Jun Nishiyama Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

Similar documents
Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

How Can We Eliminate Radiation from Radioactive Materials?

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Studies on 3D Fusion Reactions in Titanium Deuteride under Ion Beam Implantation. A. Takahashi, H. Miyamaru, K. Ochiai, T. Hayashi, T.

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Active Interrogation of SNMs by use of IEC Fusion Neutron Source

SOURCES of RADIOACTIVITY

Reduction of Radioactive Waste by Accelerators

HWS150A RELIABILITY DATA 信頼性データ

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

2011/12/25

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

HOMEWORK 22-1 (pp )

Neutron cross section measurement of MA

Introduction to Nuclear Engineering

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

Physics 3204 UNIT 3 Test Matter Energy Interface

Chapter 18. Nuclear Chemistry

CHAPTER 25: NUCLEAR CHEMISTRY. Mrs. Brayfield

Units and Definition

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

ACCUMULATION OF ACTIVATION PRODUCTS IN PB-BI, TANTALUM, AND TUNGSTEN TARGETS OF ADS

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

I. Project Research. Project 9

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Status of J-PARC Transmutation Experimental Facility

Nuclear Physics Part 2A: Radioactive Decays

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

京都 ATLAS meeting 田代. Friday, June 28, 13

Estimation of Gravel Size Distribution using Contact Time

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Nuclear Physics. AP Physics B

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Isotopes: atoms with the same Z but different A s (number of neutrons varies)

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Deep moist atmospheric convection in a subkilometer

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

Estimation of 210 Po Losses from the Solid 209 Bi Target Irradiated in a Thermal Neutron Flux

THE CHART OF NUCLIDES

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

Introduction to neutron sources

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Introduction to Accelerator Physics Part 1

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV

Relativistic Mean Field Model for finite nuclei and infinite matter

Key Question: What role did the study of radioactivity play in learning more about atoms?

Nuclear Chemistry. Chapter 23

Present Status of the JENDL Project. Osamu IWAMOTO and Kenji YOKOYAMA Japan Atomic Energy Agency

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

京都大学臨界集合体実験装置における 100 MeV 陽子を用いた加速器駆動システムの固体 Pb-Bi の中性子特性に関する実験ベンチマーク

Flow of rp process around 56 Ni

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry Notes

Chapter 21 Nuclear Chemistry

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

Background. Background. Objective. Table of Contents 11/16/2012. Effects of wind erosion on water balance in a crop field in the Sahel, West Africa

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

SAFETY STANDARD APPROVED METALLIZED POLYPROPYLENE CAPACITOR 海外規格メタライズドポリプロピレンコンデンサ TYPE ECQUA

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D.,

京都大学臨界集合体実験装置での加速器駆動システムにおけるウラン - 鉛領域炉心の中性子特性に関する実験ベンチマーク

MA/LLFP Transmutation Experiment Options in the Future Monju Core

研究会 ハイパー核物理の発展と今後の展望 2013年7月8日 和州閣(三重県志摩市)

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

世界の放射光施設と PF - 最新の施設と将来計画動向 - 物質構造科学研究所野村昌治. PF 建設を振り返って SLS の状況 DIAMOND Soleil MAX-4 NSLS-Ⅱ 4GLS BESSYⅡ ELETTRA Cornell

Binding Energy and Mass defect

Lead Zirconate Titanate Thick Films Fabricated by the Aerosol Deposition Method

Current studies of neutron induced reactions regard essentially two mass regions, identified in the chart of nuclides: isotopes in the region from Fe

Ciclo combustibile, scorie, accelerator driven system

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

Digital Torque Meter ADT-C Series OPERATION MANUAL

Fundamentals in Nuclear Physics

Title. Author(s)Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi. CitationAnnals of nuclear energy, 65: Issue Date Doc URL.

Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

(a) (i) State the proton number and the nucleon number of X.

Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Chapter 21 Nuclear Chemistry: the study of nuclear reactions

Nuclear Physics and Nuclear Reactions

ATLAS 実験における荷電ヒッグス粒子の探索

Transcription:

Nuclear and Emerging Technologies for Space 2015 Albuquerque Marriott in Albuquerque, NM on February 23-26, 2015. Feasibility Study on Polonium Isotopes as Radioisotope Fuel for Space Nuclear Power Jun Nishiyama Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 1

Contents 1. Introduction 2. Alternative isotope of 238 Pu 3. Production efficiency 4. Other option 5. Summary and Future work 2

1. Introduction Curiosity rover and RTG Landed on Mars on August 6, 2012 Power source: Radioisotope thermoelectric generator(rtg) Advantages Electricity Warming system NASA's Curiosity rover Pu-238 about 4 kg 3

1. Introduction Plutonium-238 Pu-238 is the best radioisotope High power density (540 W/kg) Enough half-life (87.7 years) Low radiation levels Stable fuel form at high temperature PuO 2 pellet 4

1. Introduction Pu-238 Short supply 1. Irradiate U fuel 2. Separate 237 Np 3. Irradiate 237 Np 4. Separate 238 Pu Z 94 93 92 235 U 0.72% 238 Pu 87.7y 237 Np 2.1e6y 236 U 2.34e7y 238 Np 2.1d 237 U 6.75d 238 U 99.3% 239 U 23.5m 143 144 145 146 147 N Nuclear arms reduction Shout down Irradiation reactors Processing facilities No large-scale production of 238 Pu in the World 5

1. Introduction Situation of Japanese space development Safeguards and Safety issue Non-nuclear weapon states RTG using 238 Pu Space exploration of Japan is limited to the inside of Mars s orbit Hayabusa and Itokawa Itokawa's orbit I: Itokawa S: Sun E: Earth M: Mars 6

1. Introduction Motivation RTG is good power source Short supply of Pu-238 Restriction in Japan Increase the need to explore Alternative isotope of 238 Pu for space nuclear power applications 7

1. Introduction Objectives 1. To investigate alternative isotope of 238 Pu 2. To evaluate production efficiency Independent of nuclear weapons manufacturing technology Special irradiation reactors Nuclear reprocessing facilities No Safeguards issue Not include fissile material for nuclear weapon 8

2. Alternative isotope 1 st Key factor: Power density and specific power q α = λn AQ α b α M q α : Specific power by α decay [W/kg] M:Molar mass [kg/mole] λ:decay constant [1/s] N A :Avogadro constant [1/mole] Q α :Decay heat by α decay [J] b α :Branching ratio of α decay 9

2. Alternative isotope Specific Power Long half-life (> 10 years) High specific power (> 100 W/kg) Nuclide Specific Power [W/kg] Half-life [y] 238 Pu 567.5 87.7 148 Gd 660.9 70.9 209 Po 492.5 102.0 232 U 717.5 68.9 241 Am 114.5 432.6 243 Cm 1842.4 29.1 244 Cm 2830.2 18.1 249 Cf 152.5 351.1 250 Cf 3965.7 13.1 10

2. Alternative isotope Polonium Po-209: Decay: α 99.52%, EC 0.48% Specific power: 490 W/kg Half-life: 102.0 years Some prototype RTGs, first built in 1958 by the US Atomic Energy Commission, have used Po-210. But it has limited use because of its very short half-life of 138 days. Po-209 has the possibility to be an alternative isotope of Pu-238. 11

2. Alternative isotope Production method of 209 Po Z 85 (α,n) (α,γ) 84 83 82 81 207 Po 5.80h 206 Bi 6.243d 205 Pb 1.73e7y 208 Po 2.898y 207 Bi 32.9y 206 Pb 24.1% 205 Tl 70.5% 209 Po 102y 208 Bi 3.68e5y 207 Pb 22.1% 206 Tl 4.202m 210 Po 138.4d 209 Bi 100% 208 Pb 52.4% 210 Bi 5.012d 123 124 125 126 127 N (p,n) β (p,γ) (h,p) (γ,n) A Z (n,γ) (d,α) (γ,p) Β +,EC (n,p) α (n,α) 209 Bi(p,n) 209 Po Reaction 209 Bi(Natural abundance 100%)

