Visualizing out-of-equilibrium superconductivity

Similar documents
Disordered Superconductors

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

Scanning Tunneling Microscopy/Spectroscopy

QS School Summary

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Non-equilibrium superconductivity in microwave resonators

Testing axion physics in a Josephson junction environment

Anomalous optical response in TiN LEKIDs

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Conference on Superconductor-Insulator Transitions May 2009

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Vortices in superconductors& low temperature STM

arxiv: v1 [physics.ins-det] 13 Nov 2017

STM spectroscopy (STS)

Talk online at

Studies of Iron-Based Superconductor Thin Films

Noncontact-AFM (nc-afm)

Spectroscopy at nanometer scale

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Probing into the Electrical Double Layer Using a Potential Nano-Probe

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

From single magnetic adatoms to coupled chains on a superconductor

LECTURE 2: Thermometry

M.C. Escher. Angels and devils (detail), 1941

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

arxiv:cond-mat/ v1 [cond-mat.supr-con] 15 Jun 2001

Design and Characterisation of Titanium Nitride Subarrays of Kinetic Inductance Detectors for Passive Terahertz Imaging

Lecture 2: Double quantum dots

Vortices in Classical Systems

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties.

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films

I. Review of Fe-based Superconductivity II. Disorder effects in unconventional SC

SUPPLEMENTARY INFORMATION

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

p 0 Transition in Superconductor-Ferromagnet-Superconductor Junctions 1

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Quantum Phase Slip Junctions

Vortex drag in a Thin-film Giaever transformer

Quantum Spectrometers of Electrical Noise

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona.

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Magnetically Induced Electronic States in 2D Superconductors

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

THz QCL sources based on intracavity difference-frequency mixing

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

Anomalous Metals and Failed Superconductors. With B. Spivak and A. Kapitulnik (also P. Oreto)

BKT transition in thin superconducting films and artificial nanostructures

Nano devices for single photon source and qubit

From optical graphene to topological insulator

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

The fate of the Wigner crystal in solids part II: low dimensional materials. S. Fratini LEPES-CNRS, Grenoble. Outline

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Apparent reversal of molecular orbitals reveals entanglement

H c2 II (T) β"-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk

Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1

Can superconductivity emerge out of a non Fermi liquid.

Signatures of the precursor superconductivity above T c

Temperature Measurement

Many-body correlations in STM single molecule junctions

Terahertz sensing and imaging based on carbon nanotubes:

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Vortex matter in HTS Grain Boundary Josephson Junctions: Intrinsic and Extrinsic d-wave Effects

arxiv:cond-mat/ v1 [cond-mat.supr-con] 8 Jan 2006

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

F. Rullier-Albenque 1, H. Alloul 2 1

LECTURE 3: Refrigeration

Disordered metals without quasiparticles, and charged black holes

Ultrafast Dynamics in Complex Materials

Publication II. c (2007) The American Physical Society. Reprinted with permission.

Procesy Andreeva w silnie skorelowanych układach fermionowych

CHARGE TRANSPORT ALONG MOLECULAR WIRES

Quantum Transport in InAs/GaSb

NMR in Strongly Correlated Electron Systems

Audrey GROCKOWIAK. Grenoble, France

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Visualization of atomic-scale phenomena in superconductors

Quantum optics with multi-level transitions in semiconductor quantum dots

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

Protection of excited spin states by a superconducting energy gap

Can electron pairing promote the Kondo state?

Ultrahigh-resolution photoemission study of superconductors and strongly correlated materials using quasi-cw VUV laser

Monoenergetic Proton Beams from Laser Driven Shocks

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Superconducting Single-photon Detectors

Conference on Superconductor-Insulator Transitions May 2009

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Transcription:

Strongly disordered and inhomogenous superconductivity- Grenoble -2016 Visualizing out-of-equilibrium superconductivity Claude Chapelier, INAC, CEA - UGA Eduard Driessen, IRAM 1- Superconducting Photon detector 2- Critical current microscopy 3- Where do the subgap states come from?

Superconducting photon detector f 0 = 1 2π LC L = m n s e 2 = ħ R n π T tanh (T) 2k B T P.K. Day et al., Nature 425, 817 (2003)

Superconducting photon detector E.F.C. Driessen et al., Phys. Rev. Lett. 109, 107003, (2012) P.C.J.J. Coummou et al., Phys. Rev.B 88, 180505(R), (2013) f 0 = 1 2π LC L = m n s e 2 = ħ R n π T tanh (T) 2k B T P.K. Day et al., Nature 425, 817 (2003)

Superconducting photon detector E.F.C. Driessen et al., Phys. Rev. Lett. 109, 107003, (2012) P.C.J.J. Coummou et al., Phys. Rev.B 88, 180505(R), (2013) f 0 = 1 2π LC L = m n s e 2 = ħ R n π T tanh (T) 2k B T

