Sterile Neutrinos. Carlo Giunti

Similar documents
Status of Light Sterile Neutrinos Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Status of the Sterile Neutrino(s) Carlo Giunti

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

C. Giunti Sterile Neutrino Mixing NOW Sep /25

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Critical Review on Neutrino Anomalies. Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Sterile Neutrinos in July 2010

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Status of Sterile Neutrinos Carlo Giunti

Analysis of Neutrino Oscillation experiments

Impact of light sterile!s in LBL experiments "

Short-Baseline Neutrino Anomalies Carlo Giunti. Selected Puzzles in Particle Physics Laboratori Nazionali di Frascati December 2016

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

ev-scale Sterile Neutrinos

Two hot issues in neutrino physics

The Reactor Antineutrino Anomaly

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Short baseline neutrino oscillation experiments at nuclear reactors

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

The Daya Bay Reactor Neutrino Experiment

Status and prospects of neutrino oscillations

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Overview of Reactor Neutrino

Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong, , China

NEUTRINO OSCILLATIONS AND STERILE NEUTRINO C. Giunti

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Neutrino Physics: Lecture 12

On indications for sterile neutrinos at the ev scale. Invisibles 14 workshop, July 2014, Paris Thomas Schwetz

Phenomenological Status of Neutrino Mixing

Neutrino Oscillation Physics

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

PoS(ICRC2017)1024. First Result of NEOS Experiment. Kim Siyeon. Affiliation:Chung-Ang University. On behalf of NEOS Collaboration

Sterile neutrino oscillations

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Reactor Neutrino Oscillation Experiments: Status and Prospects

Solar and atmospheric ν s

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrinos in Supernova Evolution and Nucleosynthesis

Updated three-neutrino oscillation parameters from global fits

- Future Prospects in Oscillation Physics -

Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources

Particle Physics: Neutrinos part II

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Neutrino Oscillations

NEUTRINOS II The Sequel

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Neutrino Anomalies & CEνNS

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Sterile neutrinos: to be or not to be?

Particle Physics: Neutrinos part II

Neutrino Oscillations

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

Neutrino Experiments with Reactors

The ultimate measurement?

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

arxiv: v1 [hep-ph] 15 Apr 2019

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013

On Minimal Models with Light Sterile Neutrinos

Prospects of Reactor ν Oscillation Experiments

Neutrino Experiments with Reactors

In collaboration with:

Daya Bay and joint reactor neutrino analysis

The future of neutrino physics (at accelerators)

1 Neutrinos. 1.1 Introduction

Search for Sterile Neutrinos with the Borexino Detector

Sterile Neutrino Experiments at Accelerator

Neutrinos in Nuclear Physics

Mitchell Institute Neutrino Experiment at a Reactor (MINER) Status and Physics Reach

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

How large is the "LSND anomaly"?

Sterile Neutrino Search at the NEOS Experiment. Department of Physics, Chonnam National University, Gwangju 61186, Korea

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons


Prospects for Measuring the Reactor Neutrino Flux and Spectrum

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

PROSPECTs for Sterile Neutrino Searches at Reactors

Short baseline experiments and sterile neutrinos. Nick van Remortel Solvay-Francqui Workshop on Neutrinos May

Reactor Neutrinos I. Karsten M. Heeger. University of Wisconsin Pontecorvo Neutrino Summer School Alushta, Ukraine

Neutrino oscillation phenomenology

The Double Chooz Project

PROSPECTs for Sterile Neutrino Searches at Reactors

Future Reactor Expts. The Challenge. DoubleChooz. In France. Stanley Wojcicki. Far Detector m ~50 events/day

Current Results from Reactor Neutrino Experiments

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Transcription:

C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 Sterile Neutrinos Carlo Giunti INFN, Torino, Italy XI International Conference on Interconnections between Particle Physics and Cosmology Corpus Christi, Texas, USA, -6 May 07

Indications of SBL Oscillations Beyond 3ν C. Giunti Sterile Neutrinos PPC07 6 May 07 /5

C. Giunti Sterile Neutrinos PPC07 6 May 07 3/5 LSND [PRL 75 (995) 650; PRC 54 (996) 685; PRL 77 (996) 308; PRD 64 (00) 07] ν µ ν e 0 MeV E 5.8 MeV Well-known and pure source of ν µ p + target π + at rest µ + + ν µ µ + at rest e + + ν e + ν µ ν e + p n + e + Well-known detection process of ν e 3.8σ excess L 30 m But signal not seen by KARMEN at L 8 m with the same method [PRD 65 (00) 0]

