Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from

Similar documents
Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

SR Allen, RS Fiske, Y Tamura Sumisu methods

Treatment of Data. Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample

Supplemental Information. I. Alternative version of Figure 1. II. Sample Preparation

Scarpati Claudio and Perrotta Annamaria

Data Repository for 40 Ar/ 39 Ar Age Constraints on the Duration of Resurgence at the Valles Caldera, New Mexico

Metcalf and Buck. GSA Data Repository

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

GSA DATA REPOSITORY

Engineering Geology ECIV 2204

Supplementary Materials for

GY 111: Physical Geology

Supporting Information

V. B. NAUMOV 1, V. A. KOVALENKER 2 and V. L. RUSINOV 2

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

IV. Governador Valadares clinopyroxenite, 158 grams find

Chapter IV MINERAL CHEMISTRY

APPENDICES. Appendix 1

Volatile solubility models and their application to magma storage and transport in the mantle and he crust. Julie Roberge ESIA-Ticoman, IPN Mexico

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

Dynamic weakening of ring faults and catastrophic caldera collapse

XM1/331 XM1/331 BLFX-3 XM1/331

Supplementary information

Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece)

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

Lecture 6 - Igneous Rocks and Volcanoes

Textures of Igneous Rocks

J. Mangas and F.J. Perez-Torrado. Departamento de Física. Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria.

Magmatic Sulfur and Chlorine Abundances at Stromboli, Italy and their Role in the Formation of Vesicle-hosted Metal Alloys

Igneous petrology EOSC 321 Laboratory 8: Intermediate and Felsic Volcanic Rocks. Pyroclastic Rocks

Rhyodacite magma storage conditions prior to the 3430 ybp caldera-forming eruption of Aniakchak volcano, Alaska

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B11202, doi: /2010jb007433, 2010

A4 CAI COMPOSITION: DIVALENT ELEMENT PARTITIONING AND CATHODOLUMINESCENCE. A4.1 Anorthite and Melt compositions for Synthetic CAI Composition 224SAM

Essentials of Geology, 11e

GSA Data Repository

SUPPLEMENTARY INFORMATION

Nature and Evolution of Primitive Vesuvius Magmas: an Experimental Study

XUV 773: X-Ray Fluorescence Analysis of Gemstones

Rocks. Types of Rocks

STUDY OF GROWTH RATE OF ALKALI FELDSPAR IN PHLEGRAEAN FIELDS TRACHYTES

Engineering Geology. Igneous rocks. Hussien Al - deeky

Classification of Igneous Rocks

GSA DATA REPOSITORY

Geochemical analysis unveils frictional melting process in a

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS

Table 1: Summary of petrographic characteristics for porphyritic samples from Campbell and Chatham islands, New Zealand phenocrysts sample location

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Summary of test results for Daya Bay rock samples. by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa

Understanding Magma Evolution at Campi Flegrei (Campania, Italy) Volcanic

Prelude to a Supervolcano: REU Investigations in the Miocene volcanic field of the southern Black Mountains, Arizona

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

Imagine the first rock and the cycles that it has been through.

Supplementary Table 1.

Lab 3 - Identification of Igneous Rocks

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

Characterization of Montana Grow Product David Mogk January 16, 2014

Supplementary information. Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent. body

Supplementary Information. Analytics

The Nature of Igneous Rocks

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Chemical Analysis of Anorthosites near Silver Bay, MN. Andrea Oswald Petrology 422, NDSU Spring 2016

Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano

Earth and Planetary Materials

Mejdar Deposit Petrogenesis A Case Study of Copper Mineralization Belt in North West of Iran

REGOLITH GEOCHEMISTRY OF THE NORTH KIMBERLEY, WESTERN AUSTRALIA: A STRONG PROXY FOR BEDROCK

Lab 4 - Identification of Igneous Rocks

Week 7 Submarine Pyroclastic Activity (there was no lecture for week 6)

Partitioning of chlorine between H 2 O-bearing fluid and basaltic melt of Mt. Etna

ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION

Igneous Processes I: Igneous Rock Formation, Compositions, and Textures

CHECKING COPY. ANNALS OF GEOPHYSICS, VOL. 47, N. 4, August 2004

APPENDIX A SAMPLING AND ANALYTICAL METHODS

Ore deposits related to mafic igneous rocks Diamonds - GLY 361 Lecture 3

X-Ray Fluorescence and Natural History

How 2 nd half labs will work

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

Rocks and the Rock Cycle notes from the textbook, integrated with original contributions

6. IGNEOUS ROCKS AND VOLCANIC HAZARDS

Supplementary material

"PHYSICOCHEMICAL STUDIES OF BASALT-LIKE MATERIALS INTENDED FOR USE AS RADIOACTIVE WASTE IMMOBILIZATION MATRICES "

Lecture 36. Igneous geochemistry

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

Lunar Glossary. Note to the User: Glossary

A Rock is a solid aggregate of minerals.

UV-V-NIR Reflectance Spectroscopy

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

Supplementary Materials for

Introduction. Volcano a vent where molten rock comes out of Earth

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40

Overview of the KAHT system. Ian E.M. Smith, School of Environment, University of Auckland

INTRODUCTION ROCK COLOR

Speciation of Individual Mineral Particles of Micrometer Size by the Combined Use of ATR-FT-IR Imaging and Quantitative ED-EPMA Techniques

Magma storage prior to the 1912 eruption at Novarupta, Alaska

Quiz Five (9:30-9:35 AM)

Paper 1: THE ROLE OF FLUORINE IN THE FORMATION OF COLOR ZONING IN RUBIES FROM MONG HSU, MYANMAR (BURMA)

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Trinitite the Atomic Rock

Very high-k KREEP-rich clasts in the impact melt breccia of the lunar meteorite SaU 169: New constraints on the last residue of the Lunar Magma Ocean

Nature and Evolution of Primitive Vesuvius Magmas: an Experimental Study

Transcription:

DATA REPOSITORY APPENDIX 1. ANALYTICAL TECHNIQUES Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from proximal lithic breccias deposits (Fig. DR1 and following table) Table. Samples of CI eruption studied for this work Pumice sample Eruptive unit Sampling site Position in eruptive unit PCF0033 plinian fall Acqua Fidia lower fallout, bottom PCF0035 plinian fall Acqua Fidia upper fallout, top PCF0031 ignimbrite Mondragone lower pyroclastic flow PCF0032 ignimbrite Mondragone upper pyroclastic flow PCFOF3D ignimbrite Caserta upper pyroclastic flow BM001 lithic-rich breccia Procida Pozzo Vecchio breccia BM002 lithic-rich breccia Procida Pozzo Vecchio breccia PCF005 lithic-rich breccia Procida Pozzo Vecchio breccia PCF009 lithic-rich breccia S.Arpino breccia PCF0010 lithic-rich breccia Trefola quarry breccia, bottom PCF0012 lithic-rich breccia Trefola quarry breccia, top PCF001 lithic-rich breccia Monte di Procida Acquamorta upper flow PCF0025 lithic-rich breccia Procida harbour upper flow The juvenile fractions show variable crystal content. Pumices from the Plinian fallout have a crystal content of ~5% vol., while the juvenile fraction of the ignimbritic phase has a very low crystal content (<< 5% vol.). In the lithic-rich breccia unit, subaphyric pumice (80% vol. of the juvenile fraction) coexists with porphyritic pumice, scoriae, and vitrophyre that are characterized by a relatively high crystal content (~30% vol.). K-feldspar (Or 60 88 ) is the dominant mineral phase, followed by clinopyroxene, plagioclase (Ab 60 An 30 ), biotite, and minor Fe Ti oxides and apatite (Tables DR1 and DR2). Clinopyroxene is present as unzoned salite crystals (Wo 48 Fs 12 Wo 50 Fs 14 ). A few crystals are characterized by a diopsidic core (Wo 47 Fs 5 ) and a sharp transition to thick salitic rims (Wo 49 Fs 13 ). Rare unzoned diopsidic clinopyroxene is only found in products from the lithic-rich breccia. Bulk rock samples were analyzed by XRF spectrometer ARL 9400 XP. SEM-EDS microanalysis was carried out on individual minerals, on MIs in phenocrysts, and on matrix glasses using a Philips XL30 EDAX

