ON THE DESIGN OF A STEEL END-PLATE BEAM-TO-COLUMN BOLTED JOINT ACCORDING TO PN-EN

Similar documents
A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE

SIMPLIFIED FORMULAS FOR ASSESSMENT OF STEEL JOINT FLEXIBILITY CHARACTERISTICS

Structural Steelwork Eurocodes Development of a Trans-National Approach

A Simplified Method for the Design of Steel Beam-to-column Connections

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

Equivalent T-stubs (Component Method) as per DIN EN

SKILLS Project. October 2013

Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009

GENERAL GEOMETRY LEFT SIDE BEAM RIGHT SIDE BS :2000/AC:2009. Ratio 0.17

Design of Beams (Unit - 8)

Joint resistance M j,rd Elastic limit 2/3 M j,rd

BASE PLATE CONNECTIONS

Finite Element Modelling with Plastic Hinges

Basis of Design, a case study building

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

CHAPTER 4. Stresses in Beams

RECENT DEVELOPMENTS IN THE BEHAVIOUR OF STEEL AND COMPOSITE CONNECTIONS IN FIRE

STEEL JOINTS - COMPONENT METHOD APPLICATION

COMPUTERISED CALCULATION OF FORCE DISTRIBUTIONS IN BOLTED END PLATE CONNECTIONS ACCORDING TO EUROCODE 3 1

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1

Fundamentals of Structural Design Part of Steel Structures

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Structural Steelwork Eurocodes Development of A Trans-national Approach

DESIGN OF END PLATE JOINTS SUBJECT TO MOMENT AND NORMAL FORCE

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

3. Stability of built-up members in compression

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Advanced Training Steel Connections

Chapter Two: Mechanical Properties of materials

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section

SERVICEABILITY LIMIT STATE DESIGN

ARCHIVES OF CIVIL ENGINEERING, LIX, 4, 2013 CALCULATION OF WELDING TRUSSES OVERLAP JOINTS MADE OF RECTANGULAR HOLLOW SECTIONS 1.

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Submitted to the Highway Research Board for. Publication in, the lfhighway Research Record!! CONTRIBUTION OF LONGITUDINAL STIFFENERS OF PLATE GIRDERS

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

Structural Steelwork Eurocodes Development of a Trans-National Approach

Joints in steel construction: Moment-resisting joints to eurocode 3

1C8 Advanced design of steel structures. prepared by Josef Machacek

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS

Structural Steelwork Eurocodes Development of A Trans-national Approach

FINITE ELEMENT ANALYSIS OF THE ROTATION CAPACITY OF BEAM-TO-COLUMN END-PLATE BOLTED JOINT

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel

THE DEVELOPMENT OF A COMPONENT-BASED CONNECTION ELEMENT FOR ENDPLATE CONNECTIONS IN FIRE

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

Composite bridge design (EN1994-2) Bridge modelling and structural analysis

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

Component Method for Base Plate

THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?

LOAD BEARING CAPACITY OF SPLICED COLUMNS WITH SINGLE ROW BOLTED BUTT-PLATES

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CONNECTIONS WITH FOUR BOLTS PER HORIZONTAL ROW Application of Eurocode 3

Seismic design of bridges

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

[5] Stress and Strain

Longitudinal strength standard

Beam Bending Stresses and Shear Stress

7.3 Design of members subjected to combined forces

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Bridge deck modelling and design process for bridges

The Contribution of Longitudinal Stiffeners To the Static Strength of Plate Girders

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

Structural Steelwork Eurocodes Development of A Trans-national Approach

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

ENCE 455 Design of Steel Structures. III. Compression Members

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

UNIT- I Thin plate theory, Structural Instability:

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

JointsForTekla Ver January

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

CONNECTION DESIGN. Connections must be designed at the strength limit state

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS

Example 4: Design of a Rigid Column Bracket (Bolted)

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

National Exams May 2015

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Steel Cross Sections. Structural Steel Design

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Bending and Shear in Beams

Studies on Plate Girder with Various Types of Web Plates

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

Design of Axially-loaded Wide-flange Columns Subjected to Torsion Through One Flange. Riley Quintin

