1)0.5 (0.5) 2 )V 2 [ ] 0.9875mA

average-curren mehod con. τ fall V I avg,fall 1x10 12 F(4.5 0.5)V 0.9875x10 3 A differenial equaion mehod SAT for 4.0 V < V ou < 4.5 V dv ou d dv ou d 1 2 k V n ( V in T 0n) 2 5 V 4.05x10 9 s 4.09ns V 90% - V T0n V 10% ( ) 2 20x10 6 A/V 2 (10) k n V 2C in V T 0 n load 1.6x10 9 V/s 2(1x10 12 F) V ou SAT 0 (5 1) 2 τ fall 2-0 sa LIN 2 16 sa - 0 0.3125 ns

differenial equaion mehod con sa 0.3125 ns LIN for 0.5 V < V ou < 4.0 V dv ou d 2 V 90% - V T0n 1 2 k 2(V V )V V 2 n( in T 0n ou ou ) V ou SAT dv d 2 C ou load 2 Vou 4.0 V k n 2(V in V T 0n )V ou V ou sa V ou 0.5V ( ) 2 sa 1 k n (V in V T 0 n ) ln 2(V V ) V in T 0n 10% 5 V 5 V 1x10 12 F 1 20x10 6 A/V 2 (10) (5 1)V V 10% τ fall 2-0 V 10% 0 0 2 sa LIN 2(5 1) 0.5 ln 3.385ns 0.5 17 4.09 ns I avg mehod

2) V in -FALLING CASE: IC: V ou V OL, V in -> V V DD OL nmos - OFF SAT V ou < -V T0p p-mos ON LIN -V T0p < V ou < V DD V in 18 V OL 0 τ PLH 1-0 V in G S B V GS V in - V DD V DS V ou - V DD Vou V DD D i Dp i C i Dp V 50% dv ou d i Dn 0 i D p i C V ou -V T0p V OL 0 0 1 1 nmos SAT nmos LIN

τ PLH k p ( V OL V T 0 p ) V 50% 0.5 [V OL + ], τ PLH k p (V DD V T 0p ) 2 V T 0 p V T 0p +ln 2(V V V ) OH OL T 0 p 1 V 50% FOR CMOS INV: V OL 0, V DD 2 V T 0 p V DD V T 0p +ln 4(V V ) DD T 0p 1 V DD 19 τ PHL k n ( V T 0 n ) 2V T 0n +ln 2(V T 0 n V ) T 0n V 50% 1 FOR CMOS INV: V OL 0, V DD τ PHL k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1

CONDITIONS FOR Balanced CMOS Inverer Propagaion Delays, i.e. τ PHL τ PLH 20 τ PLH k p (V DD V T 0p ) 2 V T 0 p V DD V T 0p +ln 4(V V ) DD T 0p 1 V DD τ PHL k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1 where & FOR τ PHL τ PLH V T0n V T0p k n k p or

NOTE THAT: Calculaion of τ PHL, depends largely on NMOS driver, i.e. nearly same for all INV ypes. Calculaion of τ PLH, depends largely on he load device and is operaion, i.e. differen for all INV ypes. 21 CONSIDER depleion NMOS Load: dv C ou load i d D,L (V ou ) V T,L V T 0,L + γ 2φ F +V ou 2φ F ( ) SAT: V DS,L V DD - V ou > 0 - V T,L > V ou < V DD + V T,L [ ] 2 I D,L k n,l 2 V (V ) T,L ou LIN: V DS,L V DD - V ou < 0 - V T,L > V ou > V DD + V T,L [ ] I D,L k n,l 2 2( V (V ))(V V ) (V V T,L ou DD ou DD ou )2

22 τ PLH V ou V DD VT,L Vou V OL dv ou + i D,L (sa) Vou V 50% Vou V DD V T,L dv ou i D,L (lin) τ PLH k n,l V T,L 2( V DD V T,L V OL ) V T,L + ln 2 V (V V ) T,L DD 50% V DD V 50%

