Talk online at

Size: px
Start display at page:

Download "Talk online at"

Transcription

1 Talk online at

2 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

3 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

4 Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

5 The insulator:

6 Excitations of the insulator:

7 Excitations of the insulator: S = d 2 rdτ [ τ ψ 2 + c 2 ψ 2 + s ψ 2 + u 2 ψ 4]

8 S = d 2 rdτ [ τ ψ 2 + c 2 ψ 2 + s ψ 2 + u 2 ψ 4]

9 S = d 2 rdτ [ τ ψ 2 + c 2 ψ 2 + s ψ 2 + u 2 ψ 4]

10 Antiferromagnetism in the cuprate superconductors Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y

11 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q For small Q ij ijkl ( Si S j 1 4 )( Sk S l 1 4) Order parameter Φ =( 1) i S i

12 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q ij ijkl Low energy field theory ( Si S j 1 4 )( Sk S l 1 4)

13 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q ij ijkl Low energy field theory ( Si S j 1 4 )( Sk S l 1 4) Incorrect: predicts a state for s>s c with no broken symmetries, a gap to all excitations, and a low energy S = 1 quasiparticle of Φ quanta. There is no such state for the S =1/2 antiferromagnet

14 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q ij ijkl Low energy field theory ( Si S j 1 4 )( Sk S l 1 4)

15 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q Phase diagram ij ijkl ( Si S j 1 4 )( Sk S l 1 4) Coulomb phase Gapless photon A μ Higgs phase: Néel order z α 0, Φ 0. No broken symmetry?

16 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q Phase diagram ij ijkl ( Si S j 1 4 )( Sk S l 1 4) Coulomb phase Gapless photon A μ Higgs phase: Néel order z α 0, Φ 0. No broken symmetry?

17

18 N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

19 S=1/2 Heisenberg antiferromagnets on the square lattice H = J S i S j Q ij ijkl ( Si S j 1 4 )( Sk S l 1 4) Phase diagram or Higgs phase: Néel order z α 0, Φ 0. Coulomb phase: VBS order, Monopole V 0

20 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

21 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

22 S = d 2 rdτ [ τ ψ 2 + c 2 ψ 2 + s ψ 2 + u 2 ψ 4]

23 T Quantum critical T KT 0 Superfluid g c Insulator g

24 T Wave oscillations of the condensate (classical Gross- Pitaevski equation) Quantum critical T KT 0 Superfluid g c Insulator g

25 T Dilute Boltzmann gas of particle and holes Quantum critical T KT 0 Superfluid g c Insulator g

26 CFT at T>0 T Quantum critical T KT 0 Superfluid g c Insulator g

27 Resistivity of Bi films Conductivity σ σ Superconductor (T 0) = σ Insulator (T 0) = 0 σ Quantum critical point (T 0) 4e2 h D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

28 Density correlations in CFTs at T >0 Two-point density correlator, χ(k, ω) Kubo formula for conductivity σ(ω) = lim k 0 iω χ(k, ω) k2

29 Density correlations in CFTs at T >0 Two-point density correlator, χ(k, ω) Kubo formula for conductivity σ(ω) = lim k 0 iω χ(k, ω) k2

30 Density correlations in CFTs at T >0 Two-point density correlator, χ(k, ω) Kubo formula for conductivity σ(ω) = lim k 0 iω χ(k, ω) k2 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

31 Density correlations in CFTs at T >0 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

32 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

33 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

34

35 Collisionless to hydrodynamic crossover of SYM3 Imχ(k, ω)/k 2 Im K k2 ω 2 P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007)

36 Collisionless to hydrodynamic crossover of SYM3 Imχ(k, ω)/k 2 Im Dχ c Dk 2 iω P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007)

37 Universal constants of SYM3 χ c = k BT (hv) 2 Θ 1 D = hv2 k B T Θ 2 σ(ω) = 4e 2 4e 2 2N 3/2 K = 3 Θ 1 = 8π2 2N 3/2 Θ 2 = 3 8π 2 h K, ω k BT h Θ 1Θ 2, ω k B T C. Herzog, JHEP 0212, 026 (2002) P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) 9

