京都大学臨界集合体実験装置での加速器駆動システムにおけるウラン - 鉛領域炉心の中性子特性に関する実験ベンチマーク

Size: px
Start display at page:

Download "京都大学臨界集合体実験装置での加速器駆動システムにおけるウラン - 鉛領域炉心の中性子特性に関する実験ベンチマーク"

Transcription

1 ISSN KURNS-EKR- 1 京都大学臨界集合体実験装置での加速器駆動システムにおけるウラン - 鉛領域炉心の中性子特性に関する実験ベンチマーク Experimental Benchmarks of Neutron Characteristics on Uranium-Lead Zoned Core in Accelerator-Driven System at Kyoto University Critical Assembly 編集 : 卞哲浩 山中正朗 Edited by : Cheol Ho Pyeon and Masao Yamanaka 京都大学複合原子力科学研究所 Institute for Integrated Radiation and Nuclear Science, Kyoto University

2 Preface These experimental benchmarks were contributed to the Coordinated Research Project (CRP) T33002 in the International Atomic Energy Agency (IAEA), as entitled Accelerator Driven Systems (ADS) and Use of Low-Enriched Uranium in ADS, from 2016 to The main objective of these benchmarks is to contribute to research and development of neutronics on Uranium-Lead (U-Pb) cores in ADS through the experimental data with the use of differing external neutron (14 MeV neutrons generated by D-T reactions; spallation neutrons generated by 100 MeV protons and Pb-Bi target), carried out at the Kyoto University Critical Assembly (KUCA) A-core. Special thanks are due the KUCA and the fixed-filed alternative gradient (FFAG) accelerator staff for support and patience throughout a series of ADS experiments carried out at KUCA. June 2018 Cheol Ho Pyeon and Masao Yamanaka Keywords: ADS, KUCA, FFAG accelerator, 14 MeV neutrons, Spallation neutrons, U-Pb zoned core i

3 要旨 この実験ベンチマーク問題は 国際原子力機関 (IAEA) において 2016 年から 2019 年にかけて行われた国際共同研究プロジェクト T33002 加速器駆動システム (ADS) と ADS における低濃縮ウラニウムの利用 の一部として採択された 京都大学臨界集合体実験装置での加速器駆動システムにおけるウラン - 鉛領域炉心の中性子特性に関する実験ベンチマーク である この実験ベンチマーク問題は KUCA の A 架台において行われた 2 種類の異なる外部中性子源 ( コッククロフト ウォルトン加速器の DT 反応から 14 MeV 中性子 または FFAG 加速器と Pb-Bi ターゲットを組み合わせて得られる核破砕中性子 ) を用いた実験を通して ADS におけるウラン - 鉛領域炉心の中性子特性に関する基礎研究の発展に貢献することを目的としている 最後に KUCA において ADS 実験を準備および運転にご協力をいただいた KUCA および FFAG 加速器のスタッフに心から感謝の意を表します 卞哲浩 山中正朗 2018 年 6 月 ii

4 Contents Experimental Benchmarks of Neutron Characteristics on Uranium-Lead Zoned Core in Accelerator-Driven System at Kyoto University Critical Assembly Phase I Study on Kinetics Parameters 2 1. Collaborative Work Specifications Introduction Experimental Settings Experimental Results References 6 Appendix-I Core Configuration ADS cores with 14 MeV Neutrons ADS cores with 100 MeV Protons Results of Experiments ADS with 14 MeV Neutrons ADS with 100 MeV Protons 72 Phase II Study on Reaction Rate Distributions 103 Appendix-II Result of Experiments Reaction Rate Distributions 106 iii

5 目次 京都大学臨界集合体実験装置での加速器駆動システムにおけるウラン - 鉛領域炉心の中性子特性に関する実験ベンチマーク Phase I 動特性パラメータ 2 1. 実験ベンチマーク はじめに 実験条件 実験結果 参考文献 6 付録 I 炉心構成 MeV 中性子を用いた ADS 炉心 MeV 陽子を用いた ADS 炉心 ADS 実験の結果 MeV 中性子を用いた ADS 炉心 MeV 陽子を用いた ADS 炉心 72 Phase II 反応率分布 103 付録 II ADS 実験の結果 反応率分布 106 iv

6 Experimental Benchmarks of Neutron Characteristics on Uranium-Lead Zoned Core in Accelerator-Driven System at Kyoto University Critical Assembly Institute for Integrated for Radiation and Nuclear Science (former Research Reactor Institute), Kyoto University, Japan Cheol Ho Pyeon and Masao Yamanaka 1

7 Phase I Study on Kinetics Parameters 11 th June,

8 1. Collaborative Work Specifications 1-1. Introduction The accelerator-driven system (ADS) was developed for producing energy and for transmuting minor actinides and long-lived fission products. ADS has attracted worldwide attention in recent years because of its superior safety characteristics and potential for burning plutonium and nuclear waste. An outstanding advantage of its use is the anticipated absence of reactivity accidents, provided sufficient subcriticality is ensured. At the Institute for Integrated Radiation and Nuclear Science (KURNS), Kyoto University (former the Research Reactor Institute, Kyoto University: KURRI), a series of experiments on ADS was launched in fiscal year 2003 at the Kyoto University Critical Assembly (KUCA) [1]-[36]. A new accelerator was attached to the KUCA facility in March 2008, and the high-energy neutrons generated by the interaction of 100 MeV protons with tungsten target was injected into KUCA on March The new accelerator is called the fixed-field alternating gradient (FFAG) [37]-[38] accelerator of the synchrotron type developed by the High Energy Accelerator Research Organization (KEK) in Japan. The experimental studies on ADS are being conducted for nuclear transmutation analyses with the combined use of KUCA and the FFAG accelerator. The ADS experiments [18]-[36] with 100 MeV protons obtained from the FFAG accelerator had been carried out to investigate the neutron characteristics of ADS, and the static and kinetic parameters were accurately analyzed through both the measurements and the Monte Carlo simulations of reactor physics parameters, including the reaction rates, the neutron spectrum, the neutron multiplication, the neutron decay constants and the subcriticality. In this study, special attention was given to neutron characteristics of the 235 U-lead (U-Pb) zoned core in ADS with differing external neutron source: 14 MeV neutrons; 100 MeV protons with lead-bismuth (Pb-Bi) target. In a series of ADS experiments at KUCA, kinetic parameters, including the prompt neutron decay constant ( ) and the subcriticality ( ) in dollar units, were mainly obtained by the pulsed neutron source (PNS) method, the Feynman- (Noise) method and the -fitting method with the use of BF 3 neutron detector, optical fiber detectors [39]-[40] and LiCaF detector [41]-[43]. Among two external neutron sources, the Pb-Bi target was notably consisted of a mixture ratio of 44.5% (Pb) and 55.5% (Bi). Then, the high-energy neutrons were generated by the injection of 100 MeV protons onto the Pb-Bi target. In addition to the kinetic parameters, reaction rate distributions were experimentally measured by the foil activation method for analyzing the k-source value in a subcritical state. The objective of this study was to investigate experimentally the neutron characteristics of U-Pb zoned core in ADS with differing external neutron source, and to evaluate the accuracy of stochastic and deterministic approaches with standard nuclear data libraries. 3

9 1-2. Experimental Settings Description of KUCA core KUCA comprises solid-moderated and -reflected type-a and -B cores, and a water-moderated and -reflected type-c core. In the present series of experiments, the solid-moderated and -reflected type-a core was combined with a Cockcroft-Walton type pulsed neutron generator and the FFAG accelerator at KUCA. The A-core (A(1/8 p60eueu(3)+1/8 Pb40p20EUEU)) configuration used for measuring the kinetic parameters and reaction rates is shown in Fig The core were composed of a combination of normal fuel F (1/8 p60eueu) and special fuel f (1/8 p10eueu<1/8 Pb40EUEU>1/8 p10eueu) assemblies that were loaded on the grid plate. The materials used in the critical assemblies were always in the form of rectangular parallelepipe, 2 sq. with thickness ranging between 1/16 and 2. The upper and lower parts of the fuel region were polyethylene reflector layers of more than 500 mm long, as shown in Fig The fuel rod, a highly-enriched uranium-aluminum (U-Al) alloy, consisted of 60 cells of polyethylene plate 1/8 thick, and a U-Al plate 1/16 thick and 2 sq. The functional height of the core was approximately 400 mm Description of FFAG accelerator 100 MeV protons generated from the FFAG accelerator were injected onto the Pb-Bi target. The main characteristics are under the following parameters: 100 MeV energy, 0.05 na intensity, 20 Hz pulsed frequency, 100 ns pulsed width and 25 mm diameter spot size at the target. The thickness of target was determined on the basis of previous analyses [19] in the reaction rates for the high-energy protons. A level of the neutron yield generated at the target was around /s by the injection of 100 MeV protons onto the Pb-Bi target. 4

10 1-3. Experimental Results Critical position and Excess reactivity The critical state was adjusted by maintaining the control rods in certain positions, and the excess reactivity was attained on the basis of its integral calibration curve obtained by the positive period method Time evolution data of PNS and Noise methods For 14 MeV neutrons and 100 MeV protons, to monitor carefully the prompt and delayed neutron behaviors, each core was set with four (or five) BF 3 detectors (1/2 and 1 diameters; 300 mm long) at the axial central position, three optical fibers and LiCaF detector, as shown in Fig Through the time evolution data of prompt and delayed neutrons, the prompt neutron decay constant was deduced by the Feynman- method and the -fitting method: the least-square fitting of the time evolution of the neutrons to an exponential function over the time optimal duration. Subcriticality was deduced by the extrapolated area ratio method on the basis of the prompt and delayed neutron behaviors Indium (In) reaction rate distribution Indium (In) wire 1.0 mm diameter and 800 mm long was set in the axial center position along (13-14, A-P) the vertical direction shown in Fig. 2-3 for measuring the reaction rate distribution. The experimental results of the In wire were obtained by measuring total counts of the peak energy of -ray emittance and normalized by the counts of irradiated In foil (10*10*1 mm) emitted from 115 In(n, n ) 115m In (threshold energy 0.3 MeV) reactions set at the location of the Pb-Bi target. 5