NUMERICAL SIMULATION OF FLANGE-BOLT INTERACTION IN WIND TUBRINE TOWER CONNECTIONS

C C JTS 16:00 17:30. Lebet

TAMPERE UNIVERSITY OF TECHNOLOGY ELENA RUEDA ROMERO FINITE ELEMENT SIMULATION OF A BOLTED STEEL JOINT IN FIRE USING ABAQUS PROGRAM

Transcription:

CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL O CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXV, z. 65 (2/18), kwiecień-czerwiec 2018, s. 187-196, DOI:10.7862/rb.2018.35 Jan ZAMOROWSKI 1 Grzegorz GREMZA 2 ON THE DESIGN O A STEEL END-PLATE BEAM-TO-COLUMN BOLTED JOINT ACCORDING TO PN-EN 1993-1-8 Considering joints with unstiffened columns, the load capacity of an inner bolt-row being a part of bolts group defined by a flange capacity is directly proportional to a distance between bolts. In turn, a flexibility of the column flange in the inner bolt-row area depends not only on that distance but also on a flexibility of other basic joint components. Hence, that situation may occur, when internal forces in inner bolt-row will be greater than its capacity estimated as an equivalent of T-stub. This possibility has been taken into account in the standard [3] see the rule in the point 6.2.4.2 (3). In practice, this rule is not implemented in calculations of this kind of joints. In this work, a simplified algorithm of these joints calculation as well as an example, where the need for force reduction in the inner bolt-row to the value of bolt resistance has occurred, were presented. Moreover, the influence of the aforementioned reduction on the joint stiffness was estimated. Keywords: component method, equivalent T-stub, joint capacity and stiffness 1. Introduction In available publications in the field of bolted end-plate beam-to-column joints calculation, e.g. [1], [2], it is recognized that the load capacity of analysed joint is sufficient, if the condition M j,ed < M j,, introduced in point 6.2.7(1) of standard [3] is fulfilled, what may result from the general rule contained in the point 6.1.3 (4) of this standard. However, in specific provisions concerning the capacity of an equivalent of T-stub in tension zone see point 6.2.4.2(3) additional requirements regarding the values of forces in each bolt-rows and in groups of these rows are introduced. 1 Corresponding author: Jan Zamorowski, University of Bielsko-Biala, aculty of Materials, Civil and Environmental Engineering, ul. Willowa 2, 43-360 Bielsko-Biała; tel. +48609654098; Zamski@interia.pl 2 Grzegorz Gremza, Silesian University of Technology in Gliwice, Department of Building Structures, ul. Akademicka 5, 44-100 Gliwice; tel. +48662349538; GGRE@interia.pl

188 J. Zamorowski, G. Gremza It is required that: a) forces transferred by each bolt-row should not exceed the design resistance determined considering only that individual bolt-row, and, b) the total force of each bolt-rows group, comprised two or more adjacent bolt-rows within the same bolt-group, should not exceed the design resistance of that group of bolt-rows. These provisions indicate the necessity of estimation the values of forces in individual bolt rows and groups of rows, in order to compare them with the resistances of these rows and groups of rows. If the forces in some rows or group of rows would be greater than their load capacity, the load capacity of the joint should be reduced. Such a case may occur in joint of a beam with an unstiffened column (ig. 1a), when the load capacity of these joint is determined by the resistance of the column flange in tension zone. a) b) c) d) ig. 1. Joint of a beam with an unstiffened column; a) side view and section a-a, b), c) and d) yield lines of a column flange According to the standard [3], the model of the destruction of the unstiffened column flange is assumed analogously to the model of equivalent T-stub, considering the individual bolt rows and groups of these rows. Bolt rows are numbered starting from the most distant one from the centre of compression. In case of unstiffened column flange, only one group of bolts with the 1 st and next rows may occur, while in case of the end plate two groups, one group above a beam flange and the second one under that flange. Thus, in a column with an unstiffened web, group of rows 1-2, 1-2-3 or 1-2-3-4 may occur, if the fourth row is present, while group 2-3 or 2-3-4 does not occur. However, such groups appear for the modelling of end-plate with one row of bolts placed above a beam flange. The yield lines for an equivalent of T-stub flange of the column for the non-circular mechanism of failure is presented in ig. 1d. If a group of bolts,