38 Electromagnetic self-duality

39 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

40 Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 3. SYM3 with N = 8 supersymmetry 4. Nernst effect in the cuprate superconductors Quantum criticality and dyonic black holes

41 Dope the antiferomagnets with charge carriers of density x by applying a chemical potential μ Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y

42 Superconductor T μ

43 T Superconductor Nernst measurements μ

44 Nernst experiment e y H m H

45 T Superconductor Nernst measurements μ

46 T Nernst measurements Superconductor μ Scanning tunnelling microscopy

47 STM studies of the underdoped superconductor Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y

48 Topograph Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

49 di/dv Spectra Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y Intense Tunneling-Asymmetry (TA) variation are highly similar Y. Kohsaka et al. Science 315, 1380 (2007)

50 Topograph Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

51 Tunneling Asymmetry (TA)-map at E=150meV Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

52 Tunneling Asymmetry (TA)-map at E=150meV Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

53 Tunneling Asymmetry (TA)-map at E=150meV Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y 12 nm Indistinguishable bond-centered TA contrast with disperse 4a 0 -wide nanodomains Y. Kohsaka et al. Science 315, 1380 (2007)

54 TA Contrast is at oxygen site (Cu-O-Cu bond-centered) R map (150 mv) Ca 1.88 Na 0.12 CuO 2 Cl 2, 4 K 4a 0 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

55 TA Contrast is at oxygen site (Cu-O-Cu bond-centered) R map (150 mv) Ca 1.88 Na 0.12 CuO 2 Cl 2, 4 K 4a 0 12 nm Evidence for VBS order - a valence bond supersolid S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).

56 Superconductor T μ

57 T g Superconductor μ Insulator x =1/8

58 T g Superconductor μ Insulator x =1/8

59 For experimental applications, we must move away from the ideal CFT A chemical potential μ A magnetic field B CFT e.g.

60

61 S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

62 Conservation laws/equations of motion S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

63 Constitutive relations which follow from Lorentz transformation to moving frame S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

64 Single dissipative term allowed by requirement of positive entropy production. There is only one independent transport co-efficient S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

65 For experimental applications, we must move away from the ideal CFT A chemical potential μ A magnetic field B CFT e.g.

66 For experimental applications, we must move away from the ideal CFT A chemical potential μ A magnetic field B CFT An impurity scattering rate 1/ imp (its T dependence follows from scaling arguments) e.g.

67 S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

68 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

69 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

70 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

71 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

72 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

73 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

74 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

75 From these relations, we obtained results for the transport co-efficients, expressed in terms of a cyclotron frequency and damping: Transverse thermoelectric co-efficient ( ) ( ) 2 h α xy =Φ s B (k B T ) 2 2πτimp ρ 2 +Φ σ Φ ε+p (k B T ) 3 /2πτ imp 2ek B Φ 2 ε+p (k BT ) 6 + B 2 ρ 2 (2πτ imp / ), 2 where B = Bφ 0 /( v) 2 ; ρ = ρ/( v) 2. S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

76 LSCO - Theory S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

77 LSCO - Experiments N. P. Ong et al.

78 LSCO - Theory Only input parameters v = 47 mev Å τ imp s Output ω c =6.2GHz B ( 35K 1T T ) 3 S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

79 LSCO - Theory Only input parameters v = 47 mev Å τ imp s Output ω c =6.2GHz B ( 35K 1T T Similar to velocity estimates by A.V. Balatsky and Z-X. Shen, Science 284, 1137 (1999). S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007) ) 3

80 To the solvable supersymmetric, Yang-Mills theory CFT, we add A chemical potential μ A magnetic field B After the AdS/CFT mapping, we obtain the Einstein-Maxwell theory of a black hole with An electric charge A magnetic charge The exact results are found to be in precise accord with all hydrodynamic results presented earlier S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

81

82

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Quantum critical transport and AdS/CFT