C. Giunti Sterile Neutrinos PPC07 6 May 07 4/5 m (ev /c 4 ) Karmen Bugey CCFR NOMAD - - 90% (L max -L <.3) 99% (L max -L < 4.6) -3 - - sin θ m SBL 3 ev m ATM.5 3 ev m SOL

C. Giunti Sterile Neutrinos PPC07 6 May 07 5/5 MiniBooNE L 54 m ν µ ν e [PRL (009) 80] 00 MeV E 3 GeV ν µ ν e [PRL (03) 680] LSND signal LSND signal Purpose: check LSND signal. Different L and E. Similar L/E (oscillations). No money, no Near Detector. LSND signal: E > 475 MeV. Agreement with LSND signal? CP violation? Low-energy anomaly!

Gallium Anomaly Gallium Radioactive Source Experiments: GALLEX and SAGE ν e Sources: e + 5 Cr 5 V + ν e e + 37 Ar 37 Cl + ν e E 0.75 MeV E 0.8 MeV Test of Solar ν e Detection: ν e + 7 Ga 7 Ge + e R =N exp N cal 0.7 0.8 0.9.0. GALLEX SAGE Cr Cr R = 0.84 ± 0.05 L GALLEX =.9 m GALLEX SAGE Cr Ar L SAGE = 0.6 m m SBL ev m ATM m SOL.9σ deficit [SAGE, PRC 73 (006) 045805; PRC 80 (009) 05807; Laveder et al, Nucl.Phys.Proc.Suppl. 68 (007) 344, MPLA (007) 499, PRD 78 (008) 073009, PRC 83 (0) 065504] C. Giunti Sterile Neutrinos PPC07 6 May 07 6/5

Reactor Electron Antineutrino Anomaly C. Giunti Sterile Neutrinos PPC07 6 May 07 7/5 [Mention et al, PRD 83 (0) 073006] New reactor ν e fluxes [Mueller et al, PRC 83 (0) 05465; Huber, PRC 84 (0) 0467] R = N exp N cal 0.70 0.80 0.90.00..0 Bugey 3 Bugey 4 Chooz Daya Bay Double Chooz Gosgen ILL Krasnoyarsk Nucifer 3 L [m].8σ deficit Palo Verde RENO Rovno88 R = 0.934 ± 0.04 Rovno9 SRP

5 MeV Bump ) ( C. Giunti Sterile Neutrinos PPC07 6 May 07 8/5 i Events / 0. MeV (Data - MC) / MC 5000 000 5000 0. 0. 0 (a) Near Data MC 0. 3 4 5 6 7 8 Prompt Energy (MeV) Events / 0. MeV (Data - MC) / MC 500 5000 Entries / 50 kev 000 00 500 Ratio to Prediction (Huber + Mueller) 0. 0. contribution χ 0 (b) 0000 5000.. 0.9 0.8 Data Far Data MC Full uncertainty Reactor uncertainty ILL+Vogel 4 6 8 0. 4 3 4 5 6 7 8 Prompt Energy Prompt Energy (MeV) χ 4 0 Integrated 4 6 8 4 6 8 3 4 5 6 Local p-value ( MeV windows) [RENO, arxiv:5.05849] [Daya Bay, arxiv:508.0433] It is correlated with the reactor activity. Cannot be explained by neutrino oscillations. Very likely due to theoretical miscalculation of the spectrum. 3% effect on total flux. It seems to be an excess!

Daya Bay Reactor Fuel Evolution Reactor ν e flux produced by the β decays of the fission products of 35 U, 38 U, 39 Pu, 4 Pu. σf [ 43 cm / fission] 6.05 6.00 5.95 5.90 5.85 5.80 5.75 5.70 0.63 0.60 Best fit Average F 35 0.57 0.54 Model (Rescaled) Daya Bay 0.5 0.4 0.6 0.8 0.30 0.3 0.34 0.36 F 39 Linear fit: equal suppression (oscillations) disfavored at 3.σ. It is not clear which is the correspondence of the best linear fit with the suppression of the four fluxes. [Daya Bay, arxiv:704.08] σ39 [ 43 cm / fission] 5.5 5.0 4.5 4.0 3.5 3.0 Daya Bay Huber model w/ 68% C.L. σ38 = (. ±. 0) 43 σ4 = (6. 04 ± 0. 60) 43 C.L 68% 95% 99.7% 5. 5.6 6.0 6.4 6.8 7. σ35 [ 43 cm / fission] 9 4 χ 4 9 Oscillations: χ /NDF = 7.9/ disfavored at.8σ. Uncertainty of theoretical fluxes in oscillation fit seems not to be taken in account because with different covariance matrices the models are not nested and one cannot apply the χ /NDF estimation. C. Giunti Sterile Neutrinos PPC07 6 May 07 9/5