V DD Inpu Waveform Slope 23 V ou,v in i Dn ic V in i Dp V ou V DD V in,90% V in,10% τf τ r V in V DD i Dp i Dn i C V ou EMPERICAL DELAY CORRECTIONS FOR INPUT τ r, τ f : τ PHL (acual) τ 2 P HL (sep inpu) + τ r 2 2 τ PLH (acual) τ 2 PLH (sep inpu) + τ f 2 2

τ PHL INVERTER DELAY DESIGN FORMULAS k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1 24 where τ PLH k p (V DD V T 0p ) where 2 V T 0 p V DD V T 0p +ln 4(V V ) DD T 0p 1 V DD

EXAMPLE 6.3 Design a CMOS inverer by deermining he W n and W p of he nmos and PMOS ransisors o mee he following specs: -> V h 2 V for V DD 5 V -> Delay ime of 2 ns for a V ou ransiion from 4 V o 1 V, wih 1.0 pf. The process and device parameers are specified as follows: k n µ n C ox 30 µa/v 2, k p µ p C ox 10 µa/v 2 L n L p 1.0 µm V T0n 1.0 V V T0p -1.5 V W min 2 µm (limied by design rules) 25 STEP #1: Saisfy he Delay Consrain:τ PHL from 4 V o 1 V HL > PULL-DOWN > τ PHL deermined by nmos driver NOTE V in and 1 < V ou < 4 V > nmos LIN

dv ou d µ n C ox 2 W n L n 2 [ 2( V T 0n )V ou V ou ] 26 τ delay 2.0x10 9 s 2 1 2 1 µ n C ox W n L n W µ n C n ox L n 1 V ou 1 Vou 4 dv ou 2 [ 2( V T 0n )V ou V ou ] 2( V T 0n ) ln V ou 2( V T 0 n ) V ou V ou 1 Vou 4 W n L n 1x10 12 F (2.0 x10 9 s)(30x10 6 A/V 2 )(4) ln(7) 1 ln(7) 8.108 (2.0)(0.03)(4)

W n 8.108, L L n 1µm > W n 8.108 (1 µm) 8.1 µm n From τ delay spec. STEP #2: Saisfy he V h consrain, where: 1 V T 0 n + ( V k DD + V ) 1 T 0 p 1.0V+ ( 5 + ( 1.5))V V h R k R 1 1 1+ 1+ 1.0V+ 1+ k R 1 ( 3.5)V k R 1 k R k R 2V > k R (1.5) 2 9 4 27 k R µ C ( W/L) n ox n 30W n µ p C ox ( W/L) p 10W p 3 W n W p 9 4 > W p 4 9 (3)W n wih L p 1 µm W p 4 (3)8.1µ m 10.8µ m 9

CMOS RING OSCILLATOR 28 1 V 2 3 1 V 2 V 3,1,2,3,1,2,3 and INV1 INV2 INV3 V 1 V 2 V 3 V 50% V OL τ PHL2τPLH3 τ PHL1τPHL2 τ PLH3τPHL1

V 1 V 2 V 3 29 V 50% V OL τ PHL2 τ PHL1 τ PLH3τPHL1 τ PLH3 τ PHL2 T,1,2,3 and INV1 INV2 INV3 T τ PHL2 + τ PLH3 + τ PHL1 + τ PHL2 + τ PLH3 + τ PHL1 6τ P f 1 T 1 2(3)τ P 1 6τ P For n INVERTERS: Oscillaion FREQ f 1 T 1 or τ 2nτ P 1 P 2nf

ESTIMATION OF INTERCONECT PARASITICS 30 L W MET Curren Flow h SIO 2 SUB PARASITIC RESISTANCE: R meal ρ L W R shee L W

fringing fields W 31 h C PP FF C oal /C PP -> FRINGING-FIELD FACTOR FF -> INC as /h -> INC, W/h <- DEC, and W/L -> INC (SEE PLOT FF in FIG. 6.18 of TEXT) W C oal ε 2 2π + h ln 1+ 2 h + 2h 2h + 2 pf/µm L for W > /2 C oal ε W π 1 0.0543 h + 2h ln 1+ 2 h + 2h +1.47 pf/µm L 2h + 2 for W < /2