Genesis apparatus. Operating conditions were 20 kv and about 0.1 na beam current. A raster area of about 100 µm2 was employed for glass analysis to reduce the light element loss. The analyses were normalized to 100 wt% due to the EDAX software used. All MIs selected for analysis had a glassy appearance. The major element compositions of MIs (Table DR5) do not show any significant depletion or enrichment of elements that would indicate posttrapping crystallization of the host mineral. H 2 O content in MIs was determined by FTIR, using a Nicolet Magna-IR560 spectrometer coupled with a NicPlan infrared microscope. Typical analyses employed 512 scans. At least three spectra for different areas were collected for each MI. The concentrations C were calculated according to the Beer-Lambert law: C=100xAxM/[εxρxd], where A (absorbance) is the height of the IR absorption peaks, M the molar mass (g.mol -1 ), ε the molar absorptivity (lxmol -1 cm), ρ the density (g.cm -3 ) of glass (CI trachytic obsidian fragment) measured with a pycnometer (2390 g/l), and d the thickness measured by visual determination under a calibrated microscope with an error of 2-3 µm depending on the proximity of a given inclusion to the edge of the wafer. The quantitative procedure and the absorption band assignements described in Silver et al. (1990) and Wallace et al. (1999) were followed in this work. The molar absorptivity values chosen were: 62 for the 3570 cm -1, 1.36 for 5200 cm -1, and 1.58 for 4500 cm -1 bands, according to Di Matteo et al. (2004). The relative proportions of the two hydrous species (Fig. DR2) confirm the high cooling rate (Silver et al., 1990) hypothesized for MIs from fallout deposits. No C peak is observable above the background, indicating the CO 2 is below detection limit (about 50 ppm, depending on MI thickness). It has to be noted that H 2 O contents measured in this work are higher than the ones reported by Signorelli et al. (2001) on the same eruptive units (H 2 O 1.5 wt%). This discrepancy is due to the different method used in measuring the thickness of the glass inclusions. We maintain that the direct measurement performed in this study, although more time consuming, gives more reliable water concentration data. Homogenization experiments were carried out on doubly polished wafers of cystals separated from the pumice clasts. Only glassy MI, with a clear shrinkage bubble and no evidences of heterogeneous trapping

[Roedder, 1984], were chosen. For the high-temperature experimental study of MI a modified Leitz 1350 heating stage was used. The temperature was measured with a Pt-Pt90Rh10 thermocouple. The accuracy of measurement was around ±10 C, controlled by the melting point of gold and silver. Experiments were performed in a He atmosphere. The rate of heating was varied as a function of the rate of transformation in the inclusions and ranged from 2 to 40 C/min to the point of complete homogenization of MI, i.e., disappearance of bubbles. Pilot runs were carried out in order to define the correct heating/step procedure before the starting of thermometric data collection. Vapor loss can be excluded due to the reproducibility of experiments on the same MI. The whole data set is available from the authors upon request. DR Figure Captions Fig DR1 Schematic map of the Campi Flegrei area (Rosi et al., 1999, modified). Location of the outcrops sampled in this work (see Appendix 1): plinian fallout: AF = Aquafidia; ignimbrite: MG=Mondragone, CS=Caserta; lithic-rich breccia: PR= Procida Island, MP= Monte di Procida, TF= Trefola quarry, SA= S. Arpino). Fig. DR2 Concentrations of water dissolved as molecules of H 2 O (open symbols) and as OH (filled symbols) as function of total water content in upper (sample PCF0035, circles) and lower (sample PCF0033, triangles) fallout deposits. Fig. DR3 Sulfur v. H 2 O content of MI. The S content is unrelated to the H 2 O content.