11 1-4. References ADS with 14 MeV Neutrons [1] C. H. Pyeon, Y. Hirano, T. Misawa, et al., Preliminary Experiments on Accelerator Driven Subcritical Reactor with Pulsed Neutron Generator in Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 44, 1368 (2007). [2] C. H. Pyeon, M. Hervault, T. Misawa, et al., Static and Kinetic Experiments on Accelerator Driven Subcritical Reactor with 14 MeV Neutrons in Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 45, 1171 (2008). [3] C. H. Pyeon, H. Shiga, T. Misawa, et al., Reaction Rate Analyses for an Accelerator-Driven System with 14 MeV Neutrons in Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 46, 965 (2009). [4] H. Shahbunder, C. H. Pyeon, T. Misawa and S. Shiroya, Experimental Analysis for Neutron Multiplication by using Reaction Rate Distribution in Accelerator-Driven System, Ann. Nucl. Energy, 37, 592 (2010). [5] H. Taninaka, K. Hashimoto, C. H. Pyeon, et al., Determination of Lambda-Mode Eigenvalue Separation of a Thermal Accelerator-Driven System from Pulsed Neutron Experiment, J. Nucl. Sci. Technol., 47, 376 (2010). [6] H. Shahbunder, C. H. Pyeon, T. Misawa, et al., Subcritical Multiplication Factor and Source Efficiency in Accelerator-Driven System, Ann. Nucl. Energy, 37, 1214 (2010). [7] H. Shahbunder, C. H. Pyeon, T. Misawa, et al., Effects of Neutron Spectrum and External Neutron Source on Neutron Multiplication Parameters in Accelerator-Driven System, Ann. Nucl. Energy, 37, 1785 (2010). [8] H. Taninaka, K. Hashimoto, C. H. Pyeon, et al., Determination of Subcritical Reactivity of a Thermal Accelerator-Driven System from Beam Trip and Restart Experiment, J. Nucl. Sci. Technol., 48, 873 (2011). [9] H. Taninaka, A. Miyoshi, K. Hashimoto, et al., Feynman- Analysis for a Thermal Subcritical Reactor System Driven by an Unstable 14MeV-Neutron Source, J. Nucl. Sci. Technol., 48, 1272 (2011). [10] C. H. Pyeon, Y. Takemoto, T. Yagi, et al., Accuracy of Reaction Rates in the Accelerator-Driven System with 14 MeV Neutrons at the Kyoto University Critical Assembly, Ann. Nucl. Energy, 40, 229 (2012). [11] A. Sakon, K. Hashimoto, W. Sugiyama, et al., Power Spectral Analysis for a Thermal Subcritical Reactor System Driven by a Pulsed 14 MeV Neutron Source, J. Nucl. Sci. Technol., 50, 481 (2013). [12] A. Sakon, K. Hashimoto, M. A. Maarof, et al., Measurement of Large Negative Reactivity of an Accelerator-Driven System in the Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 51, 116 (2014). [13] A. Sakon, K. Hashimoto, W. Sugiyama, et al., Determination of Prompt-Neutron Decay Constant from Phase Shift between Beam Current and Neutron Detection Signals for an 6

12 Accelerator-Driven System in the Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 52, (2015). [14] W. K. Kim, H. C. Lee, C. H. Pyeon, et al., Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute, Nucl. Eng. Technol., 48, 304 (2016). [15] T. Endo, A. Yamamoto, T. Yagi and C. H. Pyeon, Statistical Error Estimation of the Feynman- Method using the Bootstrap Method, J. Nucl. Sci. Technol., 53, 1447 (2016). [16] W. F. G. Rooijen, T. Endo, G. Chiba and C. H. Pyeon, Analysis of the KUCA ADS Benchmarks with Diffusion Theory, Prog. Nucl. Energy, 101, 243 (2017). [17] C. D. Kong, J. W. Choe, S. P. Yum, et al., Application of Advanced Rossi-alpha Technique to Reactivity Measurements at Kyoto University Critical Assembly, Ann. Nucl. Energy, 118, 92 (2018). ADS with 100 MeV Protons [18] C. H. Pyeon, T. Misawa, J. Y. Lim et al., First Injection of Spallation Neutrons Generated by High-Energy Protons into the Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 46, 1091 (2009). [19] C. H. Pyeon, H. Shiga, K. Abe, et al., Reaction Rate Analysis of Nuclear Spallation Reactions Generated by 150, 190 and 235 MeV Protons, J. Nucl. Sci. Technol., 47, 1090 (2010). [20] C. H. Pyeon, J. Y. Lim, Y. Takemoto, et al., Preliminary Study on the Thorium-Loaded Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly, Ann. Nucl. Energy, 38, 2298 (2011). [21] J. Y. Lim, C. H. Pyeon, T. Yagi and T. Misawa, Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly, Sci. Technol. Nucl. Install., 2012, ID: , 9 pages, (2012). [22] Y. Takahashi, T. Azuma, T. Nishio, et al., Conceptual Design of Multi-Targets for Accelerator-Driven System Experiments with 100 MeV Protons, Ann. Nucl. Energy, 54, 162 (2013). [23] C. H. Pyeon, T. Azuma, Y. Takemoto, et al., Experimental Analyses of External Neutron Source Generated by 100 MeV Protons at the Kyoto University Critical Assembly, Nucl. Eng. Technol., 45, 81 (2013). [24] C. H. Pyeon, T. Yagi, K. Sukawa, et al., Mockup Experiments on the Thorium-Loaded Accelerator-Driven System in the Kyoto University Critical Assembly, Nucl. Sci. Eng., 177, 156 (2014). [25] C. H. Pyeon, H. Nakano, M. Yamanaka, et al., Neutron Characteristics of Solid Targets in Accelerator-Driven System with 100 MeV Protons at Kyoto University Critical Assembly, Nucl. Technol., 192, 181 (2015). [26] M. Yamanaka, C. H. Pyeon, T. Yagi and T. Misawa, Accuracy of Reactor Physics Parameters in Thorium-Loaded Accelerator-Driven System Experiments at Kyoto University Critical Assembly, Nucl. Sci. Eng., 183, 96 (2016). [27] T. Endo, A. Yamamoto, T. Yagi and C. H. Pyeon, Statistical Error Estimation of the Feynman- 7

13 Method using the Bootstrap Method, J. Nucl. Sci. Technol., 53, 1447 (2016). [28] M. Yamanaka, C. H. Pyeon and T. Misawa, Monte Carlo Approach of Effective Delayed Neutron Fraction by k-ratio Method with External Neutron Source, Nucl. Sci. Eng., 184, 551 (2016). [29] S. Dulla, S. S. Hoh, G. Marana, et al., Analysis of KUCA Measurements by the Reactivity Monitoring MA TA Method, Ann. Nucl. Energy, 101, 397 (2017). [30] M. Yamanaka, C. H. Pyeon, S. H. Kim, et al., Effective Delayed Neutron Fraction in Accelerator-Driven System Experiments with 100 MeV Protons at Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 54, 293 (2017). [31] H. Iwamoto, K. Nishihara, T. Yagi and C. H. Pyeon, On-line Subcriticality Measurement using A Pulsed Spallation Neutron Source, J. Nucl. Sci. Technol., 54, 432 (2017). [32] C. H. Pyeon, M. Yamanaka, T. Endo, et al., Experimental Benchmarks on Kinetic Parameters in Accelerator-Driven System with 100 MeV Protons at Kyoto University Critical Assembly, Ann. Nucl. Energy, 105, 346 (2017). [33] C. H. Pyeon, M. Yamanaka, S. H. Kim, et al., Benchmarks of Subcriticality in Accelerator-Driven System Experiments at Kyoto University Critical Assembly, Nucl. Eng. Technol., 49, 1234 (2017). [34] A. Talamo, Y. Gohar, F. Gabrielli, et al., Coupling Sjostrand and Feynman Methods in Prompt Neutron Decay Constant Analyses, Prog. Nucl. Energy, 101, 299 (2017). [35] C. H. Pyeon, T. M. Vu, M. Yamanaka, et al., Reaction Rate Analyses of Accelerator-Driven System Experiments with 100 MeV Protons at Kyoto University Critical Assembly, J. Nucl. Sci. Technol., 55, 190 (2018). [36] T. Endo, G. Chiba, W. F. G. van Rooijen, et al., Experimental Analysis and Uncertainty Quantification using Random Sampling Technique for ADS Experiments at KUCA, J. Nucl. Sci. Technol., 55, 450 (2018). FFAG Accelerator (100 MeV Protons) [37] J. B. Lagrange, T. Planche, E. Yamakawa et al., Straight Scaling FFAG Beam Line, Nucl. Instrum. Methods A, 691, 55 (2013). [38] E. Yamakawa, T. Uesugi, J. B. Lagrange et al., Serpentine Acceleration in Zero-Chromatic FFAG Accelerators, Nucl. Instrum. Methods A, 716, 46 (2013). Optical Fiber and LiCaF Fiber Detectors [39] T. Yagi, T. Misawa, C. H. Pyeon et al., A Small High Sensitivity Neutron Detector using a Wavelength Shifting Fiber, Appl. Radiat. Isot., 69, 176 (2011). [40] T. Yagi, C. H. Pyeon and T. Misawa, Application of Wavelength Shifting Fiber to Subcriticality Measurements, Appl. Radiat. Isot., 72, 11 (2013). [41] K. Watanabe, Y. Kondo, A. Yamazaki et al., Study on Fast Luminescence Component Induced by Gamma-rays in Ce Doped LiCaAlF 6 Scintillators, Radiation Measurement, 71, 158 (2014). [42] K. Watanabe, Y. Kawabata, A. Yamazaki et al., Development of an Optical Fiber Type Detector 8