Quantum critical transport and AdS/CFT Quantum critical transport and AdS/CFT Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller, Trieste Joerg Schmalian, Iowa Dam Son, Washington

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Particle theorists Sean Hartnoll, KITP Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Condensed matter theorists

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

arxiv: v1 [cond-mat.str-el] 7 Oct 2009 Finite temperature dissipation and transport near quantum critical points Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138 (Dated: Oct 5, 2009) arxiv:0910.1139v1 [cond-mat.str-el]

More information

arxiv: v1 [hep-th] 16 Feb 2010

arxiv: v1 [hep-th] 16 Feb 2010 Condensed matter and AdS/CFT Subir Sachdev arxiv:1002.2947v1 [hep-th] 16 Feb 2010 Lectures at the 5th Aegean summer school, From gravity to thermal gauge theories: the AdS/CFT correspondence, Adamas, Milos

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality Institute for Nuclear Theory, Seattle Summer School on Applications of String Theory July 18-20 Subir Sachdev HARVARD Outline 1. Conformal quantum matter 2. Compressible

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states States of quantum matter with long-range entanglement in d spatial dimensions Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold atoms, antiferromagnets

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

From Critical Phenomena to Holographic Duality in Quantum Matter

From Critical Phenomena to Holographic Duality in Quantum Matter From Critical Phenomena to Holographic Duality in Quantum Matter Joe Bhaseen TSCM Group King s College London 2013 Arnold Sommerfeld School Gauge-Gravity Duality and Condensed Matter Physics Arnold Sommerfeld

More information

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu The main unsolved problem in theoretical physics today: Unification of The main unsolved

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

The quantum phases of matter. sachdev.physics.harvard.edu

The quantum phases of matter. sachdev.physics.harvard.edu The quantum phases of matter sachdev.physics.harvard.edu The phases of matter: The phases of matter: Solids Liquids Gases The phases of matter: Solids Liquids Gases Theory of the phases of matter: Theory

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Peng Cai 1, Wei Ruan 1, Yingying Peng, Cun Ye 1, Xintong Li 1, Zhenqi Hao 1, Xingjiang Zhou,5,

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Quantum bosons for holographic superconductors

Quantum bosons for holographic superconductors Quantum bosons for holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Relativistic quantum criticality and the AdS/CFT correspondence

Relativistic quantum criticality and the AdS/CFT correspondence Relativistic quantum criticality and the AdS/CFT correspondence Indian Institute of Science, Bangalore, Dec 7, 2010 Lecture notes arxiv:1010.0682 arxiv: 1012.0299 sachdev.physics.harvard.edu HARVARD J.

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

arxiv:cond-mat/ v1 8 Mar 1995

arxiv:cond-mat/ v1 8 Mar 1995 Model of C-Axis Resistivity of High-T c Cuprates Yuyao Zha, S. L. Cooper and David Pines Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801 arxiv:cond-mat/9503044v1

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University Course at Harvard University: Physics 268r Classical and Quantum Phase Transitions. MWF 10 in Jefferson 256

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Superfluid-insulator transition

Superfluid-insulator transition Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T Quantum critical T KT Superfluid Insulator 0 g c

More information

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity April 2011 1. Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity Energy transport solar cells nuclear energy wind energy 15% of electric power is

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor Wei Li 1, Hao Ding 1, Peng Deng 1, Kai Chang 1, Canli Song 1, Ke He 2, Lili Wang 2, Xucun Ma 2, Jiang-Ping Hu 3, Xi Chen 1, *,

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Overview Lecture Derek Lee Imperial College London January 2007 Outline 1 Course content Introduction Superfluids Superconductors 2 Course Plan Resources Outline 1 Course content

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Recent Advances in High-Temperature Superconductivity

Recent Advances in High-Temperature Superconductivity Recent Advances in High-Temperature Superconductivity Nai-Chang Yeh After more than 15 years of intense research since the discovery of high-temperature superconductivity [1], many interesting physical

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information