Marianelli et al., Fig. DR1 2006209 Volturno River ITALY 41 20' Roccamonfina Rome Calore River MG CS 41 N AF Campi Flegrei caldera MP PR TF SA Vesuvius Napoli Procida I. 40 40' Ischia I. Salerno 14 E Capri I. 20 Km 15 E

2006209 wt% molecular H2O and OH 6 5 4 3 2 1 0 0 2 4 6 8 wt% H2O tot

2006209

Table DR1 Selected SEM-EDS analyses of K-feldspar and plagioclase in CI products K-feldspar Eruptive unit plinian fall plinian fall plinian fall plinian fall ignimbrite ignimbrite lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia Pumice sample PCF0033 PCF0033 PCF0035 PCF0035 PCF0032 PCF0032 BM001 BM001 PCF0010* PCF005 PCF005 K-fds1 core K-fds1 rim K-fds1 core K-fds1 rim K-fds1 core K-fds1 rim k-fds1core k-fds1rim K-fds1 unzoned K-fds1core k-fds1rim SiO 2 64.46 64.6 64.86 64.31 64.05 64.78 63.94 62.71 63.43 64.9 65.06 Al 2 O 3 19.98 19.89 19.49 19.88 19.64 19.66 19.28 19.84 19.76 19.54 19.68 FeO 0.22 0.32 0.32 0.25 0.22 0.12 0.29 0.23 0.26 0.13 0.31 CaO 0.57 0.45 0.39 0.47 0.49 0.18 0.62 0.44 0.41 0.47 0.47 Na 2 O 3.86 4.23 3.89 3.75 3.07 3.4 1.34 1.42 1.38 3.53 3.7 K 2 O 10.79 10.4 10.71 11.14 12.32 11.62 14.53 14.33 14.08 11.23 10.66 BaO 0.12 0.1 0.34 0.2 0.21 0.24 <ld 1.03 0.69 0.19 0.12 An 2.79 2.20 1.93 2.29 2.37 0.89 3.05 2.19 2.08 2.32 2.37 Ab 34.24 37.36 34.88 33.07 26.82 30.51 11.92 12.80 12.69 31.58 33.72 Or 62.97 60.44 63.19 64.64 70.81 68.6 85.03 85.01 85.22 66.10 63.92 plagioclase Eruptive unit plinian fall plinian fall plinian fall plinian fall ignimbrite ignimbrite lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia Pumice sample PCF0035 PCF0035 PCF0035 PCF0035 PCF0032 PCF0032 PCF005 PCF005 BM001 BM001 plg1core plg1rim plg5 core plg5rim plg7core plg7rim plg1core plg1rim plg1core plg1rim SiO 2 60.39 59.79 59.76 59.26 53.16 58.5 59.44 60.51 59.43 59.74 Al 2 O 3 24.38 24.7 24.82 24.85 27.28 25.4 25.02 24.29 24.89 24.8 FeO 0.4 0.44 0.35 0.48 0.44 0.48 0.37 0.58 0.54 0.43 CaO 5.73 6.32 6.08 6.22 8.7 6.82 6.67 5.78 6.24 6.14 Na 2 O 6.78 6.87 6.9 7.19 6.19 6.97 6.88 6.99 6.81 6.86 K 2 O 2.18 1.88 1.98 1.91 1.03 1.63 1.63 1.85 1.9 1.87 An 27.82 30.11 29.06 28.92 41.18 31.91 31.67 28.01 29.96 29.55 Ab 59.57 59.23 59.68 60.5 53.02 59.01 59.11 61.31 59.17 59.74 Or 12.60 10.66 11.27 10.57 5.8 9.08 9.22 10.68 10.86 10.71 SEM-EDS microanalysis was carried out on individual minerals using a Philips XL30 EDAX Genesis apparatus. Operating conditions were 20 kv and about 0.1 na beam current. The analyses were normalized to 100 wt% due to the EDAX software used.all Fe as FeO. dl= detection limit; nd= not determined; *= K-feldspar crystal clusters.