14 using a Eu:LiCaAlF6 Scintillator for Neutron Monitoring in Boron Neutron Capture Therapy, Nucl. Instrum. Methods A, 802, 1 (2015). [43] K. Watanabe, T. Yamazaki, D. Sugimoto et al., Wavelength-Shifting Fiber Signal Readout from Transparent RUbber SheeT (TRUST) Type LiCaAlF 6 Neutron Scintillator, Nucl. Instrum. Methods A, 784, 260 (2015). 9

15 Appendix-I F Normal fuel (1/8"p60EUEU) f Special fuel (1/8"Pb40p20EUEU) p Polyethylene moderator A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Polyethylene reflector B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 LiCaf fiber Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p Optical p fiber #1 Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F F F F S6 p p Gr U Gr p p p p F F F p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr FC#2 X Gr p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr C S N FC UIC Graphite Aluminum sheath 1/2" BF-3 detector Optical fiber Control rod Safety rod Neutron source (Am-Be) Fission chamber UIC detector Tritumu target Deuterion beam Fig. 1-1 The general view of U-Pb zoned core configuration 1 diameter void Polyethylene 10

16 Polyethylene 596 mm Void between assemblies Aluminum sheath Fuel (60 cells ) 381 mm 1524 mm (60 ) Fuel mm (2 2 ) Internal void 51.3 mm 54.3 mm Polyethylene 547 mm 55.3 mm Fig. 1-2 Description of fuel assembly at KUCA Fuel plate Polyethylene plate Fig. 1-3 Description of fuel (HEU; 2 2 ) and polyethylene plates (2 2 ) 11

17 1/16 EU 2 (3.17 mm) Unit cell (6.35 mm: 1/4 ) 2 Gr (50.80 mm) + Void (43.50 mm) Poly. moderator (p) (10 )( mm) + Poly. reflector (PE) (1/ /4 ) ( mm) 60 times ( mm: 15.0 ) Poly. moderator (p) (10 )( mm) + Poly. reflector (PE) (1/ /4 ) ( mm) Al plate (20.00 mm) 2 Gr (50.80 mm) 1/8 p (3.17 mm) Reflector ( mm) (Lower) Fuel ( mm: 15.0 ) (Unit cell 60 times) Reflector ( mm) (Upper) (a) Fuel assembly F 1/16 EU 2 (3.17 mm) 10 times (63.50 mm) 1/8 Pb (3.17 mm) 1/16 EU 2 (3.17 mm) 10 times (63.50 mm) 2 Gr (50.80 mm) + Void (43.50 mm) Polyethylene (10 p+1/2 PE 17 +1/4 PE) ( mm) 40 times ( mm: 10.0 ) Polyethylene (10 p+1/2 PE 19 +1/4PE) ( mm) 20 mm Al plate 2 Gr (50.80 mm) 1/8 p (3.17 mm) 1/16 EU 2 (3.17 mm) 1/8 p (3.17 mm) Reflector ( mm) (Lower) Fuel ( mm) (Unit cell 60 times) Reflector ( mm) (Upper) (b) Fuel assembly f Polyethylene moderator (p) ( mm:10 p 5 + 1/2 PE 8) 2 Gr (50.80 mm) 2 Gr (50.80 mm) (c) Polyethylene moderator p 12

18 Polyethylene reflector (PE) ( mm:19 PE 2 + 1/2 PE 33) 2 Gr (50.80 mm) (d) Polyethylene reflector 2 Gr (50.80 mm) Graphite (Gr) ( mm: 2 Gr 29) (e) Graphite Gr Polyethylene (1/2 PE p 2) ( mm) Polyethylene ; 1 diam. hole (10 PE 3) ( mm) 20 mm Al plate 2 Gr (50.80 mm) Reflector ( mm) (Lower) Reflector ( mm) (Upper) (f) Polyethylene with 1 diameter hole Fig. 1-4 Fall sideways view of fuel and polyethylene rods shown in Fig

19 Void between assemblies Aluminum sheath Polyethylene (Aluminum) 1524 mm (60 ) Polyethylene (Aluminum) mm (2 2 ) Internal void 5.13 cm 5.43 cm 5.53 cm Fig. 1-5 Description of polyethylene reflector at KUCA Anhydrous Boron Void between assemblies Aluminum sheath Internal void 1470 mm Anhydrous Boron 1524 mm Aluminum sheath 33.8 mm 40.0 mm 45.0 mm 50.0 mm 55.3 mm Fig. 1-6 Description of control (safety) rod at KUCA 14

20 Polyethylene 50.8 mm Polyethylene 50.8 mm Polyethylene 50.8 mm Polyethylene 50.8 mm 1 mm gap Fuel 50.8 mm Fuel 50.8 mm Fuel 50.8 mm 3 mm gap Fuel 50.8 mm Fuel 50.8 mm Fuel 50.8 mm Polyethylene 50.8 mm FC#3 UIC#4 1 mm gap 3 mm gap 1 mm gap FC#2 C3 F F F F F S5 FC#1 F F F F F S4 F F F F F C1 UIC#5 F F F F F C2 F S6 N Fig. 1-7 Description of fuel assembly, polyethylene reflector and control rod at KUCA Indium (In) wire Internal void Aluminum sheath Target 1.0 mm 2.0 mm 2.2 mm Fuel assembly base Fig. 1-8 Setting of Indium (In) wire 15

21 Control or safety rod Fe Al 20 mm 35 mm B 2 O mm Measured rod length Actual rod length Al 5 mm Shock absorber 98.0 mm Fuel assembly base Fig. 1-9 Actual position of control (safety) rod (Actual position = Measured position 97.5 mm) Al foil (10*10*1 mm) Pb-Bi target (50 mm diam., 18 mm thick) In foil (10*10*1 mm) 1524 mm 700 mm (15, D) (15, D) Fig Attachment of target, Al and In foils at the location of core target 16

22 25 mm Location of T-3 target T-3 target D+ injection In wire position Target: 735 mm Fuel assembly base 55.3*13 mm = mm Fig Side view of target and core configuration with 14 MeV neutrons 75 mm mm (15, D) Location of original target Pb-Bi target 100 MeV proton injection In wire position Target: 700 mm Fuel assembly base 55.3*13 mm = mm Fig Side view of target and core configuration with 100 MeV protons 17

23 80 mm 3 mm 48 mm 100 mm 3 mm 50 mm Proton beams (25 mm diameter) Enlarged (flange; Original target location) 1 mm 3 mm 10 mm 50 mm 10 mm 50 mm Fig Target configuration of the location of original target 18

24 Table 1-1 Atomic density of 1/16 thick highly-enriched uranium (HEU) fuel plate (U-Al alloy) Isotope Atomic density [ /cm 3 ] 234 U E U E U E U E-05 Al E-02 Table 1-2 Atomic density of polyethylene (p) moderator Isotope Atomic density [ /cm 3 ] 1/8 thick plate 10 long rod 1 H E E C E E-02 Table 1-3 Atomic density of polyethylene (PE) reflector Isotope Atomic density [ /cm 3 ] 1/2 thick plate 1/4 thick plate 1/8 thick plate H E E E-02 C E E E-02 19

25 Table 1-4 Atomic density of control and safety rods Isotope Atomic density [ /cm 3 ] 10 B E B E O E-02 Table 1-5 Atomic density of aluminum sheath for the core element Isotope Atomic density [ /cm 3 ] Al E-02 Table 1-6 Atomic density of Cd, In and Au Foil (wire) Isotope Abundance (%) Purity (%) Atomic density [ /cm 3 ] In Au 113 In E In E Au E-02 20

26 Table 1-7 Atomic density of Pb-Bi target Target Isotope Abundance (%) Atomic density [ /cm 3 ] 204 Pb E Pb E-03 Pb-Bi (44.5/55.5) 207 Pb E Pb E Bi E-02 Table 1-8 Dimension of target Target Diameter [mm] Thickness [mm] Pb-Bi

27 Table 1-9 Atomic density of beam tube component (SUS304) shown in Fig Isotope Atomic density [ /cm 3 ] 54 Fe E Fe E Fe E Fe E Cr E Cr E Cr E Cr E Ni E Ni E Ni E Ni E Ni E-05 22

28 2. Core Configuration 2.1 ADS cores with 14 MeV Neutrons F Normal fuel (1/8"p60EUEU) f Special fuel (1/8"Pb40p20EUEU) p Polyethylene moderator A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Polyethylene reflector B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 LiCaf fiber Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p Optical p fiber #1 Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F F F F S6 p p Gr U Gr p p p p F F F p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr FC#2 X Gr p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr C S N FC UIC Graphite Aluminum sheath 1/2" BF-3 detector Optical fiber Control rod Safety rod Neutron source (Am-Be) Fission chamber UIC detector Tritumu target Deuterion beam Fig. 2-1 U-Pb zoned core configuration of ADS with 14 MeV neutrons 23

29 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 LiCaf fiber Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p Optical p fiber #1 Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F F F F S6 p p Gr U Gr p p p p F F F p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr X Gr FC#2 p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (a) Case D1 (Reference core; Number of fuel plates: 4560) 24

30 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 Optical fiber #1 Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p LiCaF p fiber Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F F F F S6 p p Gr U Gr p p p p F p F p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr X Gr FC#2 p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (b) Case D2 (Number of fuel plates: 4400) Note: Change of location of detectors (comparing Case I with Case II, III, IV, V and VI) Optical fiber #1: (15-16, L- M) ---> (18-19, I-J) LiCaF fiber: (18-19, I-J) ---> (15-16, L-M) 25

31 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 Optical fiber #1 Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p plicaf p fiber Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F F F F S6 p p Gr U Gr p p p p p F p p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr X Gr FC#2 p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (c) Case D3 (Number of fuel plates: 4320) 26