2. Alternative isotope Cross section of 209 Bi(p,n) 209 Po Cross section [mb] 300 250 200 150 100 JENDL/HE ENDF/B-VII.1 JEFF-3.1 TENDL-2012 PADF-2007 C. G. Andre (1956) J. Wing (1961) K. Miyano (1973) K. Miyano (1978) B.V.Zhuravlev(2010) 50 0 10 100 Incident Proton Energy [MeV]

3. 209 Po Production efficiency Calculation code: PHITS* with INCL model Calculation condition Target: Natural Bi, thick target, without transmutation Projectile: p + beam Energy: > 5 MeV (Threshold of 209 Bi(p,n) is 2.69 MeV ) Proton beam 100% 209 Bi * T. Sato et al., Particle and Heavy Ion Transport Code System PHITS, Version 2.52, J. Nucl. Sci. Technol. 50, pp913-923 (2013). 14

3. Production efficiency Production rate 10 0 Production rate [1/proton] 10-1 10-2 10-3 10-4 Po-207 Po-208 Po-209 Po-210 (p, 3n) E th =18.1 MeV (p, 2n) E th =9.69 MeV (p, n) E th =2.69 MeV (p, γ) 10-5 10 100 1000 Incident Proton Eneryg [MeV] 15

3. Production efficiency Isotope ratio of 209 Po Po-209/(Po-208+209) 1.0 0.8 0.6 0.4 0.2 Nuclide Power density [W/kg] Specific Power [W/kg] Half life [y] 208 Po 18330 2.898 209 Po 492.5 102.0 210 Po 143950 0.3790 10 6 Po-208 Po-209 10 5 Po-210 10 4 10 3 10 2 10 1 0.0 10 100 1000 Incident Proton Energy [MeV] 10 0 0 10 20 30 40 50 Operation time [year] 16

3. Production efficiency Requirement - Beam Current - Beam current [A/kg(Po-209)/y] 10 3 10 2 10 1 10 0 10-1 10 4 Po-209 Po-208 Po-209: 1kg/year Po-208: 0.027kg/year 10-2 10 100 1000 Incident Proton Eneryg [MeV] 17

3. Production efficiency Requirement - Beam Power - Beam Power [MW/kg/y] 10 5 Po-209 Po-208 10 4 10 3 10 2 10 1 Po-209 40 MeV 14 A 560 MW Po-208 25 MeV 0.13 A 3.3 MW 10 0 10 100 1000 Incident Proton Eneryg [MeV] 18

3. Production efficiency Accelerator capability Active R&D in the medical field Cyclotrons 1. For BNCT: Boron Neutron Capture Therapy Subject: High current 30 MeV, 10 ma 2. For PET: Positron emission tomography Subject: Downsizing ~20 MeV, 100 µm Over 100 facilities in Japan Only 1 hour operation/day 7 Li(p,n) 7 Be reaction 18 O(p,n) 18 F reaction 19

4. Other option Using a proton accelerator Requirement for accelerator is quite large in comparison with the current accelerator technology 1. Other production path of 209 Po 2. Utilization of 208 Po 20

4. Other option Production path of 209 Po 209 Bi(n,γ) 210g Bi 210 Po(n,2n) 209 Po Z 85 84 207 Po 5.80h 208 Po 2.898y 209 Po 102y 210 Po 138.4d Fast reactor(fr) or 83 82 206 Bi 6.243d 205 Pb 1.73e7y 207 Bi 32.9y 206 Pb 24.1% 208 Bi 3.68e5y 207 Pb 22.1% 209 Bi 100% 208 Pb 52.4% 210 Bi 5.012d Accelerator Driven System(ADS) 81 205 Tl 70.5% 206 Tl 4.202m 123 124 125 126 127 N Pb-Bi Eutectic(LBE) as coolant or beam target