On the Design of a Steel End-Plate Beam-to-Column Bolted Joint 189 consisted of rows 1-2 in joint with three rows is considered (see ig. 1c), the length of the equivalent of T-stub is bigger only by (p 1 + p 2 )/2 from the effective length for row 1 of this group. Thus, there is a big difference of the effective length values for bolts in row 1 and 2 from a group of rows (compare ig. 1b and 1c). Analysis of these lengths indicates that the design resistance capacity of the inner bolt rows of the bolt group is much smaller than design resistance of the end bolt-row and is directly proportional to the effective length of the inner row. In turn, the distribution of forces for individual bolt rows is dependent on the stiffness of all components of the joint - see ig. 2, on which only the stiffness coefficients relevant to the rotational stiffness of the joint are shown. ig. 2. Component model of joint with marking as in [N1] or instance, decreasing of the effective length of an unstiffened column flange in bending in the area of row 2 by 50% will also decrease the load capacity of this flange by 50%, but decreasing of the connection stiffness in that area does not exceed a dozen or so percent. This is due to the fact that the flexibility of a joint in the area of the bolt-row 2 is the sum of the flexibility of the joint components: column web in tension, column flange in bending, end-plate in bending, bolts in tension and, in addition, a beam web flexibility in the tensile zone, which was omitted in the algorithm of the stiffness of joints calculation given in standard [3] as a negligible value. It can, therefore, be concluded that when the effective length of the column flange in bending in the area of the inner rows is changed, the redistribution of internal forces in the connection will be different than the variation of the load capacity of these rows, which means that the internal bolts may be overloaded. The presented analysis indicates that checking the condition of the joint load capacity in accordance with 6.2.7.1(1) in [3]: M j,ed < M j, where M j, load capacity according to 6.2.7.2 may not be sufficient. So, in order to ensure the loadbearing capacity of individual bolt rows, it is necessary to fulfill the conditions contained in point 6.2.4.2(3) of standards [3]. In the paper, the algorithm for calculating of an end-plate joint between a beam and unstiffened column with three rows of bolts, with an indication of what components should be considered for individual rows of bolts and groups of rows, will be presented. In that algorithm, the requirements listed in point 6.2.4.2 (3)

190 J. Zamorowski, G. Gremza of standards [3] will be taken into account. This algorithm will be supplemented with a numerical example, in which there will be a need to reduce the load capacity of the joint due to the need to ensure the safety of bolt group 1-2. The influence of earlier plasticization of the T-stub flange (at lower values of the bending moment in the frame girder) on the rotational stiffness of the joint will also be assessed. 2. Algorithm of beam-to-column joint load capacity estimating Analyzed joint consists of compression zone, shear zone and tension zone. The load-bearing capacity of the tension zone is not greater than the minimum load capacity of the compression and shearing zones. According to [3], in the compression zone are located: column web, web and flange of a frame girder (beam) or flange and web of a haunch, and the shear zone consists of a web of a column. In the tension zone is located: column web, column flange, end-plate with bolts and web of the frame girder. In general, the way of estimation the joint load capacity according to the standard involves determining the minimum design resistance of the joint parts in tension and in shear and then determining the minimum design resistance of each bolt-row as individual as well as a part of a group of them. Next, the sum of obtained design resistances in the rows from 1 to r is compared with the minimum load capacity of the joint parts in tension zone and in the compression zone. If this sum is greater than the minimum load capacity of the tension zone and compression zone, the load capacity of the row r is reduced. The second stage is to determine the load capacity of the joint according to the standard formula (6.23) [3]. In the third stage, the values of forces in each bolt rows are determined, e.g. by use of the elastic model as in ig. 2. Then, the obtained values of forces are compared in individual bolt rows and in bolt-row groups. In the case when the forces in the rows or groups of rows are greater than their design resistances, the calculated load capacity of the joint is proportionally reduced. Details of the algorithm are given in Table 1. c, v,min, V wp, min c, c, fb, Table 1. Details of algorithm of beam-to-column joint calculation Design resistance of basic components in compression and shear / Column web panel in shear Column web in transverse compression Beam flange and web in compression V wp, / acc. 6.2.6.1 c, wc, acc. 6.2.6.2 c, fb, acc. 6.2.6.7