32 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 Optical fiber #1 Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p LiCaF p fiber Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F F F F S6 p p Gr U Gr p p p p p p p p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr X Gr FC#2 p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (d) Case D4 (Number of fuel plates: 4200) 27

33 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 Optical fiber #1 Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p LiCaF p fiber Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F F p F F S6 p p Gr U Gr p p p p p p p p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr X Gr FC#2 p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (e) Case D5 (Number of fuel plates: 4080) 28

34 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr D Gr Gr FC#3 UIC#4 E Gr Gr G Gr BF-3 detector #1 Optical fiber #1 Gr H Gr p p p p p p p p p p BF-3 detector #2 Gr I Gr p p p p p p p p p p Optical fiber #3 Gr J Gr p p p p p p p p p p p Gr UIC#5 FC#1 K Gr p p C3 F F F F F S5 p Optical p fiber #2 Gr L Gr p p p F f f f F p p LiCaF p fiber Gr M Gr p p p F f f f F p p p Gr O Gr p p S4 F f f f F C1 p p N Gr Q Gr p p p F F F F F p p BF-3 detector #3 Gr R Gr p p p F F F F F p p p Gr UIC#6 T Gr p p C2 F p p p F S6 p p Gr U Gr p p p p p p p p p p p Gr V Gr p p p p p p p p p p p Gr W Gr p p p p p p p p Gr X Gr FC#2 p p p p p p p p BF-3 detector #4 Gr Y Gr Gr Gr Gr Z Gr Gr Gr Gr Z' Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (f) Case D6 (Number of fuel plates: 3840) Fig. 2-2 Subcritical core configurations of ADS with 14 MeV neutrons 29

35 2.2 ADS cores with 100 MeV Protons (with Pb-Bi target) A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr I Gr p p p p F F F p p p p Gr J Gr p p C3 F F F F F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaF fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr F f p Gr C S Normal fuel (1/8"p60EUEU) Special fuel (1/8"Pb40p20EUEU) Polyethylene moderator Polyethylene reflector Graphite Aluminum sheath 1/2" BF-3 detector Optical fiber Control rod Safety rod N Neutron source (Am-Be) FC Fission chamber UIC UIC detector Pb-Bi target Fig. 2-3 U-Pb zoned core configuration of ADS with 100 MeV protons 30

36 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p F F F p p p p Gr J Gr p p C3 F F F F F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaF fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (a) Case F1 (Reference core; Number of fuel plates: 4560) 31

37 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p F p F p p p p Gr J Gr p p C3 F F F F F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaf fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (b) Case F2 (Number of fuel plates: 4440) 32

38 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p p F p p p p p Gr J Gr p p C3 F F F F F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaf fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (c) Case F3 (Number of fuel plates: 4320) 33

39 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p p p p p p p p Gr J Gr p p C3 F F F F F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaf fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (d) Case F4 (Number of fuel plates: 4200) 34

40 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p p p p p p p p Gr J Gr p p C3 F F p F F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaf fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (e) Case F5 (Number of fuel plates: 4080) 35

41 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p p p p p p p p Gr J Gr p p C3 F p F p F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaf fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (f) Case F6 (Number of fuel plates: 3960) 36

42 A Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr B Gr Gr Gr Gr D Gr Gr Gr Gr UIC#6 BF-3 detector #4 E Gr p p p p p p p p p p p Gr G Gr p p p p p p p p p p p Gr H Gr p p p p p p p p p p p Gr Optical fiber #3 I Gr p p p p p p p p p p p Gr J Gr p p C3 F p p p F S5 p p Gr K Gr p p p F F F F F p p p Gr UIC#5 L Gr p p p F F F F F p p p N Gr M Gr p p S4 F f f f F C1 p p Gr O Gr BF-3 detector #3 p p p F f f f F p p p Gr LiCaf fiber Optical fiber #1 P Gr p p p F f f f F p p p Gr Q Gr p p C2 F F F F F S6 p p Gr FC#3 R Gr p p p p p Optical p pfiber #2 p p p p Gr FC#1 T Gr p p p p p p p p p p p Gr U Gr p p p p p p p p p Gr V Gr BF-3 detector #2 Gr W Gr Gr BF-3 detector #1 FC#2 UIC#4 X Gr Gr Y Gr Gr Z Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr (g) Case F7 (Number of fuel plates: 3840) Fig. 2-4 Subcritical core configurations of ADS with 100 MeV protons 37

43 3. Results of Experiments 3-1. ADS with 14 MeV Neutrons Core condition at critical state (Fig. 2-1) Table Control rod positions at critical state in reference core (# of HEU plates: 4560; Case D1) Rod Rod position [mm] C C C S S S Excess reactivity [pcm] 80 ± 2 Table Control rod (reactivity) worth Rod Rod worth [pcm] C1 (S4) 902 ± 27 C2 (S6) 696 ± 21 C3 (S5) 232 ± 7 Table Kinetic parameters by MCNP6.1 with JENDL-4.0 eff 853 ± 3 [pcm] (3.24 ± 0.03) 10-5 [s] 38

44 Case D1 (# of fuel plates: 4560 in Fig. 2-2(a)) Table Core condition in Case D1-1 to Case D1-5 (# of fuel plates: 4560) Case C1 C2 C3 S4 S5 S6 k eff D D D D D Table Beam characteristics of 14 MeV neutrons in Case D1-1 to Case D1-5 Case Frequency [Hz] Width [ s] Current [ma] D D D D D

45 Table Measured results of [1/s] and [$] in Case D1-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) ± ± ± Fiber #3 (Ch#7)

46 (a) PNS histogram in Case D1-1 (b) Y-value distribution by Feynman-α method in Case D1-1 Fig Experimental resutls by PNS and Noise methods in Case D1-1 41

47 Table Measured results of [1/s] and [$] in Case D1-2 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) ± ± ± ± Fiber #3 (Ch#7)

48 (a) PNS histogram in Case D1-2 (b) Y-value distribution by Feynman-α method in Case D1-2 Fig Experimental resutls by PNS and Noise methods in Case D1-2 43

49 Table Measured results of [1/s] and [$] in Case D1-3 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ±0.340 Fiber #1 (Ch#5) Fiber #2 (Ch#6) ± ± ± LiCaF (Ch#7) ± ± ±

50 (a) PNS histogram in Case D1-3 (b) Y-value distribution by Feynman-α method in Case D1-3 Fig Experimental resutls by PNS and Noise methods in Case D1-3 45

51 Table Measured results of [1/s] and [$] in Case D1-4 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) ± ± ± ± LiCaF (Ch#7) ± ± ±

52 (a) PNS histogram in Case D1-4 (b) Y-value distribution by Feynman-α method in Case D1-4 Fig Experimental resutls by PNS and Noise methods in Case D1-4 47

53 Table Measured results of [1/s] and [$] in Case D1-5 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) ± ± ± ± LiCaF (Ch#7)

54 (a) PNS histogram in Case D1-5 (b) Y-value distribution by Feynman-α method in Case D1-5 Fig Experimental resutls by PNS and Noise methods in Case D1-5 49

55 Case D2 (# of fuel plates: 4400 in Fig. 2-2(b)) Table Core condition in Case D2-1 to Case D2-3 (# of fuel plates: 4400) Case C1 C2 C3 S4 S5 S6 k eff D D D Table Beam characteristics of 14 MeV neutrons in Case D2-1 to Case D2-3 Case Frequency [Hz] Width [ s] Current [ma] D D D Table Measured results of [1/s] and [$] in Case D2-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) ± Fiber #2 (Ch#6) ± ± ± Fiber #3 (Ch#7)

56 (a) PNS histogram in Case D2-1 (b) Y-value distribution by Feynman-α method in Case D2-1 Fig Experimental resutls by PNS and Noise methods in Case D2-1 51

57 Table Measured results of [1/s] and [$] in Case D2-2 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) ± ± Fiber #2 (Ch#6) ± ± ± Fiber #3 (Ch#7)

58 (a) PNS histogram in Case D2-2 (b) Y-value distribution by Feynman-α method in Case D2-2 Fig Experimental resutls by PNS and Noise methods in Case D2-2 53

59 Table Measured results of [1/s] and [$] in Case D2-3 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) ± ± Fiber #2 (Ch#6) ± ± ± Fiber #3 (Ch#7)

60 (a) PNS histogram in Case D2-3 (b) Y-value distribution by Feynman-α method in Case D2-3 Fig Experimental resutls by PNS and Noise methods in Case D2-3 55

61 Case D3 (# of fuel plates: 4320 in Fig. 2-2(c)) Table Core condition in Case D3-1 (# of fuel plates: 4320) Case C1 C2 C3 S4 S5 S6 k eff D Table Beam characteristics of 14 MeV neutrons in Case D3-1 Case Frequency [Hz] Width [ s] Current [ma] D Table Measured results of [1/s] and [$] in Case D3-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) ± ± ± LiCaF (Ch#7)

62 (a) PNS histogram in Case D3-1 (b) Y-value distribution by Feynman-α method in Case D3-1 Fig Experimental resutls by PNS and Noise methods in Case D3-1 57

63 Case D4 (# of fuel plates: 4200 in Fig. 2-2(d)) Table Core condition in Case D4-1 (# of fuel plates: 4200) Case C1 C2 C3 S4 S5 S6 k eff D Table Beam characteristics of 14 MeV neutrons in Case D4-1 and Case D4-2 Case Frequency [Hz] Width [ s] Current [ma] D Table Measured results of [1/s] and [$] in Case D4-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) LiCaF (Ch#7)

64 (a) PNS histogram in Case D4-1 (b) Y-value distribution by Feynman-α method in Case D4-1 Fig Experimental resutls by PNS and Noise methods in Case D4-1 59

65 Case D5 (# of fuel plates: 4080 in Fig. 2-2(e)) Table Core condition in Case D5-1 to Case D5-3 (# of fuel plates: 4080) Case C1 C2 C3 S4 S5 S6 k eff D D D Table Beam characteristics of 14 MeV neutrons in Case D5-1 to Case D5-3 Case Frequency [Hz] Width [ s] Current [ma] D D D Table Measured results of [1/s] and [$] in Case D5-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) ± ± Fiber #2 (Ch#6) ± ± Fiber #3 (Ch#7)