Superconducting photon detector E.F.C. Driessen et al., Phys. Rev. Lett. 109, 107003, (2012) P.C.J.J. Coummou et al., Phys. Rev.B 88, 180505(R), (2013) f 0 = 1 2π LC L = m n s e 2 = ħ R n π T tanh (T) 2k B T Tc = 3,5 K M.V. Feigelman and M.A. Skvortsov, Phys. Rev. Lett. 109, 147002 (2012) A.I. Larkin and Yu. N. Ovchinnikov, Sov. JETP 34, 1144 (1972) A. Bespalov et al, Phys. Rev. B 93, 104521 (2016) A. Bespalov et al, arxiv:1603,04273v1 (2016) A. Silva et al., Phys. Rev. B 72, 224505 (2005)

Superconducting photon detector N qp τ r = τ 0N 0 k B T c 3 V 2Δ 2 P opt = N qp τ r 2 α N qp δa, δf α δn qp δa, δf δp opt δp opt 1 2 α P opt δa δp opt J. Bueno et al., Appl. Phys. Lett. 105, 192601, (2014) δf δp opt ~ cste J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015)

Superconducting photon detector N qp τ r = τ 0N 0 k B T c 3 V 2Δ 2 P opt = N qp τ r 2 α N qp δa, δf α δn qp δa, δf δp opt δp opt 1 2 α P opt δa δp opt δf δp opt ~ cste J. Gao et al., Appl. Phys. Lett. 101, 142602 (2012) J. Bueno et al., Appl. Phys. Lett. 105, 192601, (2014) J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015)

Superconducting photon detector N qp τ r = τ 0N 0 k B T c 3 V 2Δ 2 P opt = N qp τ r 2 α N qp δa, δf α δn qp δa, δf δp opt δp opt 1 2 α P opt Understanding the recombination physics in is required J. Gao et al., Appl. Phys. Lett. 101, 142602 (2012) J. Bueno et al., Appl. Phys. Lett. 105, 192601, (2014) J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015) Sacépé et al., Phys. Rev. Lett. 101, 157006 (2008)

Critical current microscopy 2- Critical current microscopy

STM Critical on current an nanowire microscopy Vt It 100 MΩ to feedback electronics and lockin 10 MΩ Device fabrication in Kavli Nanolab Nanowire: 5nm x 200 nm x 4 µm Tc = 1.5 K, Rs = 1.5 kω D = 250 mv, D/ Tc = 1.9 E. Driessen et al., unpublished

Critical current microscopy Topography DOS (E F ) E. Driessen et al., unpublished

Critical current microscopy Local non-equilibrium! Vt It 100 MΩ In 10 MΩ to feedback electronics and lockin Vn It = 1nA E. Driessen et al., unpublished

Critical current microscopy Long live time of quasiparticles close to the gap Vt It 100 MΩ In 10 MΩ to feedback electronics and lockin Vn It = 200pA It = 500pA It = 2nA It = 1nA

Critical current microscopy Local non-equilibrium! Vt It 100 MΩ In 10 MΩ to feedback electronics and lockin Vn It = 1 na, Vb = 2 mv E. Driessen et al., unpublished

Critical current microscopy Long live time of quasiparticles close to the gap Vt It 100 MΩ In 10 MΩ to feedback electronics and lockin Vn It = 200pA It = 500pA It = 2nA It = 1nA

TIN Superconductor-Insulator transition B. Sacépé et al., Nat. Comm., (2010) R [k ] 8 7 6 5 4 3 2 1 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 T [K] 1 2 3 T c [K] Δ/T c 4.7 1.8 1.3 2.3 1 2.6 0.45 4 2,0 2,0 2,0 G(V), normalized 1,5 1,0 0,5 D = 154 µev T eff = 0,35 K G(V), normalized 1,5 1,0 0,5 D = 225 µev T eff = 0,32 K G(V), normalized 1,5 1,0 0,5 D = 260 µev T eff = 0,25 K 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] 0,0-1,0-0,5 0,0 0,5 1,0 V [mv] Increasing disorder Sacépé et al., PRL 101, 157006 (2008)

TIN Superconductor-Insulator transition di/dv (a.u.) V (mv) Device fabrication in Kavli Nanolab Nanowire: 5nm x 200 nm x 4 µm Tc = 1.5 K, Rs = 1.5 kω D = 250 mv, D/ Tc = 1.9

Where do the subgap states come from? 3- Where do the subgap states come from?

Where do the subgap states come from? Δ/T c = 1.76 h D 2 2 θ x 2 + ie Γ in 2Γ sf cos θ sin θ + Δ(x) cos θ = 0 n E, x = n 0 Re cos θ(e, x) ds,n di/dv 3,0 2,5 2,0 1,5 x exp = 0 nm x cal = 0 nm x exp = 12 nm x cal = 9 nm x exp = 20 nm x cal = 21 nm x exp = 32 nm x cal = 31 nm 1,0 0,5 W. Escoffier et al., Phys. Rev. Lett. 93, 217005 (2004) 0,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 E (mev)

Where do the subgap states come from? C. Gong et al., J.Mater. Chem. 21, 15273 (2011)

Conclusion Disordered superconductors are promising materials for photon detector however, quasipartricle dynamic must be understood Critical current microscopy is a powerful tool in order to probe out-of-equilibrium superconductivity Materials must be well controlled and characterized