On the Design of a Steel End-Plate Beam-to-Column Bolted Joint 191 t1, t1, mint1, fc, t 1, ep, acc. 6.2.7.2(6) Table 1. (cont.) Details of algorithm of beam-to-column joint calculation Algorithm of the design resistance of the bolt-row 1 determination Column web in transverse tension t, Column flange in transverse bending End-plate in bending 1 acc. 6.2.6.3 t 1, fc, acc. 6.2.6.4 t1, ep, acc. 6.2.6.5 Limiting the design resistance due to the compression and shear of the joint parts, acc. 6.2.7.2(7) t2,, ind t1, c, v, min, Design resistance of individual bolt-row 2 Column web in transverse tension Column flange in transverse bending End-plate in bending Beam web in tension t 2, t 2, fc, min t 2, ep, t 2, wb, acc. 6.2.7.2(6) t2, t2, fc, t2, ep, t2, wb, acc. 6.2.6.3 acc. 6.2.6.4 acc. 6.2.6.5 acc. 6.2.6.8 Limiting the design resistance due to compression and shear of the joint parts. t12, t min t 12, 12, fc, t2,, ind c, v,min, t1, Design resistance of row 2 as a part of group of bolt rows 1-2 Column web in transverse tension t 2, Column flange in transverse bending 1 acc. 6.2.6.3 t12, fc, acc. 6.2.6.4 Limiting the design resistance of the bolt-row due to design resistance of the group of bolt-rows according to 6.2.7.2(8): t 2, min( t 2,, ind, t 2,, group), where t 2,, group t1 2, t1,. If in connections exposed to dynamic actions and vibrations then t 2, t1, h2 / h1 - acc. 6.2.7.2 (9) +NA.5. t1, 1. 9t 2,

192 J. Zamorowski, G. Gremza, ind t t min t t t13, t1 min t1 t23, t min t r Table 1. (cont.) Details of algorithm of beam-to-column joint calculation 3, 3, fc, 3, ep, 3, wb, Design resistance of individual bolt-row 3 Column web in transverse tension t3, Column flange in transverse bending t3, fc, End-plate in bending t3, ep, Beam web in tension t3, wb, acc. 6.2.6.3 acc. 6.2.6.4 acc. 6.2.6.5 acc. 6.2.6.8 Limiting of the bolt-row resistance due to components in bending and shear ) - acc. 6.2.7.2(7). 3, wc, 3, fc, 23, ep, 23, wb, c, v,min, ( t1, t2, Design resistance of row 3 as a part of group of rows 1 3 and 2 3 Column web in transverse tension t1 3, Column flange in transverse bending t1 3, fc, End-plate in bending t2 3, ep, Beam web in tension t2 3, wb, acc. 6.2.6.3 acc. 6.2.6.4 acc. 6.2.6.5 acc. 6.2.6.8 Limiting of resistance due to resistance of the group of rows acc. 6.2.7.2(8) t 3, min( t 3,, ind, t 3,, group, c, t 3,, group, b), where ),., group,c t1 3, ( t1, t2,, group,b t2 3, t2, If in connections exposed to dynamic actions and vibrations.9, where x = 1.2 to tx, h3 / hx - acc. 6.2.7.2 (9) +NA.5. 1 tx, Design bending resistance M j, acc. to formula (6.25) Stiffness coefficients of the joint basic components acc. to point 6.3. Values of forces in each bolt-row (N i,ed ) may be calculated e.g. using the model shown in ig. 2. The requirements contained in point 6.2.4.2(3) a), omitted in algorithms: If Ni, Ed ti,, ind, then w i ti,, ind Ni, Ed for i 1, 2, 3 The requirements contained in point. 6.2.4.2(3) b), omitted in algorithms If N i, t1 r,, then wr 2 t 1r Ni, for r 2, 3 - for group of column flange. i1 3 r i1 If Ni, t 23,, then w6 t 23 N i, i2 3 i2 - for end-plate If w 1.0, then w min( w ) for i 1, by 1, to 6 and i M min w j,, red min j, i M.