66 (a) PNS histogram in Case D5-1 (b) Y-value distribution by Feynman-α method in Case D5-1 Fig Experimental resutls by PNS and Noise methods in Case D5-1 61

67 Table Measured results of [1/s] and [$] in Case D5-2 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) ± Fiber #2 (Ch#6) ± ± ± Fiber #3 (Ch#7)

68 (a) PNS histogram in Case D5-2 (b) Y-value distribution by Feynman-α method in Case D5-2 Fig Experimental resutls by PNS and Noise methods in Case D5-2 63

69 Table Measured results of [1/s] and [$] in Case D5-3. [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) ± Fiber #2 (Ch#6) ± ± Fiber #3 (Ch#7)

70 (a) PNS histogram in Case D5-3 (b) Y-value distribution by Feynman-α method in Case D5-3 Fig Experimental resutls by PNS and Noise methods in Case D5-3 65

71 Case D6 (# of fuel plates: 3840 in Fig. 2-2(f)) Table Core condition in Case D6-1 to Case D6-3 (# of fuel plates: 3840) Case C1 C2 C3 S4 S5 S6 k eff D D D Table Beam characteristics of 14 MeV neutrons in Case D6-1 to Case D6-3 Case Frequency [Hz] Width [ s] Current [ma] D D D Table Measured results of [1/s] and [$] in Case D6-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) ± Fiber #2 (Ch#6) ± Fiber #3 (Ch#7)

72 (a) PNS histogram in Case D6-1 (b) Y-value distribution by Feynman-α method in Case D6-1 Fig Experimental resutls by PNS and Noise methods in Case D6-1 67

73 Table Measured results of [1/s] and [$] in Case D6-2 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) ± Fiber #2 (Ch#6) ± Fiber #3 (Ch#7)

74 (a) PNS histogram in Case D6-2 (b) Y-value distribution by Feynman-α method in Case D6-2 Fig Experimental resutls by PNS and Noise methods in Case D6-2 69

75 Table Measured results of [1/s] and [$] in Case D6-3 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± Fiber #1 (Ch#5) ± Fiber #2 (Ch#6) ± Fiber #3 (Ch#7)

76 (a) PNS histogram in Case D6-3 (b) Y-value distribution by Feynman-α method in Case D6-3 Fig Experimental resutls by PNS and Noise methods in Case D6-3 71

77 3-2. ADS with 100 MeV Protons Core condition at critical state (Fig. 2-3) Table Control rod positions at the critical state in reference core (# of HEU plates: 4560; Case F1) Rod Rod position [mm] C C C S S S Excess reactivity [pcm] 37 ± 1 Table Control rod worth Rod Rod worth [pcm] C1 (S4) 902 ± 27 C2 (S6) 696 ± 21 C3 (S5) 232 ± 7 72

78 Table Kinetic parameters by MCNP6.1 with JENDL-4.0 eff 853 ± 3 [pcm] (3.24 ± 0.03) 10-5 [s] Table Proton beam characteristics obtained from FFAG accelerator Energy [MeV] Frequency [Hz] Repetition [ns] Current [na]

79 Case F1 (# of fuel plates: 4560 in Fig. 2-4(a)) Table Core condition in Case F1-1 to Case F1-6 (# of fuel plates: 4560) Case C1 C2 C3 S4 S5 S6 k eff F F F F F F

80 Table Measured results of [1/s] and [$] in Case F1-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #5 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± BF-3 #1 (Ch#5) ± ± ± ±

81 (a) PNS histogram in Case F1-1 (b) Y-value distribution by Feynman-α method in Case F1-1 Fig Experimental resutls by PNS and Noise methods in Case F1-1 76

82 Table Measured results of [1/s] and [$] in Case F1-2 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #5 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± BF-3 #1 (Ch#5) ± ± ± ±

83 (a) PNS histogram in Case F1-2 (b) Y-value distribution by Feynman-α method in Case F1-2 Fig Experimental resutls by PNS and Noise methods in Case F1-2 78

84 Table Measured results of [1/s] and [$] in Case F1-3 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #5 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± BF-3 #1 (Ch#5) ± ± ± ±

85 (a) PNS histogram in Case F1-3 (b) Y-value distribution by Feynman-α method in Case F1-3 Fig Experimental resutls by PNS and Noise methods in Case F1-3 80

86 Table Measured results of [1/s] and [$] in Case F1-4 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) Fiber #3 (Ch#7) ± ± ± ±

87 (a) PNS histogram in Case F1-4 (b) Y-value distribution by Feynman-α method in Case F1-4 Fig Experimental resutls by PNS and Noise methods in Case F1-4 82

88 Table Measured results of [1/s] and [$] in Case F1-5 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ±0.006 Fiber #1 (Ch#5) Fiber #2 (Ch#6) Fiber #3 (Ch#7) ± ± ± ±

89 (a) PNS histogram in Case F1-5 (b) Y-value distribution by Feynman-α method in Case F1-5 Fig Experimental resutls by PNS and Noise methods in Case F1-5 84

90 Table Measured results of [1/s] and [$] in Case F1-6 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± Fiber #1 (Ch#5) Fiber #2 (Ch#6) Fiber #3 (Ch#7) ± ± ± ±

91 (a) PNS histogram in Case F1-6 (b) Y-value distribution by Feynman-α method in Case F1-6 Fig Experimental resutls by PNS and Noise methods in Case F1-6 86

92 Case F2 (# of fuel plates: 4440 in Fig. 2-4(b)) Table Core condition in Case F2-1 (# of fuel plates: 4440) Case C1 C2 C3 S4 S5 S6 k eff F Table Measured results of [1/s] and [$] in Case F2-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± LiCaF (Ch#5) ± ± ± ± Fiber #1 (Ch#6) ± ± Fiber #2 (Ch#7) ± ±

93 (a) PNS histogram in Case F2-1 (b) Y-value distribution by Feynman-α method in Case F2-1 Fig Experimental resutls by PNS and Noise methods in Case F2-1 88

94 Case F3 (# of fuel plates: 4320 in Fig. 2-4(c)) Table Core condition in Case F3-1 (# of fuel plates: 4320) Case C1 C2 C3 S4 S5 S6 k eff F Table Measured results of [1/s] and [$] in Case F3-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± LiCaF (Ch#5) ± ± ± ± Fiber #3 (Ch#6) ± ± ± ± Fiber #2 (Ch#7) ± ±

95 (a) PNS histogram in Case F3-1 (b) Y-value distribution by Feynman-α method in Case F3-1 Fig Experimental resutls by PNS and Noise methods in Case F3-1 90

96 Case F4 (# of fuel plates: 4200 in Fig. 2-4(d)) Table Core condition in Case F4-1 and F4-2 (# of fuel plates: 4200) Case C1 C2 C3 S4 S5 S6 k eff F F Table Measured results of [1/s] and [$] in Case F4-1 [1/s] [$] Detector Feynman- -fitting Area (Sjostrand) Area (Gozani) BF-3 #1 (Ch#1) ± ± ± ± BF-3 #2 (Ch#2) ± ± ± ± BF-3 #3 (Ch#3) ± ± ± ± BF-3 #4 (Ch#4) ± ± ± ± LiCaF (Ch#5) ± ± ± ± Fiber #3 (Ch#6) ± ± ± ± Fiber #2 (Ch#7) ± ±

97 (a) PNS histogram in Case F4-1 (b) Y-value distribution by Feynman-α method in Case F4-1 Fig Experimental resutls by PNS and Noise methods in Case F4-1 92

京都大学臨界集合体実験装置における 100 MeV 陽子を用いた加速器駆動システムの固体 Pb-Bi の中性子特性に関する実験ベンチマーク

京都大学臨界集合体実験装置における 100 MeV 陽子を用いた加速器駆動システムの固体 Pb-Bi の中性子特性に関する実験ベンチマーク ISSN 0287-9808 KURRI-TR-447 ONLINE ISSN 2189-7115 ONLINE ETR- 1 京都大学臨界集合体実験装置における 100 MeV 陽子を用いた加速器駆動システムの固体 Pb-Bi の中性子特性に関する実験ベンチマーク Experimental Benchmarks of Neutronics on Solid Pb-Bi in Accelerator-Driven

More information

I. Project Research. Project 9

I. Project Research. Project 9 I. Project Research Project 9 PR9 Project Research of Accelerator-Driven System with Spallation Neutrons at Critical Assembly C. H. Pyeon, M. Yamanaka, K. Hashimoto, N. Aizawa 2, A. Ohizumi 3, W. F. G

More information

Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA)

Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA) Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA) C. H. Pyeon, T. Misawa, H. Unesaki, K. Mishima and S. Shiroya (Kyoto University Research Reactor Institute,

More information

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

C-H Activation in Total Synthesis Masayuki Tashiro (M1) 1 C-H Activation in Total Synthesis Masayuki Tashiro (M1) 21 st Jun. 2014 Does a late-stage activation of unactivated C-H bond shorten a total synthesis?? 2 3 Contents 1. Comparison of Two Classical Strategies

More information

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日 Reactive Fluid Dynamics 2 1 目的 本 G-COE で対象とする大規模複雑力学系システムを取り扱うにあたって, 非線形力学の基本的な知識と応用展開力は不可欠である. そこで,

More information

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device 15 th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, 5-8 September, PPPL Session 8 : Diagnostic Development : O-14 Fusion neutron production with deuterium neutral beam

More information

EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY http://dx.doi.org/10.5516/net.08.2012.003 EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY CHEOL HO PYEON 1*, TETSUSHI AZUMA 2, YUKI TAKEMOTO

More information

The investigations in the field of advanced nuclear power systems for energy production and transmutation of RAW in NAS of Belarus

The investigations in the field of advanced nuclear power systems for energy production and transmutation of RAW in NAS of Belarus The investigations in the field of advanced nuclear power systems for energy production and transmutation of RAW in NAS of Belarus on behalf of YALINA team Dr. Kiyavitskaya H. ISTC meeting «Feature technology:

More information

The unification of gravity and electromagnetism.