Table DR2 Selected SEM-EDS analyses of clinopyroxenes of CI products Eruptive unit plinian fall plinian fall plinian fall plinian fall ignimbrite ignimbrite lithic-rich breccialithic-rich breccialithic-rich breccialithic-rich breccialithic-rich breccialithic-rich breccia Pumice sample PCF0033 PCF0033 PCF0035 PCF0035 PCF0032 PCF0032 BM001 BM001 PCF001 PCF001 BM001 BM001 cpx1core cpx1rim cpx1core cpx1rim cpx6core cpx6rim cpx1core cpx1rim cpx2core cpx2rim cpx3core cpx3rim SiO 2 51.19 50.84 50.79 50.44 51.30 50.58 51.28 48.95 50.15 49.79 52.28 51.12 TiO 2 0.46 0.52 0.38 0.37 0.64 0.57 0.33 0.57 0.58 0.41 0.50 0.33 Al 2 O 3 3.34 3.40 3.02 3.29 3.51 3.50 2.43 3.29 3.25 3.40 2.67 3.25 FeO 8.15 8.07 8.35 8.39 3.97 8.09 8.47 8.97 8.02 8.34 3.48 7.58 MnO 0.31 0.42 0.51 0.46 0.17 0.17 0.68 0.52 0.47 0.40 0.14 0.20 MgO 13.74 13.94 13.40 13.48 16.63 13.83 12.78 11.96 13.38 13.16 16.79 14.20 CaO 22.55 22.30 23.21 23.21 23.46 22.94 23.41 25.20 23.52 24.09 23.27 22.91 Na 2 O 0.26 0.38 0.28 0.36 0.24 0.32 0.63 0.54 0.62 0.37 0.46 0.40 Cr 2 O 3 <dl 0.13 0.06 <dl 0.25 <dl <dl <dl <dl 0.04 0.41 <dl Wo 46.95 46.46 47.98 47.84 47.20 47.30 48.97 51.59 48.60 49.25 47.15 47.15 En 39.81 40.42 38.55 38.66 46.56 39.68 37.20 34.07 38.47 37.44 47.34 40.67 Fs 13.24 13.12 13.47 13.50 6.23 13.02 13.83 14.33 12.93 13.31 5.50 12.18 Mg* 0.75 0.75 0.74 0.74 0.88 0.75 0.73 0.70 0.75 0.74 0.90 0.77 SEM-EDS microanalysis was carried out on individual minerals using a Philips XL30 EDAX Genesis apparatus. Operating conditions were 20 kv and about 0.1 na beam current. The analyses were normalized to 100 wt% due to the EDAX software used.mg*= Mg/(Mg+Fetot); All Fe as FeO. Clinopyroxene structural formula have been calculated following Papike (1987). dl= detection limit.

Table DR3 Representative analysis of CI whole rocks Eruptive unit plinian fall plinian fall ignimbrite lithic-rich breccia lithic-rich breccia lithic-rich breccia Pumice sample PCF0033 PCF0035 PCF0032 PCF005 PCF0010 PCF001 SiO 2 60.53 60.71 59.87 61.26 59.8 60.28 TiO 2 0.54 0.49 0.48 0.44 0.45 0.43 Al 2 O 3 19.51 19.96 19.16 19.18 19.16 19.24 Fe 2 O 3 3.34 3.49 3.74 3.35 3.71 3.83 MnO 0.22 0.22 0.23 0.2 0.11 0.12 MgO 0.45 0.44 0.45 0.51 0.97 0.95 CaO 1.93 1.83 2.99 2.12 3.33 3.21 Na 2 O 5.8 5.69 5.76 5.99 3.43 3.78 K 2 O 7.08 7.01 6.85 7.45 8.99 8.77 P 2 O 5 0.01 0.01 0.012 0.02 0.11 0.1 Bulk rock samples were analyzed by XRF.