On the Design of a Steel End-Plate Beam-to-Column Bolted Joint 193 3. Calculation example As an example, a joint in frame that was made of S235 steel, with end-plate bolted connection category E between IPE 500 and column HE 300 B with geometrical characteristics as in ig. 3, was selected. ig. 3. Analyzed beam-to column joint with bolts M20-10.9 The obtained results of calculations are presented in Table 2. Table 2. Design resistance of a joint without reduction resulting from the rule in point 6.2.4.2 (3) c, v,min, Design resistance of joint basic components in compression and in shear Vwp, / Column web Column web in panel in shear transverse compression min c, 579.4 kn 588.1 kn 1 068 kn c, fb, = 579.4 kn V wp, / c, c, fb, Algorithm of the design resistance of the bolt-row 1 determination Column web in Column flange in wc, transverse tension transverse bending t 1, t 1, min t 1, t1, = 264.3 kn fc, ep, Beam flange and web in compression End-plate in bending 411.0 kn 266.5 kn 264.3 kn t1, t 1, fc, t1, ep, There is no need to limit the resistance due to joint components in bending and shear.3 kn 579.4 kn t1, 264 c, v, min,

194 J. Zamorowski, G. Gremza Table 2. (cont.) Resistance of a joint without reduction resulting from the rule in point 6.2.4.2 (3) Design resistance of individual bolt-row 2 Column web in Column flange in End-plate Beam web t2, transverse tension transverse bending in bending in tension t 2, fc, t 2,, ind min 411.0 kn 266.5 kn 323.1 kn 624.2 kn t2, ep, t 2, wb, t2, wc, t2, fc, t2, ep, t2, wb, =266.5 kn There is no need to limit the load capacity due to joint components in bending and shear t 2,, ind 266.5 kn 579.4 264.3 315.1 kn Resistance of row 2 as a part of a the group of rows 1-2 Column web in transverse Column flange in transverse t1 2, t1 2, min tension bending t1 2, fc, 506.6 kn 348.5 kn = 348.5 kn t1 2, t1 2, fc, Limiting of the row resistance due to the resistance of the group of rows: t 2,, group 348.5 264.3 84.2 kn, t 2, min(266.5, 84.2) 84.2 kn Connection is not exposed to dynamic actions and vibrations. Design resistance of individual row 3 Column web in Column flange in End-plate Beam web transverse tension transverse bending in bending in tension t 3, fc, t 3,, ind min 411.0 kn 266.5 kn 303.7 kn 537.6 kn ep, t 3, wb, t3, t3, fc, t3, ep, t3, wb, = 266.5 kn Limiting of the resistance due to components in bending and shear: 579.4-(264.3+84.2)= 230.9 kn, hence = 230.9 kn. Design resistance of row 3 as a part of group 1 3 and 2 3 Column web in Column flange in End-plate Beam web t13, t1 3, min transverse tension transverse bending in bending in tension t 13, fc, = 569.2 kn 688.1 kn 569.2 538.0 kn 768.0 kn t 23, ep, t 23, min t 23, wb, t1 3, wc, t1 3, fc, t2 3, ep, t2 3, wb, = 538.0 kn Limiting of the resistance due to the resistance of group of row acc. 6.2.7.2(8) t 3,, group,c 569.2 (364.3 84.2) 220.7 kn,, group,b 538.0 84.2 min(230.9, 220.7, 453.8) 220.7 kn Design resistance of a joint in bending 453.8 kn M j, tr, hr 264.3 0.526 84.2 0.442 220.7 0.382 260.54 knm r