The unification of gravity and electromagnetism. The unification of gravity and electromagnetism. (The physics of dark energy.) Terubumi Honjou The 9 chapter. The unification of gravity and electromagnetism. [1]... to the goal of modern physics and the

More information

Jun Nishiyama Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

Jun Nishiyama Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology Nuclear and Emerging Technologies for Space 2015 Albuquerque Marriott in Albuquerque, NM on February 23-26, 2015. Feasibility Study on Polonium Isotopes as Radioisotope Fuel for Space Nuclear Power Jun

More information

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows. Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A Jun 2009 Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows. Test Signal Frequency Accuracy Frequency

More information

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018 2018 年 ( 平成 30 年 ) 13 日 ( 金曜日 ) Fri July 13, 2018 発行所 (Name) : 株式会社東京証券取引所 所在地 (Address) : 103-8220 東京都中央日本橋兜町 2-1 ホームヘ ーシ (URL) : https://www.jpx.co.jp/ 電話 (Phone) : 03-3666-0141 2-1 Nihombashi Kabutocho,

More information

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 ) CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 再構築法の開発 並河俊弥 ( 東京大学 ) 201 1 第 41 回天文 天体物理若手夏の学校 2011/08/01-04 CMB lensing の宇宙論への応用 暗黒エネルギー ニュートリノ質量など 比較的高赤方偏移の揺らぎに感度をもつ 光源の性質がよく分かっている 他の観測と相補的 原始重力波 TN+ 10 重力レンズ由来の B-mode

More information

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史 統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史 概要 高速点火核融合ではターゲット爆縮から追加熱用レーザーによる高速電子発生まで時間 空間スケールにおいて非常に広範な領域の現象を理解する必要がある そこで本プロジェクトでは輻射流体コード 粒子コード Fokker-Planck コード の開発が進められており これらのコードをネットワークを介して結合することで統合コードの構築を目指している

More information

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました 山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました 大学院時代には スイスのセルン研究所に長期間滞在し 反陽子ヘリウム原子のレーザー分光実験により エネルギー準位の精密決定 崩壊率における異常の発見などに 大きな成果をあげました それらに基く博士論文 反陽子ヘリウム原子のレーザー分光 ~エネルギー準位と準位寿命

More information

京都 ATLAS meeting 田代. Friday, June 28, 13

京都 ATLAS meeting 田代. Friday, June 28, 13 京都 ATLAS meeting 0.06.8 田代 Exotic search GUT heavy gauge boson (W, Z ) Extra dimensions KK particles Black hole Black hole search (A 模型による )Extra dimension が存在する場合 parton 衝突で black hole が生成される Hawking

More information

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正 氏名 ( 本籍地 ) 学 位 の 種 類 学 位 記 番 号 学位授与年月日 学位授与の要件 研究科, 専攻 論 文 題 目 ぱんれい 庞磊博士 ( 生命科学 ) 生博第 337 号平成 29 年 3 月 24 日学位規則第 4 条第 1 項該当東北大学大学院生命科学研究科 ( 博士課程 ) 生態システム生命科学専攻 Analyses of Functional Tissues and Hormonal

More information

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること (2018 年度一般入試 A) 英語問題 (60 分 ) ( この問題冊子は 8 ページである ) 受験についての注意 1. 監督の指示があるまで 問題を開いてはならない 2. 携帯電話 PHS の電源は切ること 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

More information

Illustrating SUSY breaking effects on various inflation models

Illustrating SUSY breaking effects on various inflation models 7/29 基研研究会素粒子物理学の進展 2014 Illustrating SUSY breaking effects on various inflation models 山田悠介 ( 早稲田大 ) 共同研究者安倍博之 青木俊太朗 長谷川史憲 ( 早稲田大 ) H. Abe, S. Aoki, F. Hasegawa and Y. Y, arxiv:1408.xxxx 7/29 基研研究会素粒子物理学の進展

More information

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University Hypocenters, Spectral Analysis and Source Mechanism of Volcanic Earthquakes at Kuchinoerabujima: High-frequency, Low-frequency and Monochromatic Events Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI,

More information

Yutaka Shikano. Visualizing a Quantum State

Yutaka Shikano. Visualizing a Quantum State Yutaka Shikano Visualizing a Quantum State Self Introduction http://qm.ims.ac.jp 東京工業大学 ( 大岡山キャンパス ) 学部 4 年間 修士課程 博士課程と通ったところです 宇宙物理学理論研究室というところにいました マサチューセッツ工科大学 博士課程の際に 機械工学科に留学していました (1 年半 ) チャップマン大学

More information

Thermal Safety Software (TSS) series

Thermal Safety Software (TSS) series Ready-solutions Thermal Safety Software (TSS) series 各種の反応危険性評価ソフト The subset for adiabatic calorimetry ( 断熱測定データ解析ソリューション ) 断熱熱量計 (ARC VSP DEWAR) 等は 化学反応の熱的危険性評価に有効であることが知られています このソリューションは 断熱下で測定した熱量データを多目的に解析するために

More information

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会 一般化川渡り問題について 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 12.3.8 組合せゲーム パズルミニ研究集会 1 3 人の嫉妬深い男とその妹の問題 [Alcuin of York, 青年達を鍛えるための諸問題 より ] 3 人の男がそれぞれ一人ずつ未婚の妹を連れて川にさしかかった

More information

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬 高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP シンポジウム @ 白馬 2010.2.14-17 χ Direct Detection χ q q Indirect Detection χ γ, ν, lepton Accelerator Detection q χ χ γ, ν, lepton q χ Target : Xe, Ge, Si, NaI,

More information

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS 第 23 回風工学シンポジウム (2014) 一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS 1) 2) 3) 4) 5) 吉田大紀 林 泰一 伊藤芳樹 林 夕路 小松亮介 1) 4) 4) 1) 1) 寺地雄輔 太田行俊 田村直美 橋波伸治 渡邉好弘 Daiki

More information

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三 車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三 概要車載用燃焼圧センサー用として高抵抗を示すランガサイト型圧電結晶をデザインした すなわち4 元系のランガサイト型結晶 CNGS の適正組成をイオン半径 結晶構成要素の結晶サイト存在に関する自由度 および

More information

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工 WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工の放射性核種について定められたガイダンスレベルを表 9.2 に示す それぞれの成人の線量換算係数もまた示されている

More information

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere Chapter 1 Earth Science Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere Project Representative Shingo Watanabe

More information

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI 京都大学防災研究所年報第 53 号 B 平成 22 年 6 月 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 53 B, 2 Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand Mahmoud N. HUSSIEN*, Tetsuo

More information

Development of Advanced Simulation Methods for Solid Earth Simulations

Development of Advanced Simulation Methods for Solid Earth Simulations Chapter 1 Earth Science Development of Advanced Simulation Methods for Solid Earth Simulations Project Representative Mikito Furuichi Department of Mathematical Science and Advanced Technology, Japan Agency

More information

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA H HUENIA {^ERALDICA,THE CORRECT NAME FOR HUENIA PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA しノ. by L. B, HOLTHUIS CRUSTACEA SMITH^IB^^ISf RETURN fo W-l 妙. V, i コノハガニの学名について L. B. ホノレトイス.

More information

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる 谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる 1. 地球内部の全球的 3 次元構造とマントル対流プレートテクトニクスによる地球表面の運動が GPS 等の測地観測によってリアルタイムでわかるようになってきた現在

More information

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学 非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学 Unbound excited states in,17 C Ground state deformation property of carbon isotopes Y.Satou et al., Phys. Lett. B 660, 320(2008). Be BC Li H He Ne O F N N=8 C 17 C Neutron

More information

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2 Bulletin of the Geological Subsurface Survey of Japan, Thermal vol.60 Regime (9/10), in the p.469-489, Chao-Phraya 2009 Plain, Thailand (Uchida et al.) Subsurface Thermal Regime in the Chao-Phraya Plain,

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan 重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 2013.1.8. 熱海 銀河における元素量の観測 青木和光 Wako Aoki 国立天文台 National Astronomical Observatory of Japan 銀河における元素量の観測 中性子星合体によってどのような元素合成が起こ るか とくにr-processのサイトか 化学進化への影響は 化学組成と金属量 化学組成 元素量

More information

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University 2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Tohru OZAWA Department of Applied Physics, Waseda University 出版された論文 R. Carles, T. Ozawa Finite time extinction for nonlinear Schrödinger equation in 1D and 2D, Commun.

More information

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass. Diagram courtesy of P5 The Energy Frontier Origin of Mass Matter/Antimatter Asymmetry Dark Matter Origin of Universe Unification of Forces New Physics Beyond the Standard Model ニュートリノ質量 質量起源 The Intensity

More information

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付 シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付 今回の授業の目的 4 次のRunge-Kutta 法を用いて, 惑星の軌道のシミュレーションを行う 2 d r GMm m = r 2 3 dt r 2 d r GM = 2 (using angular momentum cons.) 2

More information

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4 BCRAM-1LB ( 1 C ) RJJG- Rev...11. I T(RMS) A V DRM 6 V I FGT I, I RGT I, I RGT III ma : PRSSZE-A ( : TO-P), 1 1. T 1. T.. T 1 1.. 1 C 1 C 1 * 1 V DRM 6 V * 1 V DSM V I T(RMS) A Tc = C I TSM A 6Hz 1 I t

More information

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana プリムネシウム藻綱 Isochrysis galbana の光化学系 II における光適応戦略 6D551 小幡光子 指導教員山本修一 SYNOPSIS 海洋に生息する藻類は 海水の鉛直混合や昼夜により 弱光から強光までの様々な光強度

More information

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei 2016/09/13 INPC2016 @ Adelaide 1 Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei Back ground Prog. Theor. Exp. Phys. 2016, 013D01 Yoshihiko Kobayashi

More information

Active Interrogation of SNMs by use of IEC Fusion Neutron Source

Active Interrogation of SNMs by use of IEC Fusion Neutron Source Active Interrogation of SNMs by use of IEC Fusion Neutron Source Kai Masuda 1,T. Masawa 2,Y. Yakahashi 2, T. Yagi 2,K. Inoue 1, T. Kajiwara 1, R. Nakamatsu 1, and LSC-NRF group in JAEA and Kyoto-U. 1 Inst.