Table DR42006209 Selected SEM-EDS analyses of groundmass of CI products Eruptive unit plinian fall plinian fall ignimbrite ignimbrite lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia Pumice sample PCF0033 PCF0035 PCF0031 PCF0032 BM001 PCF005 PCF009 BM002 PCF001 n=30 σ n=25 σ n=25 σ n=26 σ n=25 σ n=20 σ n=25 σ n=5 σ n=24 σ SiO 2 60.75 0.26 60.80 0.30 60.87 0.18 61.22 0.28 60.39 0.23 60.53 0.18 60.80 0.36 60.72 0.21 60.79 0.23 TiO 2 0.49 0.07 0.50 0.07 0.47 0.08 0.46 0.10 0.50 0.09 0.51 0.08 0.48 0.08 0.51 0.08 0.47 0.09 Al 2 O 3 18.89 0.16 18.89 0.16 18.90 0.19 19.04 0.14 18.71 0.10 18.80 0.12 18.78 0.13 18.95 0.10 18.70 0.18 FeO 2.98 0.13 2.94 0.11 2.92 0.12 2.87 0.13 3.29 0.13 2.93 0.05 3.02 0.13 2.91 0.03 3.00 0.12 MnO 0.28 0.08 0.27 0.08 0.25 0.08 0.24 0.10 0.18 0.10 0.29 0.06 0.26 0.09 0.36 0.08 0.19 0.10 MgO 0.31 0.07 0.29 0.07 0.22 0.10 0.24 0.07 0.75 0.08 0.36 0.07 0.54 0.13 0.36 0.03 0.59 0.15 CaO 1.69 0.09 1.67 0.08 1.59 0.09 1.48 0.09 2.37 0.07 1.69 0.06 1.90 0.23 1.67 0.02 2.12 0.28 Na 2 O 6.44 0.15 6.53 0.15 6.57 0.16 6.20 0.19 3.60 0.26 6.57 0.09 4.93 0.37 6.62 0.09 4.64 1.15 K 2 O 7.38 0.14 7.31 0.16 7.28 0.14 7.39 0.14 9.85 0.30 7.34 0.08 8.64 0.17 7.22 0.07 9.04 0.95 P 2 O 5 0.02 0.04 0.03 0.06 0.10 0.10 0.10 0.11 nd nd 0.09 0.10 0.13 0.09 nd nd nd nd Cl 0.78 0.02 0.77 0.02 0.78 0.03 0.74 0.08 0.36 0.04 0.83 0.03 0.49 0.02 0.68 0.03 0.47 0.12 S 0.01 0.04 0.02 0.04 0.05 0.03 0.04 0.02 nd nd 0.06 0.05 0.02 0.12 nd nd nd nd Each analysis represents the average of n analyses made on a single pumice for the groundmass. σ = standard deviation All Fe as FeO. SEM-EDS microanalysis was carried out on matrix glasses using a Philips XL30 EDAX Genesis apparatus. Operating conditions were 20 kv and about 0.1 na beam current. A raster area of about 100 µm2 was employed for glass analysis to reduce the light element loss. The analyses were normalized to 100 wt% due to the EDAX software used

Table DR5 Selected SEM-EDS analyses of glass inclusions from CI pumices Eruptive unit plinian fall plinian fall plinian fall plinian fall plinian fall plinian fall plinian fall plinian fall plinian fall plinian fall plinian fall Pumice sample PCF0033 PCF0033 PCF0033 PCF0033 PCF0033 PCF0033 PCF0033 PCF0035 PCF0035 PCF0035 PCF0035 SiO 2 60.14 59.84 60.31 60.76 60.32 60.07 60.53 62.53 61.93 64.69 63.08 TiO 2 0.43 0.54 0.43 0.49 0.48 0.42 0.61 0.42 0.39 0.63 0.69 Al 2 O 3 19.55 20.00 18.76 19.07 18.64 18.88 18.83 18.61 19.05 17.42 17.85 FeO 2.80 2.80 3.49 3.02 3.52 3.58 3.39 2.48 2.24 2.63 2.57 MnO 0.14 0.10 0.04 0.29 0.13 0.07 0.15 0.12 0.13 0.18 0.20 MgO 0.46 0.64 0.98 0.28 0.96 1.01 0.82 0.43 0.39 0.34 0.40 CaO 1.67 1.76 2.54 1.57 2.54 2.59 2.22 1.31 1.56 1.51 1.50 Na 2 O 6.61 2.99 3.34 6.50 3.27 3.17 3.33 4.10 3.60 4.57 4.73 K 2 O 7.30 10.87 9.65 7.11 9.65 9.80 9.65 9.56 10.32 7.69 8.50 P 2 O 5 0.03 0.05 0.02 0.06 0.04 0.04 <dl 0.03 <dl <dl 0.04 Cl 0.84 0.37 0.37 0.79 0.35 0.36 0.38 0.37 0.38 0.34 0.41 S 0.03 0.03 0.07 0.06 0.09 0.03 0.09 0.04 0.02 0.00 0.04 Eruptive unit ignimbrite ignimbrite ignimbrite lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich breccia lithic-rich brec Pumice sample PCF0032 PCF0032 PCF0032 BM001 BM001 BM001 BM001 BM001 BM001 PCF0025 PCF0025 SiO 2 62.13 61.73 61.62 60.87 60.80 60.26 60.85 59.88 60.15 61.12 61.27 TiO 2 0.48 0.49 0.49 0.46 0.44 0.50 0.46 0.58 0.56 0.46 0.49 Al 2 O 3 19.58 18.82 18.66 19.62 19.40 20.03 18.95 17.65 18.09 19.63 19.14 FeO 2.69 2.79 2.81 2.66 2.65 2.38 3.17 3.35 3.08 2.44 2.85 MnO 0.16 0.16 0.16 0.13 0.10 0.10 0.17 0.32 0.16 0.08 0.06 MgO 0.29 1.09 1.25 0.69 0.71 0.72 0.62 1.57 1.40 0.57 0.63 CaO 0.76 1.90 2.12 1.79 1.78 1.91 2.33 4.05 3.71 1.58 1.70 Na 2 O 2.96 2.84 2.81 3.33 3.11 3.30 3.76 5.03 3.39 3.86 3.33 K 2 O 10.60 10.10 9.99 10.02 10.54 10.41 9.16 6.82 9.03 9.80 10.08 P 2 O 5 0.10 0.10 0.09 0.01 0.01 <dl 0.02 <dl 0.09 <dl 0.05 Cl nd nd nd 0.39 0.41 0.39 0.49 0.71 0.33 0.41 0.37 S nd nd nd 0.03 0.04 0.03 0.03 0.04 0.04 0.04 0.04 Each analyses represents the average of at least 3 analyses on a single melt inclusion. All Fe as FeO. dl = detection limit. nd= not determined. SEM-EDS microanalysis was carried out on MIs in phenocrysts using a Philips XL30 EDAX Genesis apparatus. Operating conditions were 20 kv and about 0.1 na beam current. A raster area of about 100 µm2 was employed for glass analysis to reduce the light element loss. The analyses were normalized to 100 wt% due to the EDAX software used.