On the Design of a Steel End-Plate Beam-to-Column Bolted Joint 195 Table 2. (cont.) Resistance of a joint without reduction resulting from the rule in point 6.2.4.2 (3) Stiffness coefficient of the basic joint components Component Stiffness coefficient Bolt-row 1 2 3 Column web in transverse tension k 3 10 3 [m] 4.620 2,116 4.267 Column flange in transverse bending k 4 10 3 [m] 44.683 20.466 41.272 Beam web in tension k 5 10 3 [m] 25.129 17.328 13.810 Bolts in tension k 10 10 3 [m] 6.374 6.374 6.374 The effective stiffness coefficient k eff, r 10 3 [m] 2.296 1.359 2.050 The equivalent lever arm z eq [m] 0.463 Column web panel in shear k 1 10 3 [m] 3.894 Column web in compression k 2 10 3 [m] 8.655 Bolt forces calculated according to the model as in ig. 2 for M Ed = M j, = 260,5 kn and design resistances of bolts Bolt-rows orce [kn] Design resistance [kn] w i 1 173.9 264.3 2 247.7 266.5 3 155.9 230.9 1-2 173.9+247.7 = 421.6 348.5 0.827 1-3 421.6+155.9 = 577.5 569.2 0.986 2-3 247.7+155.9 = 403.6 538.0 w min 0.827 M 0.827 260.5 215.5 knm j,, red Using the standard formula (6.27) in [3], the effect of the joint load capacity reduction on its stiffness S j was evaluated. The stiffness ratio μ given in formulas (6.28a) and (6.28b) was taken into account. Obtained results in the form of the M - ø relationship, where ø = M/S j is shown in ig. 4. After load capacity reduction, a secant stiffness S j of analysed joint under load M = 2/3M j, is equal to 60% of its stiffness calculated without that reduction. ig. 4. Relationship M - ø: 1 for M j,, 2 for M j,, red

196 J. Zamorowski, G. Gremza 4. Concluding remarks In this work, the algorithm for calculating of a joint between the beam and unstiffened column with end-plate and three rows of bolts, with an indication on the components for each row of bolts and groups of bolt rows which should be considered, was described. In this regard, many available examples are not in compliance with the requirements contained in [3]. In such a joint, other groups of bolt rows for the column flange than for the end-plate should be considered. According to the standard [3], groups of rows starting from the row most distant from the compression zone are taken into account. Therefore, in a flange of an unstiffened column the groups of rows 1-2, 1-2-3, etc. may occur, whereas in extended end-plate it would be the row of bolt placed above upper flange of a beam and group of rows 2-3. So, in the case of an unstiffened column flange, the group of bolt rows 2-3 cannot be considered. Such a group will occur only in a joint with a stiffened column. A calculation example of a beam-to-column joint was also presented. It was demonstrated that in joint under the load equal to load capacity M j, derived from the formula (6.25) in [3] it may happen, that the load capacity of the column flange is exceeded in the area of the group of bolt rows 1-2. or this reason, the reduction of this capacity is necessary as follows from the point 6.2.4.2 (3) in the standard [3]. In the presented example, forces in each bolt rows were estimated on the basis of a linear model using stiffness coefficients adopted in the standard [3]. This way of calculation may be easily applied by a designer. In order to better understanding of the state of forces and deformations in a joint of a beam with an unstiffened column, it would be advisable to make a model of a joint by using the finite element method and to determine the values of these forces using elastic, elastically plastic and plastic models, e.g. as in [4]. These analyses would allow estimating the accuracy of simplified models and their suitability for design purposes. References [1] Kozłowski A., Pisarek Z., Wierzbicki S.,: Projektowanie doczołowych połączeń śrubowych według PN-EN 1993-1-1 i PN-EN 1993-1-8. Inżynieria i Budownictwo 4/2009, s. 103 204. [2] CSI Hellas: Dimensioning of Metallic Connections per EC3. Manual of Analysis and verification examples. Analysis reference and verification. Sparta, Greece 2007. [3] PN-EN 1993-1-8: 2006+AC: 2009+Ap1:2010 Eurocode 3: Design of Steel Structures, Part 1.8: Design of joints. [4] Butterworth J.: inite Element Analysis of Structural Steelwork. Beam to Column Bolted Connections. Constructional Research Unit, School of Science & Technology, University of Teesside. Przesłano do redakcji: 12.04.2018 r. Przyjęto do druku: 15.06.2018 r.