C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 Daya Bay χ min NDF GoF 35 U 4.6 7 70% OSC 9.6 7 % All Reactors χ min NDF GoF 35 U 9.4 3 60% OSC 3.7 3 43% σ f / σ f th 0.75 0.85 0.95.05.5 35 U OSC σ f / σ f th 0.75 0.85 0.95.05.5 35 U OSC F i 0.0 0. 0.4 0.6 0.8.0 ILL Krasnoyarsk87 33 Krasnoyarsk87 9 Krasnoyarsk94 57 Krasnoyarsk99 34 SRP 8 SRP 4 Nucifer Daya Bay 0.5 Palo Verde Gosgen 38 Rovno88 S Daya Bay 0.74 Rovno88 I Rovno9 Rovno88 I Rovno88 S Daya Bay 0.87 Gosgen 46 Daya Bay 0.99 RENO Daya Bay 0.3 Rovno88 S Daya Bay 0.3 Bugey 4 Bugey 3 5 Bugey 3 40 Bugey 3 95 Gosgen 65 Daya Bay 0.33 F 35 F 38 F 39 F 4 Double Chooz Daya Bay 0.344 Chooz L 3 Nucifer ILL Bugey 4 Bugey 3 5 Rovno9 Rovno88 I Rovno88 I Rovno88 S Rovno88 S SRP 8 SRP 4 Rovno88 S Krasnoyarsk87 33 Krasnoyarsk99 34 Gosgen 38 Bugey 3 40 Gosgen 46 Krasnoyarsk94 57 Gosgen 65 Krasnoyarsk87 9 Bugey 3 95 RENO Double Chooz Daya Bay 0.344 Daya Bay 0.33 Daya Bay 0.3 Daya Bay 0.3 Daya Bay 0.99 Daya Bay 0.87 Daya Bay 0.74 Daya Bay 0.5 Palo Verde Chooz [CG, Laveder, Li, in preparation]

C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 P ν e νe 0.70 0.80 0.90.00..0 Bugey 4 Rovno9 E 4MeV sin ϑ ee = 0. m 4 = 0. ev m 4 = 0.5 ev m 4 =.0 ev Rovno88 Bugey 3 Gosgen ILL 3 L [m] Krasnoyarsk SRP Nucifer R DC DB DC R DB m SBL 0.5 ev m ATM m SOL

ε C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 NEOS [arxiv:6.0534] Events /day/0 kev Data/Prediction Data/Prediction 60 50 40 30 0..0 (a) (b) Prompt Energy [MeV] Data signal (ON-OFF) Data background (OFF) MC 3ν (H-M-V) MC 3ν (Daya Bay) NEOS/H-M-V Systematic total 7 6 5 4 3 3 4 5 6 7 8 Neutrino Energy [MeV] 0.9. 3 4 5 6 7 (c) NEOS/Daya Prompt BayEnergy [MeV] Systematic total.0 (.73 ev, 0.050) (.3 ev, 0.4) 0.9 3 4 5 6 7 Prompt Energy [MeV] 3 Hanbit Nuclear Power Complex in Yeong-gwang, Korea. Thermal power of.8 GW. Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 4 m from the reactor core. The measured antineutrino event rate is 976 per day with a signal to background ratio of about.

C. Giunti Sterile Neutrinos PPC07 6 May 07 3/5 ] 4 [ev m RAA allowed 90% CL 95% CL 99% CL NEOS Spectrum 90% CL 95% CL 99% CL Excluded NEOS 90% CL Bugey-3 90% CL Daya Bay 90% CL s [ev ] m 4 + sin θ 4 Raster Scan [NEOS, arxiv:6.0534] Best Fits: m4 =.7 ev sin θ 4 = 0.05 m4 =.3 ev sin θ 4 = 0.04 3 sin ϑ ee -D χ Analysis χ no osc. χ min = 6.5.σ anomaly