Table DR6 Selected FT-IR data on MI. Eruptive unit Pumice sample spessore (µm) ABS H2O (3500cm -1 ) H 2 O wt% ABS H2O (5200cm -1 ) H 2 O mol 5200 wt% ABS OH (4500cm - plinian fall PCF0033 35 1.023 3.61 0.017 2.75 0.010 plinian fall PCF0033 35 1.003 3.54 0.010 1.54 0.015 plinian fall PCF0033 35 0.678 2.39 0.007 1.07 0.009 plinian fall PCF0033 35 0.795 2.80 0.009 1.38 0.010 plinian fall PCF0033 42 0.994 2.88 0.008 0.99 0.011 plinian fall PCF0033 24 1.108 5.67 0.020 4.58 0.008 plinian fall PCF0033 24 1.128 5.78 0.015 3.56 0.009 plinian fall PCF0033 52 1.116 2.62 0.013 1.42 0.009 plinian fall PCF0033 52 1.199 2.82 0.014 1.46 0.009 plinian fall PCF0033 28 0.769 3.37 0.013 2.66 0.007 plinian fall PCF0033 28 0.768 3.37 0.011 2.11 0.007 plinian fall PCF0035 35 0.983 3.46 0.012 1.85 0.010 plinian fall PCF0035 35 0.947 3.34 0.012 1.89 0.010 plinian fall PCF0035 18 0.525 3.55 0.006 1.69 0.005 plinian fall PCF0035 18 0.508 3.43 0.006 1.92 0.005 plinian fall PCF0035 25 0.674 3.31 0.013 2.85 0.004 plinian fall PCF0035 18 0.749 5.20 0.013 4.12 0.005 plinian fall PCF0035 18 0.830 5.77 0.015 4.81 0.005 plinian fall PCF0035 20 0.587 3.57 0.010 2.64 0.006 ignimbrite PCF0032 17 0.481 3.39 0.006 2.02 0.004 ignimbrite PCF0032 47 1.023 2.66 0.017 2.05 0.003 ignimbrite PCF0032 21 0.563 3.34 0.006 1.65 0.007 Only analyses for which water speciation data are available are reported here. The whole data set of H2O tot of MI is available upon request. The analythical procedure is described in Appendix 1