W L 32 C in W in oxf p-sub C oxf C oxf C pa Double-meal double-poly n-well CMOS process C mm C meal-o-meal 2.5 nf/cm 2 C oxm C meal-o-subsrae 5.2 nf/cm 2 C oxp C poly-o-subsrae 6.5 nf/cm 2 C mm C meal-o-poly 12.0 nf/cm 2

B C D E passivaion A m2 m2 m2 m2 m1 m1 field ox poly poly poly field ox field ox F m2 m1 G m2 field ox field ox 33 A B C D E E F G subsrae Layer Poly-subsrae Meal2-sub Poly-meal2 Meal1-sub Meal1-poly Meal1-meal2 Meal1-diffusion Meal2-diffusion Cap Ox Thickness Typ Value C p 3000 Å 50 af/µm 2 C m2 9000 Å 20 af/µm 2 C m2p 6000 Å 30 af/µm 2 C m1 6000 Å 30 af/µm 2 C m1p 3000 Å 60 af/µm 2 C m2m1 6000 Å 50 af/µm 2 C m1d 3000 Å 60 af/µm 2 Passivaion 6000 Å 30 af/µm 2 field ox 1 µm CMOS Capaciances ox 200Å C g 1800 af/µm 2 af 10-18 F

A B 32 Z ou Z c RLCG Transmission Line C V A τ delay Z ou << Z c τ buffer + τ fligh τ rise τ sele

ROUTE-LENGTH DESIGN GUIDE Node: a region of conneced pahs where he delay associaed wih signal prop is small compared o gae delays. 35 To ignore he RC delay of inerconnec, τ W << τ Pgae L lengh of roue r shee resisance c cap per uni lengh EXAMPLE: Consider a minimum widh meal1 roue o a node wih an associaed gae delay of 200 ps. Conservaively, L W < 5000λ λ design rule parameer GUIDELINES FOR IGNORING RC DELAYS (Wese, pp 205) Layer Max Lengh (L W ) meal3 10,000 meal2 8000 meal1 5000 silicide 600 poly 200 diffusion 60

POWER DISSIPATION 36 P s Saic power dissipaion due o leakage curren or oher curren drawn coninuously from he power supply. P d dynamic power dissipaion due o charging and discharging load capaciances (v in assumed o be square-like) P sc shor circui power dissipaion due o charging and discharging load capaciances during he inie rise and fall imes of v in.

V DD DYNAMIC POWER DISSAPATION V in, V ou 37 G S B V in D i Dp i Dp i C - i Dn G D B S i Dn T V ou i C P d 1 T v()i()d 0 V OL i C nmos ON T/2 T pmos ON nmos ON P d 1 T T/ 2 V ()i ()d ou Dn + 1 0 T T ( V DD V ou ())i Dp ()d T/ 2 where dv i Dn () C ou load d i Dp () dv ou d

P d 1 T T/ 2 0 V ou () dv C ou load d d + 1 T T T/ 2 ( V DD V ou ()) dv C ou load d d 38 V in, V ou V OL i C 0 nmos ON T/2 T pmos ON VDD nmos ON P d 1 T C V ()dv load ou ou + 1 VDD T C V V load( () DD ou )dv ou 0 1 2 T C V ou V ou 0 load + C 2 V ou VDD load V DD V ou V 2 ou V ou V DD 2 V ou 0

P d 1 2 T C V ou load V ou 0 2 V ou VDD + V DD V ou V 2 ou V ou V DD 2 V ou 0 39 1 T C V 2 load DD 2 P d V DD f APPLIES TO GENERAL CMOS LOGIC CIRCUITS V DD pmos Logic nmos Logic i Dp i Dn i C V ou

POWER-DELAY PRODUCT 40 where P * average swiching power dissipaion a max avg operaing frequency f max. & AVERAGE ENERGY required for a gae o swich is oupu from LOW o HIGH and from HIGH o LOW FUNDAMENTAL PARAMETER used o for measuring qualiy and performance of a CMOS process and gae design

POWER METER SIMULATION 41 V DD i DD + V s 0 + i βi C s R y y s V y Periodic Inpu T Period DEVICE or CIRCUIT C y dv y d βi S V y R y IF R y C y >> T SET C β V y DD T 1 T V y (T) V DD T i DD(τ)d τ > P d 0