C. Giunti Sterile Neutrinos PPC07 6 May 07 4/5 Effective 3+ SBL Oscillation Probabilities Appearance (α β) ( ) m P SBL ( ) sin ϑ ν ( ) αβ sin 4 L α ν β 4E Disappearance ( ) m P SBL ( ) sin ϑ ν ( ) αα sin 4 L α ν α 4E sin ϑ αβ = 4 U α4 U β4 sin ϑ αα = 4 U α4 ( U α4 ) U e U e U e3 U e4 U µ U µ U µ3 U µ4 U = U τ U τ U τ3 U τ4 U s U s U s3 U s4 SBL 6 mixing angles 3 Dirac CP phases 3 Majorana CP phases CP violation is not observable in SBL experiments! Observable in LBL accelerator exp. sensitive to matm [de Gouvea et al, PRD 9 (05) 053005, PRD 9 (05) 0730, arxiv:605.09376; Palazzo et al, PRD 9 (05) 07307, PLB 757 (06) 4; Gandhi et al, JHEP 5 (05) 039] and solar exp. sensitive to m SOL [Long, Li, CG, PRD 87, 3004 (03) 3004]

C. Giunti Sterile Neutrinos PPC07 6 May 07 5/5 Global ν e and ν e Disappearance [Gariazzo, CG, Laveder, Li, arxiv:703.00860] [ev ] m 4 ν edis σ σ σ Reactors Gallium ν ec Sun TK KARMEN+LSND ν e C [Conrad, Shaevitz, PRD 85 (0) 0307] [CG, Laveder, PLB 706 (0) 0] Solar ν e + KamLAND ν e [Li et al, PRD 80 (009) 3007, PRD 86 (0) 304] [Palazzo, PRD 83 (0) 303, PRD 85 (0) 07730] TK Near Detector ν e disappearance [TK, PRD 9 (05) 05] + sin ϑ ee χ NO = 4. 3. anomaly Best Fit: m 4 =.7 ev sin ϑ ee = 0.066 U e4 = 0.07 χ min /NDF = 63.0/74 GoF = 7% χ PG /NDF PG = 3.7/7 GoF PG = 6%

C. Giunti Sterile Neutrinos PPC07 6 May 07 6/5 Global ν e and ν e Disappearance + β Decay [Gariazzo, CG, Laveder, Li, arxiv:703.00860] ν edis+β σ σ ν edis β Best Fit: m 4 =.7 ev sin ϑ ee = 0.066 U e4 = 0.07 m 4 [ev ] + cm Losc 4 7 m at E [MeV] 0.0050 sin ϑ ee 0.3 at sin ϑ ee

The Race for ν e and ν e Disappearance C. Giunti Sterile Neutrinos PPC07 6 May 07 7/5 3 CeSOX shape (95% CL) CeSOX rate (95% CL) CeSOX rate+shape (95% CL) BEST (σ) IsoDAR@KamLAND (5yr, ) C ADS (5yr, ) KATRIN (90% CL) ν edis+β σ σ 3 DANSS (yr, 95% CL) Neutrino 4 (yr, 95% CL) PROSPECT phase (3yr, ) PROSPECT phase (3yr, ) SoLiD phase (yr, 95% CL) SoLiD phase (3yr, ) STEREO (yr, 95% CL) ν edis+β σ σ [ev ] m 4 [ev ] m 4 3 3 sin ϑ ee CeSOX (Gran Sasso, Italy) 44 Ce ν e BOREXINO: L 5-m [Vivier@TAUP05] BEST (Baksan, Russia) 5 Cr ν e L 5-m [PRD 93 (06) 07300] IsoDAR@KamLAND (Kamioka, Japan) 8 Li ν e L 6m [arxiv:5.0530] C-ADS (Guangdong, China) 8 Li ν e L 5m [JHEP 60 (06) 004] sin ϑ ee DANSS (Kalinin, Russia) L -m [arxiv:606.0896] Neutrino-4 (RIAR, Russia) L 6-m [JETP (05) 578] PROSPECT (ORNL, USA) L 7-m [arxiv:5.00] SoLid (SCK-CEN, Belgium) L 5-8m [arxiv:5.07835] STEREO (ILL, France) L 8-m [arxiv:60.00568] KATRIN (Karlsruhe, Germany) 3 H ν e [Drexlin@NOW06]

ν µ ν e and ν µ ν e Appearance 99% CL LSND MiniBooNE KARMEN NOMAD BNL E776 ICARUS OPERA [ev ] m 4 + ν µ ν e 90% CL 95% CL 99% CL 3 sin ϑ eµ C. Giunti Sterile Neutrinos PPC07 6 May 07 8/5