More information

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data Seiichi SHIMADA * Abstract The IGS reprocessed GPS precise ephemeris (repro1) is evaluated

More information

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論 Day 5 A Gem of Combinatorics 組合わせ論の宝石 Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論 Recall the last lecture and try the homework solution 復習と宿題確認 Partially Ordered Set (poset)

More information

Status of J-PARC Transmutation Experimental Facility

Status of J-PARC Transmutation Experimental Facility Status of J-PARC Transmutation Experimental Facility 10 th OECD/NEA Information Exchange Meeting for Actinide and Fission Product Partitioning and Transmutation 2008.10.9 Japan Atomic Energy Agency Toshinobu

More information

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University Analysis status of the Λ hyernuclear sectroscoic exeriment @ Jlab Hall C (E01-011) Contents 1: Characteristics of the (e,e K ) reaction 2: Physics goals of Jlab E01-011 3: Thomas Jefferson National Accelerator

More information

Neutron cross section measurement of MA

Neutron cross section measurement of MA Neutron cross section measurement of MA Hideo Harada Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency 2007 Symposium on Nuclear Data Nov. 30, 2007, RICOTTI Convention Center 2007

More information

2011/12/25

2011/12/25 Outline [] Control Technologies for Ocean Engineering Control technologies as the second axis Kyushu University Prof. H.Kajiwara (.8,at PNU) LQI Control Linear-Quadratic- Integral Design of Linear-Time-

More information

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について Report on the experiment of vibration measurement of Wire Brushes mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について In this report, the purpose of the experiment is to clarify the vibration

More information

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata 近距離重力実験実験室における逆二乗則の法則の検証? Jiro Murata Rikkyo University / TRIUMF 第 29 回理論懇シンポジウム 重力が織りなす宇宙の諸階層 2016/12/20-22 東北大学天文学教室 1. 重力実験概観 Newton 実験の紹介 2. 加速器実験の解釈 比較 1 ATLAS よくある質問 Q 重力実験はどのくらいの距離までいってるんですか? A

More information

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa Fast response silicon pixel detector using SOI 2016/08/10 Manabu Togawa 1 100 ps High intensity fixed target NA62200 ps J-PARC MEG TOF-PET TOF-PET 400 ps α K + -> π + νν : NA62 expriment At CERN SPS Goal

More information

研究会 ハイパー核物理の発展と今後の展望 2013年7月8日 和州閣(三重県志摩市)

研究会 ハイパー核物理の発展と今後の展望 2013年7月8日 和州閣(三重県志摩市) 研究会 ハイパー核物理の発展と今後の展望 2013 年 7 月 8 日和州閣 ( 三重県志摩市 ) 1953 discovery of hypernucleus (emulsion with cosmic-ray, by Danysz and Pniewski) 1970s CERN, BNL Counter experiments with Kaon beam 1980s BNL-AGS, KEK-PS

More information

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling Taku OZAWA, Sou NISHIMURA, and Hiroshi OHKURA Volcano Research Department,

More information

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling Original Paper Japan Journal of Food Engineering, Vol. 17, No. 2, pp. 51-55, June. 2016 Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling Osato MIYAWAKI, Taira SUGIYAMA,

More information

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築 結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築 ( 課題番号 :17350021) 平成 17 年度 ~ 平成 18 年度科学研究費補助金 ( 基盤研究 (B) ) 研究成果報告書 平成 19 年 5 月 研究代表者山本陽介 広島大学大学院理学研究科教授 目次 1. 課題番号 2. 研究課題 3. 研究組織 4. 研究経費 5. 研究発表 原著論文 総説類 国内学会における特別講演

More information

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Introduction to Multi-hazard Risk-based Early Warning System in Japan Introduction to Multi-hazard Risk-based Early Warning System in Japan Yasuo SEKITA (Mr) Director-General, Forecast Department Japan Meteorological Agency (JMA) Natural Disasters in Asia Source: Disasters

More information

The Lead-Based VENUS-F Facility: Status of the FREYA Project

The Lead-Based VENUS-F Facility: Status of the FREYA Project EPJ Web of Conferences 106, 06004 (2016) DOI: 10.1051/epjconf/201610606004 C Owned by the authors, published by EDP Sciences, 2016 The Lead-Based VENUS-F Facility: Status of the FREYA Project Anatoly Kochetkov

More information

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について The 4th Workshop on JAXA: Astrodynamics and Flight Mechanics, Sagamihara, July 015. On Attitude Control of Microsatellite Using Shape Variable Elements By Kyosuke Tawara 1) and Saburo Matunaga ) 1) Department

More information

Taking an advantage of innovations in science and technology to develop MHEWS

Taking an advantage of innovations in science and technology to develop MHEWS Taking an advantage of innovations in science and technology to develop MHEWS Masashi Nagata Meteorological Research Institute, Tsukuba, Ibaraki, Japan Japan Meteorological Agency 1 Why heavy rainfalls

More information

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater ISSN 0386-4049 TECHNICAL REPORTS OF THE METEOROLOGICAL RESEARCH INSTITUTE No.58 2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater 気象研究所技術報告 第 58 号 栄養塩測定用海水組成標準の 2006

More information

日本政府 ( 文部科学省 ) 奨学金留学生申請書

日本政府 ( 文部科学省 ) 奨学金留学生申請書 A PP L IC AT IO N J AP A N ESE G O VE R NMENT ( M ONB UK AG AK US HO :M EXT)SC H OL A RS H IP F O R 2 0 1 6 日本政府 ( 文部科学省 ) 奨学金留学生申請書 Undergraduate Students ( 学部留学生 ) INSTRUCTIONS( 記入上の注意 ) 1.Type application,

More information

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators The 22th IEEE Asian Test Symposium (ATS 13), Yilan, Taiwan, Nov. 20, 2013 An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators Kentaroh Katoh, Yuta Doi, Satoshi Ito, Haruo Kobayashi,

More information

Theoretical Discussion of Statistical Error for Variance-to-Mean Ratio. Tomohiro Endo, Akio Yamamoto

Theoretical Discussion of Statistical Error for Variance-to-Mean Ratio. Tomohiro Endo, Akio Yamamoto M&C 017 - International Conference on Mathematics & Computational Methods Applied to uclear Science & Engineering, Theoretical Discussion of Statistical Error for Variance-to-Mean Ratio Tomohiro Endo,

More information

Development of Flood Exposure Map Considering Dynamics of Urban Life. Yuling LIU, Norio OKADA, Dayong SHEN* and Yoshio KAJITANI**

Development of Flood Exposure Map Considering Dynamics of Urban Life. Yuling LIU, Norio OKADA, Dayong SHEN* and Yoshio KAJITANI** 京都大学防災研究所年報第 53 号 B 平成 22 年 6 月 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 53 B, 2010 Development of Flood Exposure Map Considering Dynamics of Urban Life Yuling LIU, Norio OKADA, Dayong SHEN*

More information

Technical report Approaches to Life Estimation of Electronic Circuits

Technical report Approaches to Life Estimation of Electronic Circuits Technical report Approaches to Life Estimation of Electronic Circuits Akira MOTOYAMA Representative, M.A. Reliability Technology Office Abstract Concerning the short-life problem of electronic application

More information

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと 平成 29 年度入学者選抜学力検査問題 英 語 ( 配点 ) 1 2 3 4 5 6 10 点 15 点 24 点 15 点 15 点 21 点 ( 注意事項 ) 1 問題冊子は指示があるまで開かないこと 2 問題冊子は 1 ページから 8 ページまでです 検査開始の合図のあとで確かめること 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ

More information

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE)

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE) NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して Educational Research based on Newspaper In Education (NIE) Tuition of Liberal Arts for second year students at International Pacific University 次世代教育学部国際教育学科渡邉規矩郎

More information

ATLAS 実験における荷電ヒッグス粒子の探索

ATLAS 実験における荷電ヒッグス粒子の探索 1 ATLAS 実験における荷電ヒッグス粒子の探索 筑波大学大学院数理物質科学研究科物理学専攻博士後期課程 3 年永田和樹 2016 年 1 月 19 日 CiRfSE workshop 重い荷電ヒッグス粒子探索 2 もし 荷電ヒッグス粒子の発見できたら 標準理論を超える物理の存在の証明 例 :Minimal Supersymmetric Standard Model (MSSM) 重い荷電ヒッグス粒子探索

More information

二国間交流事業共同研究報告書 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター

二国間交流事業共同研究報告書 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター ( 様式 4-1) 二国間交流事業共同研究報告書 平成 26 年 3 月 20 日 独立行政法人日本学術振興会理事長殿 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター 量子情報エレクトロニクス部門 量子凝縮物性研究ク ルーフ ( ふりがな ) ノリフランコ職 氏名ク ルーフ テ ィレクター NORI FRANCO 1. 事業名相手国 ( ロシア ) との共同研究振興会対応機関

More information

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ), 第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ), 奥泉信克, 宮崎英治, 井上浩一 ( 宇宙航空研究開発機構 ) Moto Takai(JAXA),

More information

SOLID STATE PHYSICAL CHEMISTRY

SOLID STATE PHYSICAL CHEMISTRY SOLID STATE PHYSICAL CHEMISTRY Annual Research Highlights (1) ε-al x Fe 2 x O 3 : an advanced nanomagnets exhibiting millimeter-wave absorption In this work, aluminum-substituted epsilon-phase iron oxides,