4. Other option Utilization of 208 Po Specific power [W/kg] 10 6 Po-208 Po-209 10 5 Po-210 10 4 10 3 10 2 10 1 Nuclide Specific Power [W/kg] Half life [y] 208 Po 18330 2.898 209 Po 492.5 102.0 210 Po 143950 0.3790 10 0 0 10 20 30 40 50 Operation time [year] 22

Summary Po-209 has the possibility to be an alternative radioisotope of Pu-238 for physical property. The requirement for accelerator is quite large in comparison with the current accelerator technology. It is possible to use Po-208 as a radioisotope fuel since it has a large power density (18300 W/kg). 23

Future work To validate calculation results by experiment for Po isotope production with accelerator To evaluate the efficiency of methods with nuclear reactors 10 2 10 1 Foreground Background Counts/Channel/s 10 0 10-1 10-2 10-3 10-4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Gamma-ray energy [kev] 24

25

Decay gamma of 238 Pu 43 kev: 30% 26

Decay gamma of 209 Po 260 kev: 1%, 900 kev: 0.5% 27

KUCA Pb-Bi 照射実験 測定条件 Pb-Bi 板のサイズ : 直径 50mm 厚さ 6mm (3mm 2 枚 ) 照射では陽子の飛程を考慮して厚さ 18mm(3mm 6 枚 ) を使用 ガンマ線の測定にはビーム側の 3mm 2 枚の板を使用 サンプル : 未照射の Pb-Bi 板と照射後の Pb-Bi 板を測定 検出器 :HPGe 検出器 測定位置 : 検出器表面とサンプルの距離 10cm( 添付の写真を参照 ) 照射条件 照射日時 :2014/1/21-2014/3/5( 照射条件は日々異なる ) 電流値 :0.2-1 na 照射時間 : 合計約 35 時間 ( 電流値を 1nA に規格化して積算した照射時間 ) 例 )0.5 na x 1 時間 1nA x 0.5 時間 陽子のエネルギー :100MeV 周期 :20Hz

Gamma-ray spectra 10 2 10 1 Foreground Background Counts/Channel/s 10 0 10-1 10-2 10-3 10-4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Gamma-ray energy [kev]

Average Proton Flux 0.02 Incident proton energy 15 MeV 40 MeV Flux [1/cm 2 /source] 0.00 0 20 40 Proton Energy [MeV] 30

Po isotopes Gamma rays >200 kev Po-206 8.8 d E [kev] Intensity [%] 286.410 22.9 338.44 18.5 511.36 23.2 522.47 15.1 807.38 21.8 1032.26 31.7 Po-207 5.8 h E [kev] Intensity [%] 405.78 9.70 742.72 28.4 992.39 59.2 Po-208 2.898 y E [kev] Intensity [%] 291.81 0.00227 570.13 0.00138 601.52 0.00107 Po-209 102 y E [kev] Intensity [%] 260.5 0.254 262.8 0.0850 896.6 0.47 Po-210 138.376 d E [kev] Intensity [%] 803.06 0.00103

Bi isotopes Gamma rays Bi-205 15.31 d E [kev] Intensity [%] 549.84 2.95 570.76 4.34 579.80 5.44 703.45 31.1 910.90 1.64 987.66 16.1 1043.75 7.51 1764.30 32.5 1775.80 3.99 1861.70 6.17 1903.45 2.47 Bi-206 6.243 d E [kev] Intensity [%] 343.51 23.5 398.00 10.75 497.06 15.33 516.18 40.8 537.45 30.5 620.48 5.76 632.25 4.47 803.10 99.0 881.01 66.2 895.12 15.67 1018.63 7.60 1098.26 13.51 1718.70 31.9

Gd-148 33