ν µ and ν µ Disappearance [ev ] m 4 99% CL CDHSW: νµ (984) ATM: νµ + νµ SciBooNE MiniBooNE: νµ (0) SciBooNE MiniBooNE: νµ (0) MINOS: νµ CC+NC (06) IceCube: νµ + νµ (06) sin ϑ µµ C. Giunti Sterile Neutrinos PPC07 6 May 07 9/5

3+ Appearance-Disappearance Tension ν e DIS sin ϑ ee 4 U e4 ν µ ν e APP ν µ DIS sin ϑ µµ 4 U µ4 sin ϑ eµ = 4 U e4 U µ4 4 sin ϑ ee sin ϑ µµ [Okada, Yasuda, IJMPA (997) 3669; Bilenky, CG, Grimus, EPJC (998) 47] ν µ ν e is quadratically suppressed! [ev ] m 4 PrGlo7 σ σ ν e Dis ν µ Dis Dis App 4 3 PrGlo7 = Pragmatic Global Fit 07 sin ϑ eµ C. Giunti Sterile Neutrinos PPC07 6 May 07 0/5 [Gariazzo, CG, Laveder, Li, arxiv:703.00860] χ NO = 47.4 6.σ anomaly Best Fit: m4 =.7 ev U e4 = 0.00 U µ4 = 0.05 χ min /NDF = 595./579 GoF = 3% χ PG /NDF PG = 7./ GoF PG =.7% Similar tension in 3+, 3+3,..., 3+N s [CG, Zavanin, MPLA 3 (05) 650003]

C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 Effects of MINOS, IceCube and NEOS ( ) ν µ ( ) ν µ PrGlo6A PrGlo6A + MINOS PrGlo6A + IceCube PrGlo6A + MINOS + IceCube = PrGlo6B ( ) ν e ( ) ν e PrGlo6A PrGlo6A + MINOS + IceCube = PrGlo6B PrGlo6A + MINOS + IceCube + NEOS = PrGlo7 [ev ] [ev ] + m 4 m 4 MINOS IceCube sin ϑ µµ NEOS sin ϑ ee

C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 The Race for the Light Sterile ( ) ν e ( ) ν e PrGlo7 σ σ PrGlo7 σ σ [ev ] [ev ] m 4 m 4 DANSS (yr, 95% CL) Neutrino 4 (yr, 95% CL) PROSPECT phase (3yr, ) PROSPECT phase (3yr, ) SoLiD phase (yr, 95% CL) SoLiD phase (3yr, ) STEREO (yr, 95% CL) sin ϑ ee CeSOX shape (95% CL) CeSOX rate (95% CL) CeSOX rate+shape (95% CL) BEST (σ) IsoDAR@KamLAND (5yr, ) C ADS (5yr, ) KATRIN (90% CL) sin ϑ ee

C. Giunti Sterile Neutrinos PPC07 6 May 07 3/5 ( ) ν µ ( ) ν e ( ) ν µ ( ) ν µ SBN (3yr, ) nuprism () JSNS () SBN (3yr, ) KPipe (3yr, ) [ev ] [ev ] m 4 m 4 PrGlo7 σ σ 4 3 sin ϑ eµ PrGlo7 σ σ sin ϑ µµ

C. Giunti Sterile Neutrinos PPC07 6 May 07 4/5 New Preliminary Bound from MINOS & MINOS+ Flanagan @ PPC07 PrGlo7 σ σ m 4 [ev ] MINOS 90% CL MINOS 99% CL MINOS 99.73% CL () MINOS & MINOS+ 90% CL sin ϑ µµ

C. Giunti Sterile Neutrinos PPC07 6 May 07 5/5 Conclusions Exciting indications of light sterile neutrinos at the ev scale: LSND ν µ ν e signal (caveat: single experimental signal). Gallium ν e disappearance (caveat: overestimated detector efficiency?). Reactor νe disappearance (caveat: Daya Bay reactor fuel evolution). Vigorous experimental program to check conclusively in a few years: ν e and ν e disappearance with reactors and radioactive sources. ν µ ν e transitions with accelerator neutrinos. ν µ disappearance with accelerator neutrinos. Independent tests through effect of m 4 in β-decay and ββ 0ν -decay. Cosmology: strong tension with N eff = and m 4 ev. It may be solved by a non-standard cosmological mechanism. Possibilities for the next years: Reactor and source experiments νe and ν e observe SBL oscillations: big excitement and explosion of the field. Otherwise: still marginal interest to check the LSND appearance signal. In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g kev sterile neutrinos).