More information

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006). 森雄一朗博士の研究業績概要 現代科学において環境は最も重要なキーワードの一つであり 化学分野では環境にやさしい化学 すなわちグリーン サステイナブルケミストリー (GSC) が世界的に重要な研究領域として位置づけられている GSCという言葉が生み出されて約 10 年であるが 化学と環境の共存という大きな目標に向けて今後益々の発展が必要な分野である 森雄一朗博士はこれまでGSC 分野を中心に基礎から応用まで幅広く研究活動を行い成果を挙げている

More information

Neutron Flux Measurements of Newly Developed Neutron Collimator

Neutron Flux Measurements of Newly Developed Neutron Collimator CO2-1 Neutron Flux Measurements of Newly Developed Neutron Collimator H. Hayashi #), M. Shibata, Y. Shima 1 and A. Taniguchi 2 CONCLUSIONS AND FUTURE PLANS: A neutron Radioisotope Research Center, Nagoya

More information

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese) Advance Publication by J-STAGE 日本機械学会論文集 Transactions of the JSME (in Japanese) DOI:10.1299/transjsme.16-00058 Received date : 24 February, 2016 Accepted date : 6 September, 2016 J-STAGE Advance Publication

More information

観光の視点から見た民泊の現状 課題 展望

観光の視点から見た民泊の現状 課題 展望 38 特集 シェアリングエコノミーと交通 / 論説 観光の視点から見た民泊の現状 課題 展望 193 ( ) Current State of Affairs, Challenges, and Outlook for Minpaku from the Perspective of Tourism Noriko YAGASAKI Minpaku, translated as lodging at private

More information

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合 サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合 マテリアルズインフォマティクスの最前線 吉田 亮 1,2,3,4 yoshidar@ism.ac.jp 情報 システム研究機構 統計数理研究所 モデリング研究系 准教授 情報 システム研究機構 統計数理研究所 ものづくりデータ科学研究センター センター長 3 総合研究大学院大学 複合科学研究科 統計科学専攻 准教授 4 物質

More information

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure Project Representative Takashi Furumura Author Takashi Furumura Center for Integrated Disaster Information

More information

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構 超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構 名古屋大学理学研究科 井上剛志 今日の話とは別の成果 : Inoue, Hennebelle, Fukui, Matsumoto, Iwasaki, Inutsuka 2018, PASJ Special issue, arxiv: 1707.02035 IntroducGon to RX J1713.7-3946 p SNR: RX J1713.7-3946:

More information

有機金属化学 : 最新論文からのトピックス 4

有機金属化学 : 最新論文からのトピックス 4 有機金属化学 : 最新論文からのトピックス 4 The Suzuki Miyaura Coupling itroarenes Yadav, M. R.; agaoka, M.; Kashihara, M.; Zhong, R.-L.; Miyazaki, T.; Sakaki, S.; akao, Y., J. Am. Chem. Soc. 017, 139, 943-946. Abstract:

More information

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model Project Representative Masaki Satoh Atmosphere and Ocean Research Institute, University of Tokyo / Research Institute

More information

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment Kyoto University E-mail: maeda_y@scphys.kyoto-u.ac.jp A novel γ-ray detector insensitive to neutrons is developed

More information

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

EDL analysis for HAYABUSA reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析 EDL analysis for "HAYABUSA" reentry and recovery operation Kazuhiko Yamada, Tetsuya Yamada (JAXA), Masatoshi Matsuoka (NEC Aerospace Systems, Ltd) Abstract HAYABUSA sample return capsule returned to the

More information

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo) L 28 th Conference on Severe Local Storms 11 Nov. 2016 Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo) Introduction In the warm sector of extratropical cyclones (ECs), there are strong upper-level

More information

XENON SHORT ARC LAMPS キセノンショートアークランプ

XENON SHORT ARC LAMPS キセノンショートアークランプ 光源事業 / キセノンショートアークランプ XENON SHORT ARC LAMPS キセノンショートアークランプ 当社のキセノンショートアークランプは 自然太陽光に近似し た光波長 分光分布を有する特性を生かし 太陽電池の性能評 価 基礎研究のための弊社製ソーラシミュレータ用標準光源と して採用しているだけでなく 高輝度 点光源 高演色という 特性を生かし 分光器用光源 映写機用光源 プラネタリウム

More information

Estimation of Gravel Size Distribution using Contact Time

Estimation of Gravel Size Distribution using Contact Time ISSN 386-1678 Report of the Research Institute of Industrial Technology, Nihon University Number 97, 212 Estimation of Gravel Size Distribution using Contact Time Akira ODA*, Yuya HIRANO**, Masanori WATANABE***

More information

IAU IAU commission president vice-president 8 9 IAU. 2. IAU Division structure. Commission 31 SKYPE 4.

IAU IAU commission president vice-president 8 9 IAU. 2. IAU Division structure. Commission 31 SKYPE 4. IAU 2012 12 25 10:00-14:10 1 338 1 2 3 4 5 6 7 IAU commission president vice-president 8 9 IAU 1. 2. IAU Division structure IAU Division 3. Commission President Commission 6 Commission 31 IAU ITU() SKYPE

More information

生命科学科 3 年後期 分子細胞生物 I 相同アミノ酸配列の比較解析 藤博幸関西学院大学理工学部生命医化学科

生命科学科 3 年後期 分子細胞生物 I 相同アミノ酸配列の比較解析 藤博幸関西学院大学理工学部生命医化学科 生命科学科 3 年後期 分子細胞生物 I 相同アミノ酸配列の比較解析 藤博幸関西学院大学理工学部生命医化学科 Outline 1. イントロダクション 2. 膜タンパク質のトポロジー反転 3. ケモカイン受容体 Evolu&onary fate and func&onal consequence Gene A Gene A' duplication Non-functionalization (pseudogenization)

More information

Trends of the National Spatial Data Infrastructure

Trends of the National Spatial Data Infrastructure Trends of the National Spatial Data Infrastructure YoungJoo Lee 2009. 6. 8 Contents Introductions - Definitions of NSDI - Components of NSDI - Roles of NSDI Comparative Analysis - Backgrounds: History

More information

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻 数理科学専修 統合数理科学を 目 指 す welcome to Mathematics 数理科学 とは 数学および数学と諸科学との関係領域に構築 された学問分野の総称であり 数学理論 いわゆる純粋数学 の探求ともに 現実現象の記述 抽象化 定式化 モデル化 の開発にも重点を置くものです 1981年 慶應義塾は他大学にさきがけてを設置し ましたが 数理科学はあらゆる科学技術を語る共通の言葉とし て 理工学はもちろん

More information

Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach

Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach Chapter 1 Earth Science Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach Project Representative Takeshi Enomoto Authors Takeshi Enomoto Shozo Yamane Akira

More information

Belarus activity in ADS field

Belarus activity in ADS field Joint Institute for Power&Nuclear Research-Sosny National Academy of Sciences of Belarus Belarus activity in ADS field H. Kiyavitskaya, Yu. Fokov, Ch. Routkovskaya, V. Bournos, S. Sadovich, S. Mazanik,

More information

The cause of the east west contraction of Northeast Japan

The cause of the east west contraction of Northeast Japan Bulletin of the Geological Survey of Japan, vol. 68 (4), p. 155 161, 2017 Article The cause of the east west contraction of Northeast Japan Masaki Takahashi 1,* Masaki Takahashi (2017) The cause of the

More information

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase Spontaneous agnetization of uar atter in the inhoogeneous chiral phase arxiv:7. [hep-ph] Ryo Yoshiie (Kyoto University) collaborator:kazuya Nishiyaa oshitaa atsui XQCD 9/@CCNU QCD phase diagra and chiral

More information

モータ用モデル予測電流制御における 予測用モータモデルの磁気特性表現の改善

モータ用モデル予測電流制御における 予測用モータモデルの磁気特性表現の改善 モータ用モデル予測電流制御における * 予測用モータモデルの磁気特性表現の改善 Improved PMSM Model Considering Flux Characteristics for Model Predictive Control 井村彰宏 Akihiro IMURA 高橋友哉 Tomoya TAKAHASHI 藤綱雅己 Masami FUJITSUNA 残間忠直 Tadanao ZANMA

More information

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 むら を 定量化する とは? どちらも輝度分布の最大最小の差は 22% 画面の 4 隅に向かって暗くなる状態は 気にならない 気になるもの むら むら とは人の主観である 気になる要素 を見出し 計測可能にする SEMU: 既存の定量評価方法 SEMI: 半導体 FPD ナノテクノロジー MEMS 太陽光発電

More information

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から 自由研究論文 61 新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から 柴田 1) 俊和 The Case Study about Instruction of the Tacit Knowledge called a New Course of Study - Instruction Contents in Sport Pedagogy-

More information

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae)

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae) 176 植物研究雑誌第 89 巻第 3 号 2014 年 6 月 J. Jpn. Bot. 89: 176 180 (2014) Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa, Yasushi Iaragi and Shinou Akiyama c : Lectotypification of Glaziocharis aei (Burmanniaceae)

More information

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学) KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学) 1 Contents Motivation KOTO Experiment Prospect 2 Motivation 3 New Physicsはあるのか 4 2008 : Kobayashi and Maskawa CP-violation was established. The size is not enough to explain

More information

Investigation of Nuclear Data Accuracy for the Accelerator- Driven System with Minor Actinide Fuel

Investigation of Nuclear Data Accuracy for the Accelerator- Driven System with Minor Actinide Fuel Investigation of Nuclear Data Accuracy for the Accelerator- Driven System with Minor Actinide Fuel Kenji Nishihara, Takanori Sugawara, Hiroki Iwamoto JAEA, Japan Francisco Alvarez Velarde CIEMAT, Spain

More information